File: legendre.h

package info (click to toggle)
meshlab 1.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 21,096 kB
  • ctags: 33,630
  • sloc: cpp: 224,813; ansic: 8,170; xml: 119; makefile: 80
file content (241 lines) | stat: -rw-r--r-- 6,755 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2006                                                \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/

#ifndef __VCGLIB_LEGENDRE_H
#define __VCGLIB_LEGENDRE_H

#include <vcg/math/base.h>

namespace vcg {
namespace math {

/*
 * Contrary to their definition, the Associated Legendre Polynomials presented here are 
 * only computed for positive m values.
 * 
 */
template <typename ScalarType>
class Legendre {

protected :
		
	/**
	 * Legendre Polynomial three term Recurrence Relation
	 */ 
	static inline ScalarType legendre_next(unsigned l, ScalarType P_lm1, ScalarType P_lm2, ScalarType x)
	{
		return ((2 * l + 1) * x * P_lm1 - l * P_lm2) / (l + 1);
	}

	/**
	 * Associated Legendre Polynomial three term Recurrence Relation.
	 * Raises the band index.
	 */ 
	static inline double legendre_next(unsigned l, unsigned m, ScalarType P_lm1, ScalarType P_lm2, ScalarType x)
	{
		return ((2 * l + 1) * x * P_lm1 - (l + m) * P_lm2) / (l + 1 - m);
	}
	
	/**
	 * Recurrence relation to compute P_m_(m+1) given P_m_m at the same x
	 */ 
	static inline double legendre_P_m_mplusone(unsigned m, ScalarType p_m_m, ScalarType x)
	{
		return x * (2.0 * m + 1.0) * p_m_m;
	}
	
	/**
	 * Starting relation to compute P_m_m according to the formula:
	 * 
	 * pow(-1, m) * double_factorial(2 * m - 1) * pow(1 - x*x, abs(m)/2)
	 * 
	 * which becomes, if x = cos(theta) :
	 * 
	 * pow(-1, m) * double_factorial(2 * m - 1) * pow(sin(theta), abs(m)/2)
	 */
	static inline double legendre_P_m_m(unsigned m, ScalarType sin_theta)
	{
		ScalarType p_m_m = 1.0;
		
		if (m > 0)
		{
			ScalarType fact = 1.0; //Double factorial here 
			for (unsigned i = 1; i <= m; ++i)
			{
				p_m_m *= fact * sin_theta; //raising sin_theta to the power of m/2
				fact += 2.0;
			}
			
			if (m&1) //odd m
			{
				// Condon-Shortley Phase term
				p_m_m *= -1;
			}
		}
		
		return p_m_m;
	}
	
	static inline double legendre_P_l(unsigned l, ScalarType x)
	{
		ScalarType p0 = 1;
		ScalarType p1 = x;
		
		if (l == 0) return p0;
		
		for (unsigned n = 1; n < l; ++n)
		{
			Swap(p0, p1);
			p1 = legendre_next(n, p0, p1, x);
		}
		
		return p1;
	}
	
	/**
	 * Computes the Associated Legendre Polynomial for any given
	 * positive m and l, with m <= l and -1 <= x <= 1.
	 */
	static inline double legendre_P_l_m(unsigned l, unsigned m, ScalarType cos_theta, ScalarType sin_theta)
	{	
		if(m > l) return 0;
		if(m == 0) return legendre_P_l(l, cos_theta); //OK
		else
		{
			ScalarType p_m_m = legendre_P_m_m(m, sin_theta); //OK
			
			if (l == m) return p_m_m;
			
			ScalarType p_m_mplusone = legendre_P_m_mplusone(m, p_m_m, cos_theta); //OK
			
			if (l == m + 1) return p_m_mplusone; 
			
			unsigned n = m + 1;
	
			while(n < l)
			{
				Swap(p_m_m, p_m_mplusone);
			    p_m_mplusone = legendre_next(n, m, p_m_m, p_m_mplusone, cos_theta);
			    ++n;
			}
			
			return p_m_mplusone;
		}	
	}

public :
	
	static double Polynomial(unsigned l, ScalarType x)
	{
		assert (x <= 1 && x >= -1);
		return legendre_P_l(l, x);
	}
	
	static double AssociatedPolynomial(unsigned l, unsigned m, ScalarType x)
	{
		assert (m <= l && x <= 1 && x >= -1);
		return legendre_P_l_m(l, m, x, Sqrt(1.0 - x * x) );
	}
	
	static double AssociatedPolynomial(unsigned l, unsigned m, ScalarType cos_theta, ScalarType sin_theta)
	{
		assert (m <= l && cos_theta <= 1 && cos_theta >= -1 && sin_theta <= 1 && sin_theta >= -1);
		return legendre_P_l_m(l, m, cos_theta, Abs(sin_theta));
	}
};


template <typename ScalarType, int MAX_L>
class DynamicLegendre : public Legendre<ScalarType>
{

private:
	ScalarType matrix[MAX_L][MAX_L]; //dynamic table
	ScalarType _x; //table is conserved only across consistent x invocations
	ScalarType _sin_theta;

	void generate(ScalarType cos_theta, ScalarType sin_theta)
	{	
		//generate all 'l's with m = 0

		matrix[0][0] = 1;
		matrix[0][1] = cos_theta;

		for (unsigned l = 2; l < MAX_L; ++l)
		{
			matrix[0][l] = legendre_next(l-1, matrix[0][l-1], matrix[0][l-2], cos_theta);
		}

		for(unsigned l = 1; l < MAX_L; ++l)
		{
			for (unsigned m = 1; m <= l; ++m)
			{
				if (l == m) matrix[m][m] = legendre_P_m_m(m, sin_theta);
				else if (l == m + 1) matrix[m][l] = legendre_P_m_mplusone(m, matrix[m][m], cos_theta);
				else{
					matrix[m][l] = legendre_next(l-1, m, matrix[m][l-1], matrix[m][l-2], cos_theta);
				}
			}
		}

		_x = cos_theta;
	}

public :

	DynamicLegendre() : _x(2), _sin_theta(2) {}

	double AssociatedPolynomial(unsigned l, unsigned m, ScalarType x)
	{
		assert (m <= l && x <= 1 && x >= -1);
		if (x != _x){
			_sin_theta = Sqrt(1.0 - x * x);
			generate(x, _sin_theta);
		}
		return matrix[m][l];
	}

	double AssociatedPolynomial(unsigned l, unsigned m, ScalarType cos_theta, ScalarType sin_theta)
	{
		assert (m <= l && cos_theta <= 1 && cos_theta >= -1 && sin_theta <= 1 && sin_theta >= -1);
		if (cos_theta != _x){
			_sin_theta = sin_theta;
			generate(cos_theta, _sin_theta);
		}
		return matrix[m][l];
	}

	double Polynomial(unsigned l, ScalarType x)
	{
		assert (x <= 1 && x >= -1);
		if (x != _x){
			_sin_theta = Sqrt(1.0 - x * x);
			generate(x, _sin_theta);
		}
		return matrix[0][l];
	}
};

}} //vcg::math namespace

#endif