File: shot.h

package info (click to toggle)
meshlab 1.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 21,096 kB
  • ctags: 33,630
  • sloc: cpp: 224,813; ansic: 8,170; xml: 119; makefile: 80
file content (575 lines) | stat: -rw-r--r-- 20,685 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004                                                \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
/****************************************************************************
  History
$Log: not supported by cvs2svn $
Revision 1.24  2008/02/22 17:41:48  ponchio
Changed to reflect quaternion toMatrix inversion.

Revision 1.23  2007/02/06 08:54:07  corsini
fix names

Revision 1.22  2007/02/05 14:17:21  corsini
add extrinsic parameters accessors

Revision 1.21  2006/12/18 16:02:55  matteodelle
minor eroor correction on variable names

Revision 1.20  2006/12/18 09:46:39  callieri
camera+shot revamp: changed field names to something with more sense, cleaning of various functions, correction of minor bugs/incongruences, removal of the infamous reference in shot.

Revision 1.19  2006/01/22 17:01:40  cignoni
Corrected intialization of flag, must be zero.

Revision 1.18  2005/12/12 16:53:43  callieri
corrected UnProject, it's necessary also a ZDepth value to perform inverse projection

Revision 1.17  2005/12/07 10:57:52  callieri
added commodity function ProjectWorldtoViewport() to obtain directly pixel indices without calling two separate function of two different objects

Revision 1.16  2005/12/02 16:14:35  callieri
in Shot<S>::Axis changed Row3  to  GetRow3 . row3 was the old method name of Matrix44

Revision 1.15  2005/12/01 01:03:37  cignoni
Removed excess ';' from end of template functions, for gcc compiling

Revision 1.14  2005/11/23 14:18:35  ganovelli
added access to similarity (just for symmetry with Camera() )

Revision 1.13  2005/11/23 11:58:52  ganovelli
Empty constructor added, untemplated class Shotf and Shotd added
usage: Shotf myShot;
corrected member access rights

Revision 1.12  2005/07/11 13:12:35  cignoni
small gcc-related compiling issues (typenames,ending cr, initialization order)

Revision 1.11  2005/01/22 11:20:20  ponchio
<...Point3.h> -> <...point3.h>

Revision 1.10  2005/01/05 13:26:15  ganovelli
corretto cambiamento di sistema di rif.

Revision 1.9  2004/12/15 18:45:50  tommyfranken
*** empty log message ***

Revision 1.4  2004/10/07 14:41:31  fasano
Little fix on ViewPoint() method

Revision 1.3  2004/10/07 14:24:53  ganovelli
added LookAt,LookToward

Revision 1.2  2004/10/05 19:04:25  ganovelli
version 5-10-2004 in progress

Revision 1.1  2004/09/15 22:58:05  ganovelli
re-creation

Revision 1.2  2004/09/06 21:41:30  ganovelli
*** empty log message ***

Revision 1.1  2004/09/03 13:01:51  ganovelli
creation

****************************************************************************/

/** class Shot

Shot is made of two elements:

* the Instrinsics paramaters, which are stored as a Camera type (see vcg/math/camera) and that
determines how a point in the frame of the camera is projected in the 2D projection plane

* the Extrinsics parameters, which are stored in the class Shot (type ReferenceFrame)
and that describe viewpoint and view direction.

Some important notes about the usage of this class:

* The World coordinates system is assumed to be RIGHT-HANDED.
* The Shot reference frame is assumed to be RIGHT-HANDED.
* The associated Camera is assumed to point in the negative direction of the Z axis of the Shot coordinates system (reference frame).
  As a consequence, the Camera coordinates system is LEFT-HANDED.
* The Extrinsics parameters are kept as a rotation matrix "rot" and a translation vector "tra"
  The translation matrix "tra" corresponds to the viewpoint of the Shot while the rotation matrix
  "rot" corresponds to the axis of the reference frame by row, i.e.
  rot[0][0|1|2] == X axis
  rot[1][0|1|2] == Y axis
  rot[2][0|1|2] == Z axis

  It follows that the matrix made with the upper left 3x3 equal to rot and the 4th colum equal to tra
  and (0,0,0,1) in the bottom row transform a point from world coordiantes to the reference frame
  of the shot.



 **/

#ifndef __VCGLIB_SHOT
#define __VCGLIB_SHOT

#include <vcg/space/point2.h>
#include <vcg/space/point3.h>
#include <vcg/math/similarity.h>
#include <vcg/math/camera.h>

namespace vcg{

template <class S, class RotationType = Matrix44<S> >
class Shot {
public:
  typedef Camera<S> CameraType;
  typedef S ScalarType;

  template <class ScalarType, class RotoType >
  class ReferenceFrame {
    friend class Shot<ScalarType, RotoType>;
      RotoType rot;	 // rotation
      Point3<S> tra; // viewpoint
  public:
      void SetIdentity(){ rot.SetIdentity(); tra = Point3<S>(0.0,0.0,0.0);}
      void SetTra(const Point3<S> & tr) {tra = tr;}
      void SetRot(const  RotoType & rt) {rot = rt;}
      Point3<ScalarType>   Tra() const  { return tra;}
      RotoType Rot() const  { return rot;}
  };

  Camera<S>												Intrinsics;		// the camera that made the shot
  ReferenceFrame<S,RotationType>	Extrinsics;		// the position and orientation of the camera


  Shot(Camera<S> c)
  {
    Intrinsics = c;
    Extrinsics.SetIdentity();
  }

  Shot()
  {
    Extrinsics.SetIdentity();
  }


  /// GET the i-th axis of the coordinate system of the camera
  vcg::Point3<S> Axis(const int & i)const;

  /// GET the viewdir
  const vcg::Point3<S> GetViewDir()const;
  /// GET the viewpoint
  const vcg::Point3<S> GetViewPoint()const;
  /// SET the viewpoint
  void SetViewPoint(const vcg::Point3<S> & viewpoint);

  /// GET fov from focal
  float GetFovFromFocal();

  /// look at (point+up)
  void LookAt(const vcg::Point3<S> & point,const vcg::Point3<S> & up);

  /// look at (opengl-like)
  void LookAt(const S & eye_x,const S & eye_y,const S & eye_z,
        const S & at_x,const S & at_y,const S & at_z,
        const S & up_x,const S & up_y,const S & up_z);

  /// look towards (dir+up)
  void LookTowards(const vcg::Point3<S> & z_dir,const vcg::Point3<S> & up);

	/* Sometimes the focal is given in pixels. In this case, this function can be used to convert it in millimiters
	 * given the CCD width (in mm). This method should be moved in vcg::Camera().
	 * Equivalent focal lenght is obtained by setting the ccd width to 35 mm.
   */
  void ConvertFocalToMM(S ccdwidth);

	/* Sometimes the 3D World coordinates are known up to a scale factor. This method adjust the camera/shot parameters
	 * to account for the re-scaling of the World. If the intrisic parameters are just reasonable values 
	 * the cameras need only a re-positioning.
	 */
  void RescalingWorld(S scalefactor, bool adjustIntrinsics);

  /// Given a pure roto-translation (4-by-4) modifies the reference frame accordingly.
  void ApplyRigidTransformation(const Matrix44<S> & M);

  /// Given a similarity transformation such that p' = s R p + T modifies the reference frame accordingly.
  void ApplySimilarity(  Matrix44<S>   M);

  /// Given a similarity transformation such that p' = s R p + T modifies the reference frame accordingly.
  void ApplySimilarity(const Similarity<S> & Sim);

  /// convert a 3d point from world to camera coordinates (do not confuse with the Shot reference frame)
  vcg::Point3<S> ConvertWorldToCameraCoordinates(const vcg::Point3<S> & p) const;

  /// convert a 3d point from camera (do not confuse with the Shot reference frame) to world coordinates
  vcg::Point3<S> ConvertCameraToWorldCoordinates(const vcg::Point3<S> & p) const;

  /* convert a 3d point from camera (do not confuse with the Shot reference frame) to world coordinates
   * it uses inverse instead of transpose for non-exactly-rigid rotation matrices (such as calculated by tsai and garcia)
   */
  vcg::Point3<S> ConvertCameraToWorldCoordinates_Substitute(const vcg::Point3<S> & p) const;

  /// project a 3d point from world coordinates to 2d camera viewport (the value returned is in pixels)
  vcg::Point2<S> Project(const vcg::Point3<S> & p) const;

  /// inverse projection from 2d camera viewport (in pixels) to 3d world coordinates (it requires the original depth of the projected point)
  vcg::Point3<S> UnProject(const vcg::Point2<S> & p, const S & d) const;

  /* inverse projection from 2d camera viewport (in pixels) to 3d world coordinates (it requires the original depth of the projected point)
   * uses inverse instead of trranspose for non-exactly-rigid rotation matrices (such as calculated by tsai and garcia)
   */
  vcg::Point3<S> UnProject_Substitute(const vcg::Point2<S> & p, const S & d) const;

  /// returns the distance of point p from camera plane (z depth), required for unprojection operation
  S Depth(const vcg::Point3<S> & p)const;


// accessors
public:

    /// Returns the (4-by-4) matrix M such that 3dpoint_in_world_coordinates = M * 3dpoint_in_local_coordinates
    Matrix44<S> GetExtrinsicsToWorldMatrix() const
    {
        Matrix44<S> rotM;
        Extrinsics.rot.ToMatrix(rotM);
        return Matrix44<S>().SetTranslate(Extrinsics.tra) * rotM.transpose();
    }

    /// Returns the (4-by-4) matrix M such that 3dpoint_in_local_coordinates = M * 3dpoint_in_world_coordinates
    Matrix44<S> GetWorldToExtrinsicsMatrix() const
    {
        Matrix44<S> rotM;
        Extrinsics.rot.ToMatrix(rotM);
        return rotM * Matrix44<S>().SetTranslate(-Extrinsics.tra) ;
    }

  /*  multiply the current reference frame for the matrix passed
   note: it is up to the caller to check the the matrix passed is a pure rototraslation
   */
  void MultMatrix(    vcg::Matrix44<S>    m44)
  {
    Extrinsics.tra = m44 * Extrinsics.tra;
    m44[0][3] = m44[1][3] = m44[2][3] =  0.0; //set no translation
    const S k = m44.GetRow3(0).Norm(); //compute scaling (assumed uniform)
    Extrinsics.rot = Extrinsics.rot * m44.transpose() * (1/k);
  }

  /*  multiply the current reference frame for the similarity passed
   note: it is up to the caller to check the the matrix passed is a pure rototraslation
   */
  void MultSimilarity( const Similarity<S> & s){ MultMatrix(s.Matrix());}

  bool IsValid() const
  {
    return Intrinsics.PixelSizeMm[0]>0 && Intrinsics.PixelSizeMm[1]>0;
  }

}; // end class definition



template <class S, class RotationType>
const vcg::Point3<S> Shot<S,RotationType>::GetViewDir() const
{
  return  Extrinsics.Rot().GetRow3(2);
}



//---
/// GET the viewpoint
template <class S, class RotationType>
const vcg::Point3<S> Shot<S,RotationType>::GetViewPoint() const
{
  return  Extrinsics.tra;
}
/// SET the viewpoint
template <class S, class RotationType>
void Shot<S,RotationType>::SetViewPoint(const vcg::Point3<S> & viewpoint)
{
  Extrinsics.SetTra( viewpoint );
}
//---

/// GET fov from focal
template <class S, class RotationType>
float Shot<S,RotationType>::GetFovFromFocal()
{
  double viewportYMm= Intrinsics.PixelSizeMm[1]* Intrinsics.ViewportPx[1];
  return 2*(vcg::math::ToDeg(atanf(viewportYMm/(2*Intrinsics.FocalMm))));
}

//---

/// GET the i-th axis of the coordinate system of the camera
template <class S, class RotationType>
vcg::Point3<S>  Shot<S,RotationType>::Axis(const int & i) const
{
  vcg::Matrix44<S> m;
  Extrinsics.rot.ToMatrix(m);
  vcg::Point3<S> aa = m.GetRow3(i);
  return aa;
}

/// look at (point+up)
template <class S, class RotationType>
void Shot<S,RotationType>::LookAt(const vcg::Point3<S> & z_dir,const vcg::Point3<S> & up)
{
    LookTowards(z_dir-GetViewPoint(),up);
}

/// look at (opengl-like)
template <class S, class RotationType>
void Shot<S,RotationType>::LookAt(const S & eye_x, const S & eye_y, const S & eye_z,
           const S & at_x, const S & at_y, const S & at_z,
           const S & up_x,const S & up_y,const S & up_z)
{
  SetViewPoint(Point3<S>(eye_x,eye_y,eye_z));
  LookAt(Point3<S>(at_x,at_y,at_z),Point3<S>(up_x,up_y,up_z));
}

/// look towards
template <class S, class RotationType>
void Shot<S,RotationType>::LookTowards(const vcg::Point3<S> & z_dir,const vcg::Point3<S> & up)
{
  vcg::Point3<S> x_dir = up ^-z_dir;
  vcg::Point3<S> y_dir = -z_dir ^x_dir;

  Matrix44<S> m;
  m.SetIdentity();
  *(vcg::Point3<S> *)&m[0][0] =  x_dir/x_dir.Norm();
  *(vcg::Point3<S> *)&m[1][0] =  y_dir/y_dir.Norm();
  *(vcg::Point3<S> *)&m[2][0] = -z_dir/z_dir.Norm();

  Extrinsics.rot.FromMatrix(m);
}

//--- Space transformation methods

/// convert a 3d point from world to camera coordinates (do not confuse with the Shot reference frame)
template <class S, class RotationType>
vcg::Point3<S> Shot<S,RotationType>::ConvertWorldToCameraCoordinates(const vcg::Point3<S> & p) const
{
  Matrix44<S> rotM;
  Extrinsics.rot.ToMatrix(rotM);
  vcg::Point3<S> cp = rotM * (p - GetViewPoint() );
  cp[2]=-cp[2];
  return cp;
  }

/// convert a 3d point from camera coordinates (do not confuse with the Shot reference frame) to world coordinates
template <class S, class RotationType>
vcg::Point3<S> Shot<S,RotationType>::ConvertCameraToWorldCoordinates(const vcg::Point3<S> & p) const
{
  Matrix44<S> rotM;
  vcg::Point3<S> cp = p;
  cp[2]=-cp[2];
  Extrinsics.rot.ToMatrix(rotM);
  cp = rotM.transpose() * cp + GetViewPoint();
  return cp;
}

/// convert a 3d point from camera to world coordinates, uses inverse instead of trranspose for non-exactly-rigid rotation matrices (such as calculated by tsai and garcia)
template <class S, class RotationType>
vcg::Point3<S> Shot<S,RotationType>::ConvertCameraToWorldCoordinates_Substitute(const vcg::Point3<S> & p) const
{
  Matrix44<S> rotM;
  vcg::Point3<S> cp = p;
  cp[2]=-cp[2];
  Extrinsics.rot.ToMatrix(rotM);
  cp = Inverse(rotM) * cp + GetViewPoint();
  return cp;
}

/// project a 3d point from world coordinates to 2d camera viewport (the value returned is in pixel)
template <class S, class RotationType>
vcg::Point2<S> Shot<S,RotationType>::Project(const vcg::Point3<S> & p) const
{
  Point3<S> cp = ConvertWorldToCameraCoordinates(p);
  Point2<S> pp = Intrinsics.Project(cp);
  Point2<S> vp = Intrinsics.LocalToViewportPx(pp);
  return vp;
}

/// inverse projection from 2d camera viewport (in pixels) to 3d world coordinates (it requires the original depth of the point to unproject)
template <class S, class RotationType>
vcg::Point3<S> Shot<S,RotationType>::UnProject(const vcg::Point2<S> & p, const S & d) const
{
  Point2<S> lp = Intrinsics.ViewportPxToLocal(p);
  Point3<S> cp = Intrinsics.UnProject(lp,d);
  Point3<S> wp = ConvertCameraToWorldCoordinates(cp);
  return wp;
}

/* inverse projection from 2d camera viewport (in pixels) to 3d world coordinates (it requires the original depth of the projected point)
 * uses inverse instead of trranspose for non-exactly-rigid rotation matrices (such as calculated by tsai and garcia)
 */
template <class S, class RotationType>
vcg::Point3<S> Shot<S,RotationType>::UnProject_Substitute(const vcg::Point2<S> & p, const S & d) const
{
  Point2<S> lp = Intrinsics.ViewportPxToLocal(p);
  Point3<S> cp = Intrinsics.UnProject(lp,d);
  Point3<S> wp = ConvertCameraToWorldCoordinates_Substitute(cp);
  return wp;
}

/// returns the distance of point p from camera plane (z depth), required for unprojection operation
template <class S, class RotationType>
S Shot<S,RotationType>::Depth(const vcg::Point3<S> & p)const
{
  return ConvertWorldToCameraCoordinates(p).Z();
}

/* Sometimes the focal is given in pixels. In this case, this function can be used to convert it in millimiters
 * given the CCD width (in mm). This method should be moved in vcg::Camera().
 * Equivalent focal lenght is obtained by setting the ccd width to 35 mm.
 */
template <class S, class RotationType>
void Shot<S, RotationType>::ConvertFocalToMM(S ccdwidth)
{
  double ccd_width = ccdwidth; // ccd is assumed conventionally to be 35mm
  double ccd_height = (ccd_width * Intrinsics.ViewportPx[1]) / Intrinsics.ViewportPx[0];
  Intrinsics.PixelSizeMm[0] = (ccd_width / Intrinsics.ViewportPx[0]);
  Intrinsics.PixelSizeMm[1] = (ccd_height / Intrinsics.ViewportPx[1]);
  Intrinsics.FocalMm = (ccd_width * Intrinsics.FocalMm) / Intrinsics.ViewportPx[0];  // NOW FOCAL IS IN MM
}

/* Sometimes the 3D World coordinates are known up to a scale factor. This method adjust the camera/shot parameters
 * to account for the re-scaling of the World. If the intrisic parameters are just reasonable values 
 * the cameras need only a re-positioning.
 */
template <class S, class RotationType>
void Shot<S, RotationType>::RescalingWorld(S scalefactor, bool adjustIntrinsics)
{
    // adjust INTRINSICS (if required)

		if (adjustIntrinsics)
		{
			Intrinsics.FocalMm = Intrinsics.FocalMm * scalefactor;
			double ccdwidth = static_cast<double>(Intrinsics.ViewportPx[0] * Intrinsics.PixelSizeMm[0]);
			double ccdheight = static_cast<double>(Intrinsics.ViewportPx[1] * Intrinsics.PixelSizeMm[1]);

			Intrinsics.PixelSizeMm[0] = (ccdwidth * scalefactor) / Intrinsics.ViewportPx[0];
			Intrinsics.PixelSizeMm[1] = (ccdheight * scalefactor) / Intrinsics.ViewportPx[1];
		}

    // adjust EXTRINSICS

    // rotation remains the same (!)
    // nothing to do..

    // the viewpoint should be modified according to the scale factor
    Extrinsics.tra *= scalefactor;
}

/// Given a pure roto-translation matrix (4-by-4) modify the reference frame accordingly.
template <class S, class RotationType>
void Shot<S, RotationType>::ApplyRigidTransformation(const Matrix44<S> & M)
{
  Matrix44<S> rotM;
  Extrinsics.rot.ToMatrix(rotM);
  // roto-translate the viewpoint
  Extrinsics.tra = M * Extrinsics.tra;
  Matrix44<S> newRot = rotM * M.transpose();
  newRot[3][0] =  newRot[3][1] =  newRot[3][2] = 0.0;

  Extrinsics.SetRot(newRot);
}

/// Given a similarity transformation modifies the reference frame accordingly.
template <class S, class RotationType>
void Shot<S, RotationType>::ApplySimilarity( Matrix44<S>   M)
{
  Matrix44<S> rotM;
  Extrinsics.rot.ToMatrix(rotM);

  // normalize
  M = M * (1/M.ElementAt(3,3));
  M[3][3] = 1; // just for numeric precision

  // compute scale factor
  ScalarType scalefactor = 1.0 / pow(ScalarType(M.Determinant()),1/ScalarType(3.0));

  // roto-translate the viewpoint
  Extrinsics.tra = M * Extrinsics.tra;

  vcg::Matrix44<S> M2 = M;

  M2 = M2 * scalefactor;				// remove the scaling
  M2[3][3] = 1.0;						 
  M2[0][3] = M2[1][3] = M2[2][3] = 0;	// remove the translation

  rotM = rotM * M2.transpose();
  Extrinsics.SetRot(rotM);
}

/// Given a similarity transformation modifies the reference frame accordingly.
template <class S, class RotationType>
void Shot<S, RotationType>::ApplySimilarity(const Similarity<S> & Sm)
{
  Matrix44<S> rotM;
  Extrinsics.rot.ToMatrix(rotM);

  // similarity decomposition
  vcg::Matrix44<S> R;
  Sm.rot.ToMatrix(R);
  vcg::Matrix44<S> T;
  T.SetIdentity();
  T.ElementAt(0,3) = Sm.tra[0];
  T.ElementAt(1,3) = Sm.tra[1];
  T.ElementAt(2,3) = Sm.tra[2];
  vcg::Matrix44d S44;
  S44.SetIdentity();
  S44 *= Sm.sca;
  S44.ElementAt(3,3) = 1.0;

  vcg::Matrix44<S> M = T * R * S44;

  // roto-translate the viewpoint
  Extrinsics.tra = M * Extrinsics.tra;

  vcg::Matrix44<S> M2 = M;

  M2 = M2 * (1.0 / Sm.sca);

  Extrinsics.rot = rotM * M2.transpose();

  Extrinsics.rot.ElementAt(3,0) = 0;
  Extrinsics.rot.ElementAt(3,1) = 0;
  Extrinsics.rot.ElementAt(3,2) = 0;
  Extrinsics.rot.ElementAt(3,3) = 1;

}


//--------------------------------


//--- utility definitions
typedef  Shot<float> Shotf;
typedef  Shot<double> Shotd;
//-----------------------

} // end name space

#endif