1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifdef __GNUC__
#warning You are including deprecated math stuff
#endif
typedef Scalar ScalarType;
/*! \deprecated use cols() */
EIGEN_DEPRECATED inline unsigned int ColumnsNumber() const { return cols(); };
/*! \deprecated use rows() */
EIGEN_DEPRECATED inline unsigned int RowsNumber() const { return rows(); };
/*!
* \deprecated use *this(i,j) (or *this.coeff(i,j))
* Return the element stored in the <I>i</I>-th rows at the <I>j</I>-th column
* \param i the row index
* \param j the column index
* \return the element
*/
EIGEN_DEPRECATED inline Scalar ElementAt(unsigned int i, unsigned int j) const { return (*this)(i,j); };
EIGEN_DEPRECATED inline Scalar& ElementAt(unsigned int i, unsigned int j) { return (*this)(i,j); };
EIGEN_DEPRECATED inline Scalar V(int i) const { return (*this)[i]; };
EIGEN_DEPRECATED inline Scalar& V(int i) { return (*this)[i]; };
/*!
* \deprecated use *this.determinant() (or *this.lu().determinant() for large matrices)
* Calculate and return the matrix determinant (Laplace)
* \return the matrix determinant
*/
EIGEN_DEPRECATED Scalar Determinant() const { return determinant(); };
/*!
* Return the cofactor <I>A<SUB>i,j</SUB></I> of the <I>a<SUB>i,j</SUB></I> element
* \return ...
*/
EIGEN_DEPRECATED Scalar Cofactor(unsigned int i, unsigned int j) const
{
assert(rows() == cols());
assert(rows()>2);
return (((i+j)%2==0) ? 1. : -1.) * minor(i,j).determinant();
};
/*! \deprecated use *this.col(j) */
EIGEN_DEPRECATED ColXpr GetColumn(const unsigned int j) { return col(j); };
/*! \deprecated use *this.row(i) */
EIGEN_DEPRECATED RowXpr GetRow(const unsigned int i) { return row(i); };
/*! \deprecated use m1.col(i).swap(m1.col(j)); */
EIGEN_DEPRECATED void SwapColumns(const unsigned int i, const unsigned int j)
{
if (i==j) return;
col(i).swap(col(j));
};
/*! \deprecated use m1.col(i).swap(m1.col(j)) */
EIGEN_DEPRECATED void SwapRows(const unsigned int i, const unsigned int j)
{
if (i==j) return;
row(i).swap(row(j));
};
/*!
* \deprecated use *this.cwise() += k
* (Modifier) Add to each element of this matrix the scalar constant <I>k</I>.
* \param k the scalar constant
* \return the modified matrix
*/
EIGEN_DEPRECATED Derived& operator+=(const Scalar k)
{
cwise() += k;
return *this;
};
/*!
* \deprecated use *this.cwise() -= k
* (Modifier) Subtract from each element of this matrix the scalar constant <I>k</I>.
* \param k the scalar constant
* \return the modified matrix
*/
EIGEN_DEPRECATED Derived& operator-=(const Scalar k)
{
cwise() -= k;
return *this;
};
/*!
* \deprecated use *this.dot
* Matrix multiplication: calculates the cross product.
* \param reference to the matrix to multiply by
* \return the matrix product
*/
// template <int N,int M>
// EIGEN_DEPRECATED void DotProduct(Point<N,Scalar> &m,Point<M,Scalar> &result)
// {
// unsigned int i, j;
// for (i=0; i<M; i++)
// { result[i]=0;
// for (j=0; j<N; j++)
// result[i]+=(*this)[i][j]*m[j];
// }
// };
/*! \deprecated use *this = a * b.transpose() (or *this = a * b.adjoint() for complexes) */
template <typename OtherDerived1, typename OtherDerived2>
EIGEN_DEPRECATED void OuterProduct(const MatrixBase<OtherDerived1>& a, const MatrixBase<OtherDerived2>& b)
{ *this = a * b.adjoint(); }
typedef CwiseUnaryOp<ei_scalar_add_op<Scalar>, Derived> ScalarAddReturnType;
/*! \deprecated use *this.cwise() + k */
EIGEN_DEPRECATED const ScalarAddReturnType operator+(const Scalar k) { return cwise() + k; }
/*! \deprecated use *this.cwise() - k */
EIGEN_DEPRECATED const ScalarAddReturnType operator-(const Scalar k) { return cwise() - k; }
/*! \deprecated use *this.setZero() or *this = MatrixType::Zero(rows,cols), etc. */
EIGEN_DEPRECATED void SetZero() { setZero(); };
/*! \deprecated use *this.setIdentity() or *this = MatrixType::Identity(rows,cols), etc. */
EIGEN_DEPRECATED void SetIdentity() { setIdentity(); };
/*! \deprecated use *this.col(j) = expression */
EIGEN_DEPRECATED void SetColumn(unsigned int j, Scalar* v)
{ col(j) = Map<Matrix<Scalar,RowsAtCompileTime,1> >(v,cols(),1); };
/** \deprecated use *this.col(i) = other */
template<typename OtherDerived>
EIGEN_DEPRECATED void SetColumn(unsigned int j, const MatrixBase<OtherDerived>& other)
{ col(j) = other; };
/*! \deprecated use *this.row(i) = expression */
EIGEN_DEPRECATED void SetRow(unsigned int i, Scalar* v)
{ row(i) = Map<Matrix<Scalar,1,ColsAtCompileTime> >(v,1,rows()); };
/** \deprecated use *this.row(i) = other */
template<typename OtherDerived>
EIGEN_DEPRECATED void SetRow(unsigned int j, const MatrixBase<OtherDerived>& other)
{ row(j) = other; };
/*! \deprecated use *this.diagonal() = expression */
EIGEN_DEPRECATED void SetDiagonal(Scalar *v)
{
assert(rows() == cols());
diagonal() = Map<Matrix<Scalar,RowsAtCompileTime,1> >(v,cols(),1);
}
/** \deprecated use trace() */
EIGEN_DEPRECATED Scalar Trace() const { return trace(); }
/*! \deprecated use ostream << *this or even ostream << *this.withFormat(...) */
EIGEN_DEPRECATED void Dump()
{
unsigned int i, j;
for (i=0; i<rows(); ++i)
{
printf("[\t");
for (j=0; j<cols(); j++)
printf("%f\t", coeff(i,j));
printf("]\n");
}
printf("\n");
}
/** \deprecated use norm() */
EIGEN_DEPRECATED inline Scalar Norm() const { return norm(); };
/** \deprecated use squaredNorm() */
EIGEN_DEPRECATED inline Scalar SquaredNorm() const { return squaredNorm(); };
/** \deprecated use normalize() or normalized() */
EIGEN_DEPRECATED inline Derived& Normalize() { normalize(); return derived(); };
/** \deprecated use normalized() */
EIGEN_DEPRECATED inline const PlainMatrixType Normalize() const { return normalized(); };
/** \deprecated use transposeInPlace() or transpose() */
EIGEN_DEPRECATED inline Derived& Transpose() { transposeInPlace(); return derived(); };
/** \deprecated use transpose() */
EIGEN_DEPRECATED inline const Eigen::Transpose<Derived> Transpose() const { return transpose(); };
/** \deprecated use .cross(p) */
EIGEN_DEPRECATED inline PlainMatrixType operator ^ (const Derived& p ) const { return this->cross(p); }
/// Homogeneous normalization (division by W)
inline Derived& HomoNormalize()
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
enum {
SubRows = (int(Flags)&RowMajorBit) ? 1 : (RowsAtCompileTime==Dynamic ? Dynamic : RowsAtCompileTime-1),
SubCols = (int(Flags)&RowMajorBit) ? (ColsAtCompileTime==Dynamic ? Dynamic : ColsAtCompileTime-1) : 1,
};
Scalar& last = coeffRef(size()-2);
if (last!=Scalar(0))
{
Block<Derived,SubRows,SubCols>(derived(),0,0,
(int(Flags)&RowMajorBit) ? size()-1 : 1,
(int(Flags)&RowMajorBit) ? 1 : (size()-1)) / last;
last = Scalar(1.0);
}
return *this;
}
inline const PlainMatrixType HomoNormalize() const
{
PlainMatrixType res = derived();
return res.HomoNormalize();
}
/// norm infinity: largest absolute value of compoenet
EIGEN_DEPRECATED inline Scalar NormInfinity() const { return derived().cwise().abs().maxCoeff(); }
/// norm 1: sum of absolute values of components
EIGEN_DEPRECATED inline Scalar NormOne() const { return derived().cwise().abs().sum(); }
/// the sum of the components
EIGEN_DEPRECATED inline Scalar Sum() const { return sum(); }
/// returns the biggest component
EIGEN_DEPRECATED inline Scalar Max() const { return maxCoeff(); }
/// returns the smallest component
EIGEN_DEPRECATED inline Scalar Min() const { return minCoeff(); }
/// returns the index of the biggest component
EIGEN_DEPRECATED inline int MaxI() const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); int i; maxCoeff(&i,0); return i; }
/// returns the index of the smallest component
EIGEN_DEPRECATED inline int MinI() const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); int i; minCoeff(&i,0); return i; }
/// Padding function: give a default 0 value to all the elements that are not in the [0..2] range.
/// Useful for managing in a consistent way object that could have point2 / point3 / point4
inline Scalar Ext( const int i ) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived);
if(i>=0 && i<SizeAtCompileTime)
return coeff(i);
else
return Scalar(0);
}
/// Per component scaling
template<typename OtherDerived>
EIGEN_DEPRECATED inline Derived& Scale(const MatrixBase<OtherDerived>& other)
{ this->cwise() *= other; return derived; }
template<typename OtherDerived>
EIGEN_DEPRECATED inline
CwiseBinaryOp<ei_scalar_product_op<Scalar>, Derived, OtherDerived>
Scale(const MatrixBase<OtherDerived>& other) const
{ return this->cwise() * other; }
template<typename OtherDerived>
EIGEN_DEPRECATED inline bool operator < (const MatrixBase<OtherDerived>& other) const {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived);
return ei_lexi_comparison<Derived,OtherDerived,SizeAtCompileTime>::less(derived(),other.derived());
}
template<typename OtherDerived>
EIGEN_DEPRECATED inline bool operator > (const MatrixBase<OtherDerived>& other) const {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived);
return ei_lexi_comparison<Derived,OtherDerived,SizeAtCompileTime>::geater(derived(),other.derived());
}
template<typename OtherDerived>
EIGEN_DEPRECATED inline bool operator <= (const MatrixBase<OtherDerived>& other) const {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived);
return ei_lexi_comparison<Derived,OtherDerived,SizeAtCompileTime>::lessEqual(derived(),other.derived());
}
template<typename OtherDerived>
EIGEN_DEPRECATED inline bool operator >= (const MatrixBase<OtherDerived>& other) const {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived);
return ei_lexi_comparison<Derived,OtherDerived,SizeAtCompileTime>::greaterEqual(derived(),other.derived());
}
|