File: point_matching.h

package info (click to toggle)
meshlab 1.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 21,096 kB
  • ctags: 33,630
  • sloc: cpp: 224,813; ansic: 8,170; xml: 119; makefile: 80
file content (514 lines) | stat: -rw-r--r-- 14,698 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004                                                \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/

/****************************************************************************
  History

$Log: point_matching.h,v $

****************************************************************************/
#ifndef _VCG_MATH_POINTMATCHING_H
#define _VCG_MATH_POINTMATCHING_H

#include <vcg/math/matrix33.h>
#include <vcg/math/quaternion.h>
#include <vcg/math/lin_algebra.h>
namespace vcg
{
template<class ScalarType> 
class PointMatching 
{
public:
  typedef Point3<ScalarType> Point3x;
  typedef Matrix33<ScalarType> Matrix33x;
  typedef Matrix44<ScalarType> Matrix44x;
  typedef Quaternion<ScalarType> Quaternionx;


/*
Compute a similarity matching (rigid + uniform scaling)
simply create a temporary point set with the correct scaling factor


*/ 
static bool ComputeSimilarityMatchMatrix(		Matrix44x &res,
                                    std::vector<Point3x> &Pfix,		// vertici corrispondenti su fix (rossi)
						std::vector<Point3x> &Pmov) 		// normali scelti su mov (verdi)
{
	Quaternionx qtmp;
	Point3x tr;
	
	std::vector<Point3x> Pnew(Pmov.size());
	
	ScalarType scalingFactor=0;
	
	for(size_t i=0;i<( Pmov.size()-1);++i)
	{
			scalingFactor += Distance(Pmov[i],Pmov[i+1])/ Distance(Pfix[i],Pfix[i+1]);
#ifdef _DEBUG
			printf("Scaling Factor is %f",scalingFactor/(i+1));
#endif
	}
	scalingFactor/=(Pmov.size()-1);

	for(size_t i=0;i<Pmov.size();++i)
		Pnew[i]=Pmov[i]/scalingFactor;		
		
	
	bool ret=ComputeRigidMatchMatrix(res,Pfix,Pnew,qtmp,tr);
	if(!ret) return false;
	Matrix44x scaleM; scaleM.SetDiagonal(1.0/scalingFactor);
	
	res = res * scaleM;
	return true;
}



static bool ComputeRigidMatchMatrix(		Matrix44x &res,
                                    std::vector<Point3x> &Pfix,		// vertici corrispondenti su fix (rossi)
						std::vector<Point3x> &Pmov) 		// normali scelti su mov (verdi)
{
	Quaternionx qtmp;
	Point3x tr;
	return ComputeRigidMatchMatrix(res,Pfix,Pmov,qtmp,tr);
}


/* 
Calcola la matrice di rototraslazione 
che porta i punti Pmov su Pfix

Basata sul paper 

Besl, McKay
A method for registration o f 3d Shapes 
IEEE TPAMI Vol 14, No 2 1992


	Esempio d'uso 
			const int np=1000;
			std::vector<Point3x> pfix(np),pmov(np);

			Matrix44x Rot,Trn,RotRes;
			Rot.Rotate(30,Point3x(1,0,1));
			Trn.Translate(0,0,100);
			Rot=Trn*Rot;
			
			for(int i=0;i<np;++i){
				pfix[i]=Point3x(-150+rand()%1000,-150+rand()%1000,0);
				pmov[i]=Rot.Apply(pfix[i]);
			}
			
			ComputeRigidMatchMatrix(RotRes,pfix,pmov);
      
			RotRes.Invert();
			assert( RotRes==Rot);  
			assert( RotRes.Apply(pmov[i]) == pfix[i] );
			
*/
static
bool ComputeWeightedRigidMatchMatrix(Matrix44x &res,
                  std::vector<Point3x> &Pfix,		
									std::vector<Point3x> &Pmov,
									std::vector<ScalarType> weights,
									Quaternionx &q,
									Point3x &tr
									) 	
{

  Matrix33x ccm; 
	Point3x bfix,bmov; // baricenter of src e trg
	ccm.WeightedCrossCovariance(weights,Pmov,Pfix,bmov,bfix);
	Matrix33x cyc; // the cyclic components of the cross covariance matrix.

	cyc=ccm - ccm.transpose();

	Matrix44x QQ;
	QQ.SetZero();
	Point3x D(cyc[1][2],cyc[2][0],cyc[0][1]);

  Matrix33x RM;
	RM.SetZero();
	RM[0][0]=-ccm.Trace();
  RM[1][1]=-ccm.Trace();
  RM[2][2]=-ccm.Trace();
  RM += ccm + ccm.transpose();

	QQ[0][0] = ccm.Trace();
	QQ[0][1] = D[0]; QQ[0][2] = D[1]; QQ[0][3] = D[2];
	QQ[1][0] = D[0]; QQ[2][0] = D[1];	QQ[3][0] = D[2];

	int i,j;
  for(i=0;i<3;i++)
		for(j=0;j<3;j++)
			QQ[i+1][j+1]=RM[i][j];

//  printf(" Quaternion Matrix\n");
//	print(QQ);
	Point4d d;
  Matrix44x v;
	int nrot;
	Jacobi(QQ,d,v,nrot);
//	printf("Done %i iterations\n %f %f %f %f\n",nrot,d[0],d[1],d[2],d[3]);
//	print(v);
	// Now search the maximum eigenvalue
	double maxv=0;
	int maxind=-1;
  for(i=0;i<4;i++)
		if(maxv<fabs(d[i])) {
			q=Quaternionx(v[0][i],v[1][i],v[2][i],v[3][i]);
			maxind=i;
			maxv=d[i];
		}
  // The corresponding eigenvector define the searched rotation,
		Matrix44x Rot;
	q.ToMatrix(Rot);
  // the translation (last row) is simply the difference between the transformed src barycenter and the trg baricenter
	tr= (bfix - Rot *bmov);
	//res[3][0]=tr[0];res[3][1]=tr[1];res[3][2]=tr[2];
	Matrix44x Trn;
	Trn.SetTranslate(tr);
		
	res=Trn*Rot;
	return true;
}

static
bool ComputeRigidMatchMatrix(Matrix44x &res,
 						std::vector<Point3x> &Pfix,		
						std::vector<Point3x> &Pmov,
							Quaternionx &q,
							Point3x &tr) 	
{

  Matrix33x ccm; 
	Point3x bfix,bmov; // baricenter of src e trg
	ccm.CrossCovariance(Pmov,Pfix,bmov,bfix);
	Matrix33x cyc; // the cyclic components of the cross covariance matrix.

	cyc=ccm-ccm.transpose();

	Matrix44x QQ;
	QQ.SetZero();
	Point3x D(cyc[1][2],cyc[2][0],cyc[0][1]);

  Matrix33x RM;
	RM.SetZero();
	RM[0][0]=-ccm.Trace();
  RM[1][1]=-ccm.Trace();
  RM[2][2]=-ccm.Trace();
  RM += ccm + ccm.transpose();

	QQ[0][0] = ccm.Trace();
	QQ[0][1] = D[0]; QQ[0][2] = D[1]; QQ[0][3] = D[2];
	QQ[1][0] = D[0]; QQ[2][0] = D[1];	QQ[3][0] = D[2];

	int i,j;
  for(i=0;i<3;i++)
		for(j=0;j<3;j++)
			QQ[i+1][j+1]=RM[i][j];

//  printf(" Quaternion Matrix\n");
//	print(QQ);
	Point4d d;
  Matrix44x v;
	int nrot;
	//QQ.Jacobi(d,v,nrot);
	Jacobi(QQ,d,v,nrot);
//	printf("Done %i iterations\n %f %f %f %f\n",nrot,d[0],d[1],d[2],d[3]);
//	print(v);
	// Now search the maximum eigenvalue
	double maxv=0;
	int maxind=-1;
  for(i=0;i<4;i++)
		if(maxv<fabs(d[i])) {
			q=Quaternionx(v[0][i],v[1][i],v[2][i],v[3][i]);
			maxind=i;
			maxv=d[i];
		}
  // The corresponding eigenvector define the searched rotation,
	Matrix44x Rot;
	q.ToMatrix(Rot);
  // the translation (last row) is simply the difference between the transformed src barycenter and the trg baricenter
	tr= (bfix - Rot*bmov);
	//res[3][0]=tr[0];res[3][1]=tr[1];res[3][2]=tr[2];
	Matrix44x Trn;
	Trn.SetTranslate(tr);
		
	res=Trn*Rot;
	return true;
}

// Dati due insiemi di punti e normali corrispondenti calcola la migliore trasformazione 
// che li fa corrispondere
static bool ComputeMatchMatrix(		Matrix44x &res,
 						std::vector<Point3x> &Ps,		// vertici corrispondenti su src (rossi)
						std::vector<Point3x> &Ns, 		// normali corrispondenti su src (rossi)
						std::vector<Point3x> &Pt)		// vertici scelti su trg (verdi) 
//						vector<Point3x> &Nt) 		// normali scelti su trg (verdi)
{
  assert(0);
  // Da qui in poi non compila che ha bisogno dei minimiquadrati
#if 0
  int sz=Ps.size();

	Matrix<double> A(sz,12);
	Vector<double> b(sz);
	Vector<double> x(12);

	//inizializzo il vettore per minimi quadrati
	// la matrice di trasf che calcolo con LeastSquares cerca avvicinare il piu' 
	// possibile le coppie di punti che trovo ho scelto  
	// Le coppie di punti sono gia' trasformate secondo la matrice <In> quindi come scelta iniziale 
	// per il metodo minimiquadrati scelgo l'identica (e.g. se ho allineato a mano perfettamente e 
	// le due mesh sono perfettamente uguali DEVE restituire l'identica)
	
	res.SetIdentity();
	int i,j,k;
	for(i=0; i<=2; ++i)
		for(j=0; j<=3; ++j)
			x[i*4+j] = res[i][j];


	//costruzione della matrice
	for(i=0;i<sz;++i)
	{
		for(j=0;j<3;++j)
			for(k=0;k<4;++k)
				if(k<3)
				{
					A[i][k+j*4] = Ns[i][j]*Pt[i][k];
				}
				else
				{
					A[i][k+j*4] = Ns[i][j];
				}
		b[i] = Ps[i]*Ns[i];
	}
	const int maxiter = 4096;
	int iter;
	LSquareGC(x,A,b,1e-16,maxiter,iter);
	
	TRACE("LSQ Solution");
	for(int ind=0; ind<12; ++ind) {
		if((ind%4)==0) TRACE("\n");
		TRACE("%8.5lf ", x[ind]); 
	} TRACE("\n");

	if(iter==maxiter)
	{
		TRACE("I minimi quadrati non convergono!!\n");
		return false;
	}
	else { TRACE("Convergenza in %d passi\n",iter); }

	//Devo riapplicare la matrice di trasformazione globale a 
	//trg inserendo il risultato nel vettore trgvert contenente 
	//copia dei suoi vertici
	Matrix44x tmp;
	for(i=0; i<=2; ++i)
		for(j=0; j<=3; ++j)
			res[j][i] = x[i*4+j];
	res[0][3] = 0.0;
	res[1][3] = 0.0;
	res[2][3] = 0.0;
	res[3][3] = 1.0;
	/*
	res.Transpose();
	Point3x scv,shv,rtv,trv;
	res.Decompose(scv,shv,rtv,trv);
	vcg::print(res);
	printf("Scale %f %f %f\n",scv[0],scv[1],scv[2]);
	printf("Shear %f %f %f\n",shv[0],shv[1],shv[2]);
	printf("Rotat %f %f %f\n",rtv[0],rtv[1],rtv[2]);
	printf("Trans %f %f %f\n",trv[0],trv[1],trv[2]);
	
	printf("----\n"); res.Decompose(scv,shv,rtv,trv);
	vcg::print(res);
	printf("Scale %f %f %f\n",scv[0],scv[1],scv[2]);
	printf("Shear %f %f %f\n",shv[0],shv[1],shv[2]);
	printf("Rotat %f %f %f\n",rtv[0],rtv[1],rtv[2]);
	printf("Trans %f %f %f\n",trv[0],trv[1],trv[2]);
	
	res.Transpose();
	*/
#endif
	return true;
}

/*
****** Questa parte per compilare ha bisogno di leastsquares e matrici generiche 
****** Da controllare meglio


static void CreatePairMatrix( Matrix<double> & A2, const Point3x & p, const Point3x & n, double d )
{	
	double t1 = p[0]*p[0];
	double t2 = n[0]*n[0];
	double t4 = t1*n[0];
	double t5 = t4*n[1];
	double t6 = t4*n[2];
	double t7 = p[0]*t2;
	double t8 = t7*p[1];
	double t9 = p[0]*n[0];
	double t10 = p[1]*n[1];
	double t11 = t9*t10;
	double t12 = p[1]*n[2];
	double t13 = t9*t12;
	double t14 = t7*p[2];
	double t15 = p[2]*n[1];
	double t16 = t9*t15;
	double t17 = p[2]*n[2];
	double t18 = t9*t17;
	double t19 = t9*n[1];
	double t20 = t9*n[2];
	double t21 = t9*d;
	double t22 = n[1]*n[1];
	double t25 = t1*n[1]*n[2];
	double t26 = p[0]*t22;
	double t27 = t26*p[1];
	double t28 = p[0]*n[1];
	double t29 = t28*t12;
	double t30 = t26*p[2];
	double t31 = t28*t17;
	double t32 = t28*n[2];
	double t33 = t28*d;
	double t34 = n[2]*n[2];

	double t36 = p[0]*t34;
	double t41 = p[1]*p[1]; double t43 = t41*n[0];
	double t46 = p[1]*t2;   double t48 = p[1]*n[0];
	double t49 = t48*t15;   double t50 = t48*t17;
	double t51 = t48*n[1];  double t52 = t48*n[2];
	double t57 = p[1]*t22;  double t59 = t10*t17;
	double t60 = t10*n[2];  double t63 = p[1]*t34;
	double t66 = p[2]*p[2]; double t68 = t66*n[0];
	double t72 = p[2]*n[0]; double t73 = t72*n[1];
	double t74 = t72*n[2];	double t80 = t15*n[2];
	
	A2[0][0] = t1*t2; A2[0][1] = t5;  A2[0][2] = t6;
	A2[0][3] = t8;    A2[0][4] = t11; A2[0][5] = t13;
	A2[0][6] = t14;   A2[0][7] = t16; A2[0][8] = t18;
	A2[0][9] = t7;   A2[0][10] = t19; A2[0][11] = t20;
	A2[0][12] = -t21;
	
	A2[1][1] = t1*t22; A2[1][2]  = t25; A2[1][3] = t11;
	A2[1][4] = t27;    A2[1][5]  = t29; A2[1][6] = t16;
	A2[1][7] = t30;    A2[1][8]  = t31; A2[1][9] = t19;
	A2[1][10] = t26;   A2[1][11] = t32; A2[1][12] = -t33;
	
	A2[2][2] = t1*t34; A2[2][3] = t13; A2[2][4] = t29;
	A2[2][5] = t36*p[1];    A2[2][6] = t18; A2[2][7] = t31;
	A2[2][8] = t36*p[2];    A2[2][9] = t20; A2[2][10] = t32;
	A2[2][11] = t36;   A2[2][12] = -p[0]*n[2]*d;
	
	A2[3][3] = t41*t2; A2[3][4] = t43*n[1]; A2[3][5] = t43*n[2];
	A2[3][6] = t46*p[2]; A2[3][7] = t49;  A2[3][8] = t50;
    A2[3][9] = t46; A2[3][10] = t51; A2[3][11] = t52;
    A2[3][12] = -t48*d;
	
	A2[4][4]  = t41*t22;  A2[4][5]  = t41*n[1]*n[2]; A2[4][6] = t49;
	A2[4][7]  = t57*p[2]; A2[4][8]  = t59; A2[4][9] = t51;
	A2[4][10] = t57;      A2[4][11] = t60; A2[4][12] = -t10*d;
	
	A2[5][5]  = t41*t34;  A2[5][6] = t50; A2[5][7] = t59;
	A2[5][8]  = t63*p[2]; A2[5][9] = t52; A2[5][10] = t60;
	A2[5][11] = t63;      A2[5][12] = -t12*d;
	
	A2[6][6]  = t66*t2;  A2[6][7] = t68*n[1]; A2[6][8] = t68*n[2];
	A2[6][9]  = p[2]*t2; A2[6][10] = t73;     A2[6][11] = t74;
	A2[6][12] = -t72*d;
	
	A2[7][7] = t66*t22;   A2[7][8] = t66*n[1]*n[2]; A2[7][9] = t73;
	A2[7][10] = p[2]*t22; A2[7][11] = t80;          A2[7][12] = -t15*d;
	
	A2[8][8] = t66*t34;   A2[8][9] = t74; A2[8][10] = t80;
	A2[8][11] = p[2]*t34; A2[8][12] = -t17*d;
	
	A2[9][9]   = t2;        A2[9][10]  = n[0]*n[1];
	A2[9][11]  = n[0]*n[2]; A2[9][12]  = -n[0]*d;
	
	A2[10][10] = t22; A2[10][11] = n[1]*n[2]; A2[10][12] = -n[1]*d;
	A2[11][11] = t34; A2[11][12] = -n[2]*d;
	A2[12][12] = d*d;
}

// Dati due insiemi di punti e normali corrispondenti calcola la migliore trasformazione 
// che li fa corrispondere
static bool ComputeMatchMatrix2(		Matrix44x &res,
 						std::vector<Point3x> &Ps,		// vertici corrispondenti su src (rossi)
						std::vector<Point3x> &Ns, 		// normali corrispondenti su src (rossi)
						std::vector<Point3x> &Pt)		// vertici scelti su trg (verdi) 
						//vector<Point3x> &Nt) 		// normali scelti su trg (verdi)
{
	const int N = 13;
	int i,j,k;

	Matrixd AT(N,N);
	Matrixd TT(N,N);
		// Azzeramento matrice totale (solo tri-superiore)
	for(i=0;i<N;++i)
		for(j=i;j<N;++j)
			AT[i][j] = 0;
		// Calcolo matrici locali e somma
	for(k=0;k<Ps.size();++k)
	{		
		CreatePairMatrix(TT,Pt[k],Ns[k],Ps[k]*Ns[k]);
		for(i=0;i<N;++i)
			for(j=i;j<N;++j)
				AT[i][j] += TT[i][j];
	}

	for(i=0;i<N;++i)
		for(j=0;j<i;++j)
				AT[i][j] = AT[j][i];

	std::vector<double> q;
	double error;
	affine_ls2(AT,q,error);
	//printf("error: %g \n",error);
	res[0][0] = q[0];
	res[0][1] = q[1];
	res[0][2] = q[2];
	res[0][3] = 0;
	res[1][0] = q[3];
	res[1][1] = q[4];
	res[1][2] = q[5];
	res[1][3] = 0;
	res[2][0] = q[6];
	res[2][1] = q[7];
	res[2][2] = q[8];
	res[2][3] = 0;
	res[3][0] = q[9];
	res[3][1] = q[10];
	res[3][2] = q[11];
	res[3][3] = q[12];

	return true;
}
*/
};
} // end namespace

#endif