1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2006 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCGLIB_SPHERICAL_HARMONICS_H
#define __VCGLIB_SPHERICAL_HARMONICS_H
#include <climits>
#include <vcg/math/base.h>
#include <vcg/math/random_generator.h>
#include <vcg/math/legendre.h>
#include <vcg/math/factorial.h>
namespace vcg{
namespace math{
template <typename ScalarType>
class DummyPolarFunctor{
public:
inline ScalarType operator()(ScalarType theta, ScalarType phi) {return ScalarType(0);}
};
template <typename ScalarType, int MAX_BAND = 4>
class ScalingFactor
{
private :
ScalarType k_factor[MAX_BAND][MAX_BAND];
static ScalingFactor sf;
ScalingFactor()
{
for (unsigned l = 0; l < MAX_BAND; ++l)
for (unsigned m = 0; m <= l; ++m)
k_factor[l][m] = Sqrt( ( (2.0*l + 1.0) * Factorial<ScalarType>(l-m) ) / (4.0 * M_PI * Factorial<ScalarType>(l + m)) );
}
public :
static ScalarType K(unsigned l, unsigned m)
{
return sf.k_factor[l][m];
}
};
template <typename ScalarType, int MAX_BAND>
ScalingFactor<ScalarType, MAX_BAND> ScalingFactor<ScalarType, MAX_BAND>::sf;
/**
* Although the Real Spherical Harmonic Function is correctly defined over any
* positive l and any -l <= m <= l, the two internal functions computing the
* imaginary and real parts of the Complex Spherical Harmonic Functions are defined
* for positive m only.
*/
template <typename ScalarType, int MAX_BAND = 4>
class SphericalHarmonics{
private :
static DynamicLegendre<ScalarType, MAX_BAND> legendre;
static ScalarType scaling_factor(unsigned l, unsigned m)
{
return ScalingFactor<ScalarType, MAX_BAND>::K(l,m);
}
inline static ScalarType complex_spherical_harmonic_re(unsigned l, unsigned m, ScalarType theta, ScalarType phi)
{
return scaling_factor(l, m) * legendre.AssociatedPolynomial(l, m, Cos(theta), Sin(theta)) * Cos(m * phi);
}
inline static ScalarType complex_spherical_harmonic_im(unsigned l, unsigned m, ScalarType theta, ScalarType phi)
{
return scaling_factor(l, m) * legendre.AssociatedPolynomial(l, m, Cos(theta), Sin(theta)) * Sin(m * phi);
}
ScalarType coefficients[MAX_BAND * MAX_BAND];
public :
/**
* Returns the Real Spherical Harmonic Function
*
* l is any positive integer,
* m is such that -l <= m <= l
* theta is inside [0, PI]
* phi is inside [0, 2*PI]
*/
static ScalarType Real(unsigned l, int m, ScalarType theta, ScalarType phi)
{
assert((int)-l <= m && m <= (int)l && theta >= 0.0 && theta <= (ScalarType)M_PI && phi >= 0.0 && phi <= (ScalarType)(2.0 * M_PI));
if (m > 0) return SQRT_TWO * complex_spherical_harmonic_re(l, m, theta, phi);
else if (m == 0) return scaling_factor(l, 0) * legendre.Polynomial(l, Cos(theta));
else return SQRT_TWO * complex_spherical_harmonic_im(l, -m, theta, phi);
}
template <typename PolarFunctor>
static SphericalHarmonics Project(PolarFunctor * fun, unsigned n_samples)
{
const ScalarType weight = 4 * M_PI;
unsigned sqrt_n_samples = (unsigned int) Sqrt((int)n_samples);
unsigned actual_n_samples = sqrt_n_samples * sqrt_n_samples;
unsigned n_coeff = MAX_BAND * MAX_BAND;
ScalarType one_over_n = 1.0/(ScalarType)sqrt_n_samples;
MarsenneTwisterRNG rand;
SphericalHarmonics sph;
int i = 0;
for (unsigned k = 0; k < n_coeff; k++ ) sph.coefficients[k] = 0;
for (unsigned a = 0; a < sqrt_n_samples; ++a )
{
for (unsigned b = 0; b < sqrt_n_samples; ++b)
{
ScalarType x = (a + ScalarType(rand.generate01())) * one_over_n;
ScalarType y = (b + ScalarType(rand.generate01())) * one_over_n;
ScalarType theta = 2.0 * Acos(Sqrt(1.0 - x));
ScalarType phi = 2.0 * M_PI * y;
for (int l = 0; l < (int)MAX_BAND; ++l)
{
for (int m = -l; m <= l; ++m)
{
int index = l * (l+1) + m;
sph.coefficients[index] += (*fun)(theta, phi) * Real(l, m, theta, phi);
}
}
i++;
}
}
ScalarType factor = weight / actual_n_samples;
for(i = 0; i < (int)n_coeff; ++i)
{
sph.coefficients[i] *= factor;
}
return sph;
}
static SphericalHarmonics Wrap(ScalarType * _coefficients)
{
SphericalHarmonics sph;
for(int i = 0; i < (int) MAX_BAND * MAX_BAND; ++i) sph.coefficients[i] = _coefficients[i];
return sph;
}
ScalarType operator()(ScalarType theta, ScalarType phi)
{
ScalarType f = 0;
for (int l = 0; l < MAX_BAND; ++l)
{
for (int m = -l; m <= l; ++m)
{
int index = l * (l+1) + m;
f += (coefficients[index] * Real(l, m, theta, phi));
}
}
return f;
}
};
template <typename ScalarType, int MAX_BAND>
DynamicLegendre<ScalarType, MAX_BAND> SphericalHarmonics<ScalarType, MAX_BAND>::legendre;
}} //namespace vcg::math
#endif
|