1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: point_matching.h,v $
****************************************************************************/
#ifndef _VCG_MATH_POINTMATCHING_H
#define _VCG_MATH_POINTMATCHING_H
#include <vcg/math/matrix33.h>
#include <vcg/math/quaternion.h>
#include <vcg/math/lin_algebra.h>
namespace vcg
{
template<class ScalarType>
class PointMatching
{
public:
typedef Point3<ScalarType> Point3x;
typedef Matrix33<ScalarType> Matrix33x;
typedef Matrix44<ScalarType> Matrix44x;
typedef Quaternion<ScalarType> Quaternionx;
/*
Compute a similarity matching (rigid + uniform scaling)
simply create a temporary point set with the correct scaling factor
*/
static bool ComputeSimilarityMatchMatrix( Matrix44x &res,
std::vector<Point3x> &Pfix, // vertici corrispondenti su fix (rossi)
std::vector<Point3x> &Pmov) // normali scelti su mov (verdi)
{
Quaternionx qtmp;
Point3x tr;
std::vector<Point3x> Pnew(Pmov.size());
ScalarType scalingFactor=0;
for(size_t i=0;i<( Pmov.size()-1);++i)
{
scalingFactor += Distance(Pmov[i],Pmov[i+1])/ Distance(Pfix[i],Pfix[i+1]);
#ifdef _DEBUG
printf("Scaling Factor is %f",scalingFactor/(i+1));
#endif
}
scalingFactor/=(Pmov.size()-1);
for(size_t i=0;i<Pmov.size();++i)
Pnew[i]=Pmov[i]/scalingFactor;
bool ret=ComputeRigidMatchMatrix(res,Pfix,Pnew,qtmp,tr);
if(!ret) return false;
Matrix44x scaleM; scaleM.SetDiagonal(1.0/scalingFactor);
res = res * scaleM;
return true;
}
static bool ComputeRigidMatchMatrix( Matrix44x &res,
std::vector<Point3x> &Pfix, // vertici corrispondenti su fix (rossi)
std::vector<Point3x> &Pmov) // normali scelti su mov (verdi)
{
Quaternionx qtmp;
Point3x tr;
return ComputeRigidMatchMatrix(res,Pfix,Pmov,qtmp,tr);
}
/*
Calcola la matrice di rototraslazione
che porta i punti Pmov su Pfix
Basata sul paper
Besl, McKay
A method for registration o f 3d Shapes
IEEE TPAMI Vol 14, No 2 1992
Esempio d'uso
const int np=1000;
std::vector<Point3x> pfix(np),pmov(np);
Matrix44x Rot,Trn,RotRes;
Rot.Rotate(30,Point3x(1,0,1));
Trn.Translate(0,0,100);
Rot=Trn*Rot;
for(int i=0;i<np;++i){
pfix[i]=Point3x(-150+rand()%1000,-150+rand()%1000,0);
pmov[i]=Rot.Apply(pfix[i]);
}
ComputeRigidMatchMatrix(RotRes,pfix,pmov);
RotRes.Invert();
assert( RotRes==Rot);
assert( RotRes.Apply(pmov[i]) == pfix[i] );
*/
static
bool ComputeWeightedRigidMatchMatrix(Matrix44x &res,
std::vector<Point3x> &Pfix,
std::vector<Point3x> &Pmov,
std::vector<ScalarType> weights,
Quaternionx &q,
Point3x &tr
)
{
Matrix33x ccm;
Point3x bfix,bmov; // baricenter of src e trg
ccm.WeightedCrossCovariance(weights,Pmov,Pfix,bmov,bfix);
Matrix33x cyc; // the cyclic components of the cross covariance matrix.
cyc=ccm - ccm.transpose();
Matrix44x QQ;
QQ.SetZero();
Point3x D(cyc[1][2],cyc[2][0],cyc[0][1]);
Matrix33x RM;
RM.SetZero();
RM[0][0]=-ccm.Trace();
RM[1][1]=-ccm.Trace();
RM[2][2]=-ccm.Trace();
RM += ccm + ccm.transpose();
QQ[0][0] = ccm.Trace();
QQ[0][1] = D[0]; QQ[0][2] = D[1]; QQ[0][3] = D[2];
QQ[1][0] = D[0]; QQ[2][0] = D[1]; QQ[3][0] = D[2];
int i,j;
for(i=0;i<3;i++)
for(j=0;j<3;j++)
QQ[i+1][j+1]=RM[i][j];
// printf(" Quaternion Matrix\n");
// print(QQ);
Point4d d;
Matrix44x v;
int nrot;
Jacobi(QQ,d,v,nrot);
// printf("Done %i iterations\n %f %f %f %f\n",nrot,d[0],d[1],d[2],d[3]);
// print(v);
// Now search the maximum eigenvalue
double maxv=0;
int maxind=-1;
for(i=0;i<4;i++)
if(maxv<fabs(d[i])) {
q=Quaternionx(v[0][i],v[1][i],v[2][i],v[3][i]);
maxind=i;
maxv=d[i];
}
// The corresponding eigenvector define the searched rotation,
Matrix44x Rot;
q.ToMatrix(Rot);
// the translation (last row) is simply the difference between the transformed src barycenter and the trg baricenter
tr= (bfix - Rot *bmov);
//res[3][0]=tr[0];res[3][1]=tr[1];res[3][2]=tr[2];
Matrix44x Trn;
Trn.SetTranslate(tr);
res=Trn*Rot;
return true;
}
static
bool ComputeRigidMatchMatrix(Matrix44x &res,
std::vector<Point3x> &Pfix,
std::vector<Point3x> &Pmov,
Quaternionx &q,
Point3x &tr)
{
Matrix33x ccm;
Point3x bfix,bmov; // baricenter of src e trg
ccm.CrossCovariance(Pmov,Pfix,bmov,bfix);
Matrix33x cyc; // the cyclic components of the cross covariance matrix.
cyc=ccm-ccm.transpose();
Matrix44x QQ;
QQ.SetZero();
Point3x D(cyc[1][2],cyc[2][0],cyc[0][1]);
Matrix33x RM;
RM.SetZero();
RM[0][0]=-ccm.Trace();
RM[1][1]=-ccm.Trace();
RM[2][2]=-ccm.Trace();
RM += ccm + ccm.transpose();
QQ[0][0] = ccm.Trace();
QQ[0][1] = D[0]; QQ[0][2] = D[1]; QQ[0][3] = D[2];
QQ[1][0] = D[0]; QQ[2][0] = D[1]; QQ[3][0] = D[2];
int i,j;
for(i=0;i<3;i++)
for(j=0;j<3;j++)
QQ[i+1][j+1]=RM[i][j];
// printf(" Quaternion Matrix\n");
// print(QQ);
Point4d d;
Matrix44x v;
int nrot;
//QQ.Jacobi(d,v,nrot);
Jacobi(QQ,d,v,nrot);
// printf("Done %i iterations\n %f %f %f %f\n",nrot,d[0],d[1],d[2],d[3]);
// print(v);
// Now search the maximum eigenvalue
double maxv=0;
int maxind=-1;
for(i=0;i<4;i++)
if(maxv<fabs(d[i])) {
q=Quaternionx(v[0][i],v[1][i],v[2][i],v[3][i]);
maxind=i;
maxv=d[i];
}
// The corresponding eigenvector define the searched rotation,
Matrix44x Rot;
q.ToMatrix(Rot);
// the translation (last row) is simply the difference between the transformed src barycenter and the trg baricenter
tr= (bfix - Rot*bmov);
//res[3][0]=tr[0];res[3][1]=tr[1];res[3][2]=tr[2];
Matrix44x Trn;
Trn.SetTranslate(tr);
res=Trn*Rot;
return true;
}
// Dati due insiemi di punti e normali corrispondenti calcola la migliore trasformazione
// che li fa corrispondere
static bool ComputeMatchMatrix( Matrix44x &res,
std::vector<Point3x> &Ps, // vertici corrispondenti su src (rossi)
std::vector<Point3x> &Ns, // normali corrispondenti su src (rossi)
std::vector<Point3x> &Pt) // vertici scelti su trg (verdi)
// vector<Point3x> &Nt) // normali scelti su trg (verdi)
{
assert(0);
// Da qui in poi non compila che ha bisogno dei minimiquadrati
#if 0
int sz=Ps.size();
Matrix<double> A(sz,12);
Vector<double> b(sz);
Vector<double> x(12);
//inizializzo il vettore per minimi quadrati
// la matrice di trasf che calcolo con LeastSquares cerca avvicinare il piu'
// possibile le coppie di punti che trovo ho scelto
// Le coppie di punti sono gia' trasformate secondo la matrice <In> quindi come scelta iniziale
// per il metodo minimiquadrati scelgo l'identica (e.g. se ho allineato a mano perfettamente e
// le due mesh sono perfettamente uguali DEVE restituire l'identica)
res.SetIdentity();
int i,j,k;
for(i=0; i<=2; ++i)
for(j=0; j<=3; ++j)
x[i*4+j] = res[i][j];
//costruzione della matrice
for(i=0;i<sz;++i)
{
for(j=0;j<3;++j)
for(k=0;k<4;++k)
if(k<3)
{
A[i][k+j*4] = Ns[i][j]*Pt[i][k];
}
else
{
A[i][k+j*4] = Ns[i][j];
}
b[i] = Ps[i]*Ns[i];
}
const int maxiter = 4096;
int iter;
LSquareGC(x,A,b,1e-16,maxiter,iter);
TRACE("LSQ Solution");
for(int ind=0; ind<12; ++ind) {
if((ind%4)==0) TRACE("\n");
TRACE("%8.5lf ", x[ind]);
} TRACE("\n");
if(iter==maxiter)
{
TRACE("I minimi quadrati non convergono!!\n");
return false;
}
else { TRACE("Convergenza in %d passi\n",iter); }
//Devo riapplicare la matrice di trasformazione globale a
//trg inserendo il risultato nel vettore trgvert contenente
//copia dei suoi vertici
Matrix44x tmp;
for(i=0; i<=2; ++i)
for(j=0; j<=3; ++j)
res[j][i] = x[i*4+j];
res[0][3] = 0.0;
res[1][3] = 0.0;
res[2][3] = 0.0;
res[3][3] = 1.0;
/*
res.Transpose();
Point3x scv,shv,rtv,trv;
res.Decompose(scv,shv,rtv,trv);
vcg::print(res);
printf("Scale %f %f %f\n",scv[0],scv[1],scv[2]);
printf("Shear %f %f %f\n",shv[0],shv[1],shv[2]);
printf("Rotat %f %f %f\n",rtv[0],rtv[1],rtv[2]);
printf("Trans %f %f %f\n",trv[0],trv[1],trv[2]);
printf("----\n"); res.Decompose(scv,shv,rtv,trv);
vcg::print(res);
printf("Scale %f %f %f\n",scv[0],scv[1],scv[2]);
printf("Shear %f %f %f\n",shv[0],shv[1],shv[2]);
printf("Rotat %f %f %f\n",rtv[0],rtv[1],rtv[2]);
printf("Trans %f %f %f\n",trv[0],trv[1],trv[2]);
res.Transpose();
*/
#endif
return true;
}
/*
****** Questa parte per compilare ha bisogno di leastsquares e matrici generiche
****** Da controllare meglio
static void CreatePairMatrix( Matrix<double> & A2, const Point3x & p, const Point3x & n, double d )
{
double t1 = p[0]*p[0];
double t2 = n[0]*n[0];
double t4 = t1*n[0];
double t5 = t4*n[1];
double t6 = t4*n[2];
double t7 = p[0]*t2;
double t8 = t7*p[1];
double t9 = p[0]*n[0];
double t10 = p[1]*n[1];
double t11 = t9*t10;
double t12 = p[1]*n[2];
double t13 = t9*t12;
double t14 = t7*p[2];
double t15 = p[2]*n[1];
double t16 = t9*t15;
double t17 = p[2]*n[2];
double t18 = t9*t17;
double t19 = t9*n[1];
double t20 = t9*n[2];
double t21 = t9*d;
double t22 = n[1]*n[1];
double t25 = t1*n[1]*n[2];
double t26 = p[0]*t22;
double t27 = t26*p[1];
double t28 = p[0]*n[1];
double t29 = t28*t12;
double t30 = t26*p[2];
double t31 = t28*t17;
double t32 = t28*n[2];
double t33 = t28*d;
double t34 = n[2]*n[2];
double t36 = p[0]*t34;
double t41 = p[1]*p[1]; double t43 = t41*n[0];
double t46 = p[1]*t2; double t48 = p[1]*n[0];
double t49 = t48*t15; double t50 = t48*t17;
double t51 = t48*n[1]; double t52 = t48*n[2];
double t57 = p[1]*t22; double t59 = t10*t17;
double t60 = t10*n[2]; double t63 = p[1]*t34;
double t66 = p[2]*p[2]; double t68 = t66*n[0];
double t72 = p[2]*n[0]; double t73 = t72*n[1];
double t74 = t72*n[2]; double t80 = t15*n[2];
A2[0][0] = t1*t2; A2[0][1] = t5; A2[0][2] = t6;
A2[0][3] = t8; A2[0][4] = t11; A2[0][5] = t13;
A2[0][6] = t14; A2[0][7] = t16; A2[0][8] = t18;
A2[0][9] = t7; A2[0][10] = t19; A2[0][11] = t20;
A2[0][12] = -t21;
A2[1][1] = t1*t22; A2[1][2] = t25; A2[1][3] = t11;
A2[1][4] = t27; A2[1][5] = t29; A2[1][6] = t16;
A2[1][7] = t30; A2[1][8] = t31; A2[1][9] = t19;
A2[1][10] = t26; A2[1][11] = t32; A2[1][12] = -t33;
A2[2][2] = t1*t34; A2[2][3] = t13; A2[2][4] = t29;
A2[2][5] = t36*p[1]; A2[2][6] = t18; A2[2][7] = t31;
A2[2][8] = t36*p[2]; A2[2][9] = t20; A2[2][10] = t32;
A2[2][11] = t36; A2[2][12] = -p[0]*n[2]*d;
A2[3][3] = t41*t2; A2[3][4] = t43*n[1]; A2[3][5] = t43*n[2];
A2[3][6] = t46*p[2]; A2[3][7] = t49; A2[3][8] = t50;
A2[3][9] = t46; A2[3][10] = t51; A2[3][11] = t52;
A2[3][12] = -t48*d;
A2[4][4] = t41*t22; A2[4][5] = t41*n[1]*n[2]; A2[4][6] = t49;
A2[4][7] = t57*p[2]; A2[4][8] = t59; A2[4][9] = t51;
A2[4][10] = t57; A2[4][11] = t60; A2[4][12] = -t10*d;
A2[5][5] = t41*t34; A2[5][6] = t50; A2[5][7] = t59;
A2[5][8] = t63*p[2]; A2[5][9] = t52; A2[5][10] = t60;
A2[5][11] = t63; A2[5][12] = -t12*d;
A2[6][6] = t66*t2; A2[6][7] = t68*n[1]; A2[6][8] = t68*n[2];
A2[6][9] = p[2]*t2; A2[6][10] = t73; A2[6][11] = t74;
A2[6][12] = -t72*d;
A2[7][7] = t66*t22; A2[7][8] = t66*n[1]*n[2]; A2[7][9] = t73;
A2[7][10] = p[2]*t22; A2[7][11] = t80; A2[7][12] = -t15*d;
A2[8][8] = t66*t34; A2[8][9] = t74; A2[8][10] = t80;
A2[8][11] = p[2]*t34; A2[8][12] = -t17*d;
A2[9][9] = t2; A2[9][10] = n[0]*n[1];
A2[9][11] = n[0]*n[2]; A2[9][12] = -n[0]*d;
A2[10][10] = t22; A2[10][11] = n[1]*n[2]; A2[10][12] = -n[1]*d;
A2[11][11] = t34; A2[11][12] = -n[2]*d;
A2[12][12] = d*d;
}
// Dati due insiemi di punti e normali corrispondenti calcola la migliore trasformazione
// che li fa corrispondere
static bool ComputeMatchMatrix2( Matrix44x &res,
std::vector<Point3x> &Ps, // vertici corrispondenti su src (rossi)
std::vector<Point3x> &Ns, // normali corrispondenti su src (rossi)
std::vector<Point3x> &Pt) // vertici scelti su trg (verdi)
//vector<Point3x> &Nt) // normali scelti su trg (verdi)
{
const int N = 13;
int i,j,k;
Matrixd AT(N,N);
Matrixd TT(N,N);
// Azzeramento matrice totale (solo tri-superiore)
for(i=0;i<N;++i)
for(j=i;j<N;++j)
AT[i][j] = 0;
// Calcolo matrici locali e somma
for(k=0;k<Ps.size();++k)
{
CreatePairMatrix(TT,Pt[k],Ns[k],Ps[k]*Ns[k]);
for(i=0;i<N;++i)
for(j=i;j<N;++j)
AT[i][j] += TT[i][j];
}
for(i=0;i<N;++i)
for(j=0;j<i;++j)
AT[i][j] = AT[j][i];
std::vector<double> q;
double error;
affine_ls2(AT,q,error);
//printf("error: %g \n",error);
res[0][0] = q[0];
res[0][1] = q[1];
res[0][2] = q[2];
res[0][3] = 0;
res[1][0] = q[3];
res[1][1] = q[4];
res[1][2] = q[5];
res[1][3] = 0;
res[2][0] = q[6];
res[2][1] = q[7];
res[2][2] = q[8];
res[2][3] = 0;
res[3][0] = q[9];
res[3][1] = q[10];
res[3][2] = q[11];
res[3][3] = q[12];
return true;
}
*/
};
} // end namespace
#endif
|