1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
|
/****************************************************************************
* MeshLab o o *
* A versatile mesh processing toolbox o o *
* _ O _ *
* Copyright(C) 2005 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log$
Revision 1.7 2008/04/26 13:45:48 pirosu
improved loss of precision minimization
Revision 1.6 2008/04/26 12:50:32 pirosu
commented assert
Revision 1.5 2008/04/04 10:03:51 cignoni
Solved namespace ambiguities caused by the removal of a silly 'using namespace' in meshmodel.h
Revision 1.4 2008/03/02 15:15:50 pirosu
loss of precision management
Revision 1.3 2008/02/29 20:37:27 pirosu
fixed zero area faces management
Revision 1.2 2007/03/20 15:51:15 cignoni
Update to the new texture syntax
Revision 1.1 2007/02/08 13:39:59 pirosu
Added Quadric Simplification(with textures) Filter
****************************************************************************/
#ifndef __VCGLIB_QUADRIC5
#define __VCGLIB_QUADRIC5
#include <vcg/math/quadric.h>
namespace vcg
{
namespace math {
typedef double ScalarType;
// r = a-b
void inline sub_vec5(const ScalarType a[5], const ScalarType b[5], ScalarType r[5])
{
r[0] = a[0] - b[0];
r[1] = a[1] - b[1];
r[2] = a[2] - b[2];
r[3] = a[3] - b[3];
r[4] = a[4] - b[4];
}
// returns the in-product a*b
ScalarType inline inproduct5(const ScalarType a[5], const ScalarType b[5])
{
return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3]+a[4]*b[4];
}
// r = out-product of a*b
void inline outproduct5(const ScalarType a[5], const ScalarType b[5], ScalarType r[5][5])
{
for(int i = 0; i < 5; i++)
for(int j = 0; j < 5; j++)
r[i][j] = a[i]*b[j];
}
// r = m*v
void inline prod_matvec5(const ScalarType m[5][5], const ScalarType v[5], ScalarType r[5])
{
r[0] = inproduct5(m[0],v);
r[1] = inproduct5(m[1],v);
r[2] = inproduct5(m[2],v);
r[3] = inproduct5(m[3],v);
r[4] = inproduct5(m[4],v);
}
// r = (v transposed)*m
void inline prod_vecmat5(ScalarType v[5],ScalarType m[5][5], ScalarType r[5])
{
for(int i = 0; i < 5; i++)
for(int j = 0; j < 5; j++)
r[j] = v[j]*m[j][i];
}
void inline normalize_vec5(ScalarType v[5])
{
ScalarType norma = sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]+v[3]*v[3]+v[4]*v[4]);
v[0]/=norma;
v[1]/=norma;
v[2]/=norma;
v[3]/=norma;
v[4]/=norma;
}
void inline normalize_vec3(ScalarType v[3])
{
ScalarType norma = sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);
v[0]/=norma;
v[1]/=norma;
v[2]/=norma;
}
// dest -= m
void inline sub_mat5(ScalarType dest[5][5],ScalarType m[5][5])
{
for(int i = 0; i < 5; i++)
for(int j = 0; j < 5; j++)
dest[i][j] -= m[i][j];
}
/* computes the symmetric matrix v*v */
void inline symprod_vvt5(ScalarType dest[15],ScalarType v[5])
{
dest[0] = v[0]*v[0];
dest[1] = v[0]*v[1];
dest[2] = v[0]*v[2];
dest[3] = v[0]*v[3];
dest[4] = v[0]*v[4];
dest[5] = v[1]*v[1];
dest[6] = v[1]*v[2];
dest[7] = v[1]*v[3];
dest[8] = v[1]*v[4];
dest[9] = v[2]*v[2];
dest[10] = v[2]*v[3];
dest[11] = v[2]*v[4];
dest[12] = v[3]*v[3];
dest[13] = v[3]*v[4];
dest[14] = v[4]*v[4];
}
/* subtracts symmetric matrix */
void inline sub_symmat5(ScalarType dest[15],ScalarType m[15])
{
for(int i = 0; i < 15; i++)
dest[i] -= m[i];
}
}
template<typename Scalar>
class Quadric5
{
public:
typedef Scalar ScalarType;
// typedef CMeshO::VertexType::FaceType FaceType;
// the real quadric
ScalarType a[15];
ScalarType b[5];
ScalarType c;
inline Quadric5() { c = -1;}
// Necessari se si utilizza stl microsoft
// inline bool operator < ( const Quadric & q ) const { return false; }
// inline bool operator == ( const Quadric & q ) const { return true; }
bool IsValid() const { return (c>=0); }
void SetInvalid() { c = -1.0; }
void Zero() // Azzera le quadriche
{
a[0] = 0;
a[1] = 0;
a[2] = 0;
a[3] = 0;
a[4] = 0;
a[5] = 0;
a[6] = 0;
a[7] = 0;
a[8] = 0;
a[9] = 0;
a[10] = 0;
a[11] = 0;
a[12] = 0;
a[13] = 0;
a[14] = 0;
b[0] = 0;
b[1] = 0;
b[2] = 0;
b[3] = 0;
b[4] = 0;
c = 0;
}
void swapv(ScalarType *vv, ScalarType *ww)
{
ScalarType tmp;
for(int i = 0; i < 5; i++)
{
tmp = vv[i];
vv[i] = ww[i];
ww[i] = tmp;
}
}
// Add the right subset of the current 5D quadric to a given 3D quadric.
void AddtoQ3(math::Quadric<double> &q3) const
{
q3.a[0] += a[0];
q3.a[1] += a[1];
q3.a[2] += a[2];
q3.a[3] += a[5];
q3.a[4] += a[6];
q3.a[5] += a[9];
q3.b[0] += b[0];
q3.b[1] += b[1];
q3.b[2] += b[2];
q3.c += c;
assert(q3.IsValid());
}
// computes the real quadric and the geometric quadric using the face
// The geometric quadric is added to the parameter qgeo
template <class FaceType>
void byFace(FaceType &f, math::Quadric<double> &q1, math::Quadric<double> &q2, math::Quadric<double> &q3, bool QualityQuadric, ScalarType BorderWeight)
{
double q = QualityFace(f);
// if quality==0 then the geometrical quadric has just zeroes
if(q)
{
byFace(f,true); // computes the geometrical quadric
AddtoQ3(q1);
AddtoQ3(q2);
AddtoQ3(q3);
byFace(f,false); // computes the real quadric
for(int j=0;j<3;++j)
{
if( f.IsB(j) || QualityQuadric )
{
Quadric5<double> temp;
TexCoord2f newtex;
Point3f newpoint = (f.P0(j)+f.P1(j))/2.0 + (f.N()/f.N().Norm())*Distance(f.P0(j),f.P1(j));
newtex.u() = (f.WT( (j+0)%3 ).u()+f.WT( (j+1)%3 ).u())/2.0;
newtex.v() = (f.WT( (j+0)%3 ).v()+f.WT( (j+1)%3 ).v())/2.0;
Point3f oldpoint = f.P2(j);
TexCoord2f oldtex = f.WT((j+2)%3);
f.P2(j)=newpoint;
f.WT((j+2)%3).u()=newtex.u();
f.WT((j+2)%3).v()=newtex.v();
temp.byFace(f,false); // computes the full quadric
if(! f.IsB(j) ) temp.Scale(0.05);
else temp.Scale(BorderWeight);
*this+=temp;
f.P2(j)=oldpoint;
f.WT((j+2)%3).u()=oldtex.u();
f.WT((j+2)%3).v()=oldtex.v();
}
}
}
else if(
(f.WT(1).u()-f.WT(0).u()) * (f.WT(2).v()-f.WT(0).v()) -
(f.WT(2).u()-f.WT(0).u()) * (f.WT(1).v()-f.WT(0).v())
)
byFace(f,false); // computes the real quadric
else // the area is zero also in the texture space
{
a[0]=a[1]=a[2]=a[3]=a[4]=a[5]=a[6]=a[7]=a[8]=a[9]=a[10]=a[11]=a[12]=a[13]=a[14]=0;
b[0]=b[1]=b[2]=b[3]=b[4]=0;
c=0;
}
}
// Computes the geometrical quadric if onlygeo == true and the real quadric if onlygeo == false
template<class FaceType>
void byFace(FaceType &fi, bool onlygeo)
{
//assert(onlygeo==false);
ScalarType p[5];
ScalarType q[5];
ScalarType r[5];
// ScalarType A[5][5];
ScalarType e1[5];
ScalarType e2[5];
// computes p
p[0] = fi.P(0).X();
p[1] = fi.P(0).Y();
p[2] = fi.P(0).Z();
p[3] = fi.WT(0).u();
p[4] = fi.WT(0).v();
// computes q
q[0] = fi.P(1).X();
q[1] = fi.P(1).Y();
q[2] = fi.P(1).Z();
q[3] = fi.WT(1).u();
q[4] = fi.WT(1).v();
// computes r
r[0] = fi.P(2).X();
r[1] = fi.P(2).Y();
r[2] = fi.P(2).Z();
r[3] = fi.WT(2).u();
r[4] = fi.WT(2).v();
if(onlygeo) {
p[3] = 0; q[3] = 0; r[3] = 0;
p[4] = 0; q[4] = 0; r[4] = 0;
}
ComputeE1E2(p,q,r,e1,e2);
ComputeQuadricFromE1E2(e1,e2,p);
if(IsValid()) return;
// qDebug("Warning: failed to find a good 5D quadric try to permute stuff.");
/*
When c is very close to 0, loss of precision causes it to be computed as a negative number,
which is invalid for a quadric. Vertex switches are performed in order to try to obtain a smaller
loss of precision. The one with the smallest error is chosen.
*/
double minerror = std::numeric_limits<double>::max();
int minerror_index = 0;
for(int i = 0; i < 7; i++) // tries the 6! configurations and chooses the one with the smallest error
{
switch(i)
{
case 0:
break;
case 1:
case 3:
case 5:
swapv(q,r);
break;
case 2:
case 4:
swapv(p,r);
break;
case 6: // every swap has loss of precision
swapv(p,r);
for(int j = 0; j <= minerror_index; j++)
{
switch(j)
{
case 0:
break;
case 1:
case 3:
case 5:
swapv(q,r);
break;
case 2:
case 4:
swapv(p,r);
break;
default:
assert(0);
}
}
minerror_index = -1;
break;
default:
assert(0);
}
ComputeE1E2(p,q,r,e1,e2);
ComputeQuadricFromE1E2(e1,e2,p);
if(IsValid())
return;
else if (minerror_index == -1) // the one with the smallest error has been computed
break;
else if(-c < minerror)
{
minerror = -c;
minerror_index = i;
}
}
// failed to find a valid vertex switch
// assert(-c <= 1e-8); // small error
c = 0; // rounds up to zero
}
// Given three 5D points it compute an orthonormal basis e1 e2
void ComputeE1E2 (const ScalarType p[5], const ScalarType q[5], const ScalarType r[5], ScalarType e1[5], ScalarType e2[5]) const
{
ScalarType diffe[5];
ScalarType tmpmat[5][5];
ScalarType tmpvec[5];
// computes e1
math::sub_vec5(q,p,e1);
math::normalize_vec5(e1);
// computes e2
math::sub_vec5(r,p,diffe);
math::outproduct5(e1,diffe,tmpmat);
math::prod_matvec5(tmpmat,e1,tmpvec);
math::sub_vec5(diffe,tmpvec,e2);
math::normalize_vec5(e2);
}
// Given two orthonormal 5D vectors lying on the plane and one of the three points of the triangle compute the quadric.
// Note it uses the same notation of the original garland 98 paper.
void ComputeQuadricFromE1E2(ScalarType e1[5], ScalarType e2[5], ScalarType p[5] )
{
// computes A
a[0] = 1;
a[1] = 0;
a[2] = 0;
a[3] = 0;
a[4] = 0;
a[5] = 1;
a[6] = 0;
a[7] = 0;
a[8] = 0;
a[9] = 1;
a[10] = 0;
a[11] = 0;
a[12] = 1;
a[13] = 0;
a[14] = 1;
ScalarType tmpsymmat[15]; // a compactly stored 5x5 symmetric matrix.
math::symprod_vvt5(tmpsymmat,e1);
math::sub_symmat5(a,tmpsymmat);
math::symprod_vvt5(tmpsymmat,e2);
math::sub_symmat5(a,tmpsymmat);
ScalarType pe1;
ScalarType pe2;
pe1 = math::inproduct5(p,e1);
pe2 = math::inproduct5(p,e2);
// computes b
ScalarType tmpvec[5];
tmpvec[0] = pe1*e1[0] + pe2*e2[0];
tmpvec[1] = pe1*e1[1] + pe2*e2[1];
tmpvec[2] = pe1*e1[2] + pe2*e2[2];
tmpvec[3] = pe1*e1[3] + pe2*e2[3];
tmpvec[4] = pe1*e1[4] + pe2*e2[4];
math::sub_vec5(tmpvec,p,b);
// computes c
c = math::inproduct5(p,p)-pe1*pe1-pe2*pe2;
}
static bool Gauss55( ScalarType x[], ScalarType C[5][5+1] )
{
const ScalarType keps = (ScalarType)1e-6;
int i,j,k;
ScalarType eps; // Determina valore cond.
eps = math::Abs(C[0][0]);
for(i=1;i<5;++i)
{
ScalarType t = math::Abs(C[i][i]);
if( eps<t ) eps = t;
}
eps *= keps;
for (i = 0; i < 5 - 1; ++i) // Ciclo di riduzione
{
int ma = i; // Ricerca massimo pivot
ScalarType vma = math::Abs( C[i][i] );
for (k = i + 1; k < 5; k++)
{
ScalarType t = math::Abs( C[k][i] );
if (t > vma)
{
vma = t;
ma = k;
}
}
if (vma<eps)
return false; // Matrice singolare
if(i!=ma) // Swap del massimo pivot
for(k=0;k<=5;k++)
{
ScalarType t = C[i][k];
C[i][k] = C[ma][k];
C[ma][k] = t;
}
for (k = i + 1; k < 5; k++) // Riduzione
{
ScalarType s;
s = C[k][i] / C[i][i];
for (j = i+1; j <= 5; j++)
C[k][j] -= C[i][j] * s;
C[k][i] = 0.0;
}
}
// Controllo finale singolarita'
if( math::Abs(C[5-1][5- 1])<eps)
return false;
for (i=5-1; i>=0; i--) // Sostituzione
{
ScalarType t;
for (t = 0.0, j = i + 1; j < 5; j++)
t += C[i][j] * x[j];
x[i] = (C[i][5] - t) / C[i][i];
if(math::IsNAN(x[i])) return false;
assert(!math::IsNAN(x[i]));
}
return true;
}
// computes the minimum of the quadric, imposing the geometrical constraint (geo[3] and geo[4] are obviosly ignored)
bool MinimumWithGeoContraints(ScalarType x[5],const ScalarType geo[5]) const
{
x[0] = geo[0];
x[1] = geo[1];
x[2] = geo[2];
ScalarType C3 = -(b[3]+geo[0]*a[3]+geo[1]*a[7]+geo[2]*a[10]);
ScalarType C4 = -(b[4]+geo[0]*a[4]+geo[1]*a[8]+geo[2]*a[11]);
if(a[12] != 0)
{
double tmp = (a[14]-a[13]*a[13]/a[12]);
if(tmp == 0)
return false;
x[4] = (C4 - a[13]*C3/a[12])/ tmp;
x[3] = (C3 - a[13]*x[4])/a[12];
}
else
{
if(a[13] == 0)
return false;
x[4] = C3/a[13];
x[3] = (C4 - a[14]*x[4])/a[13];
}
for(int i=0;i<5;++i)
if( math::IsNAN(x[i])) return false;
//assert(!math::IsNAN(x[i]));
return true;
}
// computes the minimum of the quadric
bool Minimum(ScalarType x[5]) const
{
ScalarType C[5][6];
C[0][0] = a[0];
C[0][1] = a[1];
C[0][2] = a[2];
C[0][3] = a[3];
C[0][4] = a[4];
C[1][0] = a[1];
C[1][1] = a[5];
C[1][2] = a[6];
C[1][3] = a[7];
C[1][4] = a[8];
C[2][0] = a[2];
C[2][1] = a[6];
C[2][2] = a[9];
C[2][3] = a[10];
C[2][4] = a[11];
C[3][0] = a[3];
C[3][1] = a[7];
C[3][2] = a[10];
C[3][3] = a[12];
C[3][4] = a[13];
C[4][0] = a[4];
C[4][1] = a[8];
C[4][2] = a[11];
C[4][3] = a[13];
C[4][4] = a[14];
C[0][5]=-b[0];
C[1][5]=-b[1];
C[2][5]=-b[2];
C[3][5]=-b[3];
C[4][5]=-b[4];
return Gauss55(&(x[0]),C);
}
void operator = ( const Quadric5<double> & q ) // Assegna una quadrica
{
//assert( IsValid() );
assert( q.IsValid() );
a[0] = q.a[0];
a[1] = q.a[1];
a[2] = q.a[2];
a[3] = q.a[3];
a[4] = q.a[4];
a[5] = q.a[5];
a[6] = q.a[6];
a[7] = q.a[7];
a[8] = q.a[8];
a[9] = q.a[9];
a[10] = q.a[10];
a[11] = q.a[11];
a[12] = q.a[12];
a[13] = q.a[13];
a[14] = q.a[14];
b[0] = q.b[0];
b[1] = q.b[1];
b[2] = q.b[2];
b[3] = q.b[3];
b[4] = q.b[4];
c = q.c;
}
// sums the geometrical and the real quadrics
void operator += ( const Quadric5<double> & q )
{
//assert( IsValid() );
assert( q.IsValid() );
a[0] += q.a[0];
a[1] += q.a[1];
a[2] += q.a[2];
a[3] += q.a[3];
a[4] += q.a[4];
a[5] += q.a[5];
a[6] += q.a[6];
a[7] += q.a[7];
a[8] += q.a[8];
a[9] += q.a[9];
a[10] += q.a[10];
a[11] += q.a[11];
a[12] += q.a[12];
a[13] += q.a[13];
a[14] += q.a[14];
b[0] += q.b[0];
b[1] += q.b[1];
b[2] += q.b[2];
b[3] += q.b[3];
b[4] += q.b[4];
c += q.c;
}
/*
it sums the real quadric of the class with a quadric obtained by the geometrical quadric of the vertex.
This quadric is obtained extending to five dimensions the geometrical quadric and simulating that it has been
obtained by sums of 5-dimension quadrics which were computed using vertexes and faces with always the same values
in the fourth and fifth dimensions (respectly the function parameter u and the function parameter v).
this allows to simulate the inexistant continuity in vertexes with multiple texture coords
however this continuity is still inexistant, so even if the algorithm makes a good collapse with this expedient,it obviously
computes bad the priority......this should be adjusted with the extra weight user parameter through.....
*/
void inline Sum3 (const math::Quadric<double> & q3, float u, float v)
{
assert( q3.IsValid() );
a[0] += q3.a[0];
a[1] += q3.a[1];
a[2] += q3.a[2];
a[5] += q3.a[3];
a[6] += q3.a[4];
a[9] += q3.a[5];
a[12] += 1;
a[14] += 1;
b[0] += q3.b[0];
b[1] += q3.b[1];
b[2] += q3.b[2];
b[3] -= u;
b[4] -= v;
c += q3.c + u*u + v*v;
}
void Scale(ScalarType val)
{
for(int i=0;i<15;++i)
a[i]*=val;
for(int i=0;i<5;++i)
b[i]*=val;
c*=val;
}
// returns the quadric value in v
ScalarType Apply(const ScalarType v[5]) const
{
assert( IsValid() );
ScalarType tmpmat[5][5];
ScalarType tmpvec[5];
tmpmat[0][0] = a[0];
tmpmat[0][1] = tmpmat[1][0] = a[1];
tmpmat[0][2] = tmpmat[2][0] = a[2];
tmpmat[0][3] = tmpmat[3][0] = a[3];
tmpmat[0][4] = tmpmat[4][0] = a[4];
tmpmat[1][1] = a[5];
tmpmat[1][2] = tmpmat[2][1] = a[6];
tmpmat[1][3] = tmpmat[3][1] = a[7];
tmpmat[1][4] = tmpmat[4][1] = a[8];
tmpmat[2][2] = a[9];
tmpmat[2][3] = tmpmat[3][2] = a[10];
tmpmat[2][4] = tmpmat[4][2] = a[11];
tmpmat[3][3] = a[12];
tmpmat[3][4] = tmpmat[4][3] = a[13];
tmpmat[4][4] = a[14];
math::prod_matvec5(tmpmat,v,tmpvec);
return math::inproduct5(v,tmpvec) + 2*math::inproduct5(b,v) + c;
}
};
} // end namespace vcg;
#endif
|