1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef _VCG_FACE_TOPOLOGY
#define _VCG_FACE_TOPOLOGY
#include <vcg/simplex/face/pos.h>
#include <vector>
#include <algorithm>
namespace vcg {
namespace face {
/** \addtogroup face */
/*@{*/
/** Return a boolean that indicate if the face is complex.
@param j Index of the edge
@return true se la faccia e' manifold, false altrimenti
*/
template <class FaceType>
inline bool IsManifold( FaceType const & f, const int j )
{
assert(f.cFFp(j) != 0); // never try to use this on uncomputed topology
if(FaceType::HasFFAdjacency())
return ( f.cFFp(j) == &f || &f == f.cFFp(j)->cFFp(f.cFFi(j)) );
else
return true;
}
/** Return a boolean that indicate if the j-th edge of the face is a border.
@param j Index of the edge
@return true if j is an edge of border, false otherwise
*/
template <class FaceType>
inline bool IsBorder(FaceType const & f, const int j )
{
if(FaceType::HasFFAdjacency())
return f.cFFp(j)==&f;
//return f.IsBorder(j);
assert(0);
return true;
}
/// Count border edges of the face
template <class FaceType>
inline int BorderCount(FaceType const & f)
{
if(FaceType::HasFFAdjacency())
{
int t = 0;
if( IsBorder(f,0) ) ++t;
if( IsBorder(f,1) ) ++t;
if( IsBorder(f,2) ) ++t;
return t;
}
else return 3;
}
/// Counts the number of incident faces in a complex edge
template <class FaceType>
inline int ComplexSize(FaceType & f, const int e)
{
if(FaceType::HasFFAdjacency())
{
if(face::IsBorder<FaceType>(f,e)) return 1;
if(face::IsManifold<FaceType>(f,e)) return 2;
// Non manifold case
Pos< FaceType > fpos(&f,e);
int cnt=0;
do
{
fpos.NextF();
assert(!fpos.IsBorder());
assert(!fpos.IsManifold());
++cnt;
}
while(fpos.f!=&f);
assert (cnt>2);
return cnt;
}
assert(0);
return 2;
}
/** This function check the FF topology correctness for an edge of a face.
It's possible to use it also in non-two manifold situation.
The function cannot be applicated if the adjacencies among faces aren't defined.
@param f the face to be checked
@param e Index of the edge to be checked
*/
template <class FaceType>
bool FFCorrectness(FaceType & f, const int e)
{
if(f.FFp(e)==0) return false; // Not computed or inconsistent topology
if(f.FFp(e)==&f) // Border
{
if(f.FFi(e)==e) return true;
else return false;
}
if(f.FFp(e)->FFp(f.FFi(e))==&f) // plain two manifold
{
if(f.FFp(e)->FFi(f.FFi(e))==e) return true;
else return false;
}
// Non Manifold Case
// all the faces must be connected in a loop.
Pos< FaceType > curFace(&f,e); // Build the half edge
int cnt=0;
do
{
if(curFace.IsManifold()) return false;
if(curFace.IsBorder()) return false;
curFace.NextF();
cnt++;
assert(cnt<100);
}
while ( curFace.f != &f);
return true;
}
/** This function detach the face from the adjacent face via the edge e.
It's possible to use this function it ONLY in non-two manifold situation.
The function cannot be applicated if the adjacencies among faces aren't defined.
@param f the face to be detached
@param e Index of the edge to be detached
*/
template <class FaceType>
void FFDetachManifold(FaceType & f, const int e)
{
assert(FFCorrectness<FaceType>(f,e));
assert(!IsBorder<FaceType>(f,e)); // Never try to detach a border edge!
FaceType *ffp = f.FFp(e);
//int ffi=f.FFp(e);
int ffi=f.FFi(e);
f.FFp(e)=&f;
f.FFi(e)=e;
ffp->FFp(ffi)=ffp;
ffp->FFi(ffi)=ffi;
f.SetB(e);
f.ClearF(e);
ffp->SetB(ffi);
ffp->ClearF(ffi);
assert(FFCorrectness<FaceType>(f,e));
assert(FFCorrectness<FaceType>(*ffp,ffi));
}
/** This function detach the face from the adjacent face via the edge e.
It's possible to use it also in non-two manifold situation.
The function cannot be applicated if the adjacencies among faces aren't defined.
@param f the face to be detached
@param e Index of the edge to be detached
*/
template <class FaceType>
void FFDetach(FaceType & f, const int e)
{
assert(FFCorrectness<FaceType>(f,e));
assert(!IsBorder<FaceType>(f,e)); // Never try to detach a border edge!
int complexity;
assert(complexity=ComplexSize(f,e));
Pos< FaceType > FirstFace(&f,e); // Build the half edge
Pos< FaceType > LastFace(&f,e); // Build the half edge
FirstFace.NextF();
LastFace.NextF();
int cnt=0;
// then in case of non manifold face continue to advance LastFace
// until I find it become the one that
// preceed the face I want to erase
while ( LastFace.f->FFp(LastFace.z) != &f)
{
assert(ComplexSize(*LastFace.f,LastFace.z)==complexity);
assert(!LastFace.IsManifold()); // We enter in this loop only if we are on a non manifold edge
assert(!LastFace.IsBorder());
LastFace.NextF();
cnt++;
assert(cnt<100);
}
assert(LastFace.f->FFp(LastFace.z)==&f);
assert(f.FFp(e)== FirstFace.f);
// Now we link the last one to the first one, skipping the face to be detached;
LastFace.f->FFp(LastFace.z) = FirstFace.f;
LastFace.f->FFi(LastFace.z) = FirstFace.z;
assert(ComplexSize(*LastFace.f,LastFace.z)==complexity-1);
// At the end selfconnect the chosen edge to make a border.
f.FFp(e) = &f;
f.FFi(e) = e;
assert(ComplexSize(f,e)==1);
assert(FFCorrectness<FaceType>(*LastFace.f,LastFace.z));
assert(FFCorrectness<FaceType>(f,e));
}
/** This function attach the face (via the edge z1) to another face (via the edge z2). It's possible to use it also in non-two manifold situation.
The function cannot be applicated if the adjacencies among faces aren't define.
@param z1 Index of the edge
@param f2 Pointer to the face
@param z2 The edge of the face f2
*/
template <class FaceType>
void FFAttach(FaceType * &f, int z1, FaceType *&f2, int z2)
{
//typedef FEdgePosB< FACE_TYPE > ETYPE;
Pos< FaceType > EPB(f2,z2);
Pos< FaceType > TEPB;
TEPB = EPB;
EPB.NextF();
while( EPB.f != f2) //Alla fine del ciclo TEPB contiene la faccia che precede f2
{
TEPB = EPB;
EPB.NextF();
}
//Salvo i dati di f1 prima di sovrascrivere
FaceType *f1prec = f->FFp(z1);
int z1prec = f->FFi(z1);
//Aggiorno f1
f->FFp(z1) = TEPB.f->FFp(TEPB.z);
f->FFi(z1) = TEPB.f->FFi(TEPB.z);
//Aggiorno la faccia che precede f2
TEPB.f->FFp(TEPB.z) = f1prec;
TEPB.f->FFi(TEPB.z) = z1prec;
}
/** This function attach the face (via the edge z1) to another face (via the edge z2).
It is not possible to use it also in non-two manifold situation.
The function cannot be applicated if the adjacencies among faces aren't define.
@param z1 Index of the edge
@param f2 Pointer to the face
@param z2 The edge of the face f2
*/
template <class FaceType>
void FFAttachManifold(FaceType * &f1, int z1, FaceType *&f2, int z2)
{
assert(IsBorder<FaceType>(*f1,z1));
assert(IsBorder<FaceType>(*f2,z2));
assert(f1->V0(z1) == f2->V0(z2) || f1->V0(z1) == f2->V1(z2));
assert(f1->V1(z1) == f2->V0(z2) || f1->V1(z1) == f2->V1(z2));
f1->FFp(z1) = f2;
f1->FFi(z1) = z2;
f2->FFp(z2) = f1;
f2->FFi(z2) = z1;
}
// This one should be called only on uniitialized faces.
template <class FaceType>
void FFSetBorder(FaceType * &f1, int z1)
{
assert(f1->FFp(z1)==0 || IsBorder(*f1,z1));
f1->FFp(z1)=f1;
f1->FFi(z1)=z1;
}
template <class FaceType>
void AssertAdj(FaceType & f)
{
assert(f.FFp(0)->FFp(f.FFi(0))==&f);
assert(f.FFp(1)->FFp(f.FFi(1))==&f);
assert(f.FFp(2)->FFp(f.FFi(2))==&f);
assert(f.FFp(0)->FFi(f.FFi(0))==0);
assert(f.FFp(1)->FFi(f.FFi(1))==1);
assert(f.FFp(2)->FFi(f.FFi(2))==2);
}
/**
* Check if the given face is oriented as the one adjacent to the specified edge.
* @param f Face to check the orientation
* @param z Index of the edge
*/
template <class FaceType>
bool CheckOrientation(FaceType &f, int z)
{
if (IsBorder(f, z))
return true;
else
{
FaceType *g = f.FFp(z);
int gi = f.FFi(z);
if (f.V0(z) == g->V1(gi))
return true;
else
return false;
}
}
/**
* This function change the orientation of the face by inverting the index of two vertex.
* @param z Index of the edge
*/
template <class FaceType>
void SwapEdge(FaceType &f, const int z) { SwapEdge<FaceType,true>(f,z); }
template <class FaceType, bool UpdateTopology>
void SwapEdge(FaceType &f, const int z)
{
// swap V0(z) with V1(z)
std::swap(f.V0(z), f.V1(z));
if(f.HasFFAdjacency() && UpdateTopology)
{
// store information to preserve topology
int z1 = (z+1)%3;
int z2 = (z+2)%3;
FaceType *g1p = f.FFp(z1);
FaceType *g2p = f.FFp(z2);
int g1i = f.FFi(z1);
int g2i = f.FFi(z2);
// g0 face topology is not affected by the swap
if (g1p != &f)
{
g1p->FFi(g1i) = z2;
f.FFi(z2) = g1i;
}
else
{
f.FFi(z2) = z2;
}
if (g2p != &f)
{
g2p->FFi(g2i) = z1;
f.FFi(z1) = g2i;
}
else
{
f.FFi(z1) = z1;
}
// finalize swap
f.FFp(z1) = g2p;
f.FFp(z2) = g1p;
}
}
/*!
* Perform a Geometric Check about the normals of a edge flip.
* return trues if after the flip the normals does not change more than the given threshold angle;
* it assumes that the flip is topologically correct.
*
* \param f the face
* \param z the edge index
* \param angleRad the threshold angle
*
* oldD1 ___________ newD1
* |\ |
* | \ |
* | \ |
* | f z\ |
* | \ |
* |__________\|
* newD0 oldD0
*/
template <class FaceType>
static bool CheckFlipEdgeNormal(FaceType &f, const int z, const float angleRad)
{
typedef typename FaceType::VertexType VertexType;
typedef typename VertexType::CoordType CoordType;
typedef typename VertexType::ScalarType ScalarType;
VertexType *OldDiag0 = f.V0(z);
VertexType *OldDiag1 = f.V1(z);
VertexType *NewDiag0 = f.V2(z);
VertexType *NewDiag1 = f.FFp(z)->V2(f.FFi(z));
assert((NewDiag1 != NewDiag0) && (NewDiag1 != OldDiag0) && (NewDiag1 != OldDiag1));
CoordType oldN0 = NormalizedNormal( NewDiag0->cP(),OldDiag0->cP(),OldDiag1->cP());
CoordType oldN1 = NormalizedNormal( NewDiag1->cP(),OldDiag1->cP(),OldDiag0->cP());
CoordType newN0 = NormalizedNormal( OldDiag0->cP(),NewDiag1->cP(),NewDiag0->cP());
CoordType newN1 = NormalizedNormal( OldDiag1->cP(),NewDiag0->cP(),NewDiag1->cP());
if(AngleN(oldN0,newN0) > angleRad) return false;
if(AngleN(oldN0,newN1) > angleRad) return false;
if(AngleN(oldN1,newN0) > angleRad) return false;
if(AngleN(oldN1,newN1) > angleRad) return false;
return true;
}
/*!
* Perform a Topological check to see if the z-th edge of the face f can be flipped.
* No Geometric test are done. (see CheckFlipEdgeNormal)
* \param f pointer to the face
* \param z the edge index
*/
template <class FaceType>
static bool CheckFlipEdge(FaceType &f, int z)
{
typedef typename FaceType::VertexType VertexType;
typedef typename vcg::face::Pos< FaceType > PosType;
if (z<0 || z>2) return false;
// boundary edges cannot be flipped
if (face::IsBorder(f, z)) return false;
FaceType *g = f.FFp(z);
int w = f.FFi(z);
// check if the vertices of the edge are the same
// e.g. the mesh has to be well oriented
if (g->V(w)!=f.V1(z) || g->V1(w)!=f.V(z) )
return false;
// check if the flipped edge is already present in the mesh
// f_v2 and g_v2 are the vertices of the new edge
VertexType *f_v2 = f.V2(z);
VertexType *g_v2 = g->V2(w);
// just a sanity check. If this happens the mesh is not manifold.
if (f_v2 == g_v2) return false;
// Now walk around f_v2, one of the two vertexes of the new edge
// and check that it does not already exists.
PosType pos(&f, (z+2)%3, f_v2);
PosType startPos=pos;
do
{
pos.NextE();
if (g_v2 == pos.VFlip())
return false;
}
while (pos != startPos);
return true;
}
/*!
* Flip the z-th edge of the face f.
* Check for topological correctness first using <CODE>CheckFlipFace()</CODE>.
* \param f pointer to the face
* \param z the edge index
*
* Note: For <em>edge flip</em> we intend the swap of the diagonal of the rectangle
* formed by the face \a f and the face adjacent to the specified edge.
*/
template <class FaceType>
static void FlipEdge(FaceType &f, const int z)
{
assert(z>=0);
assert(z<3);
assert( !IsBorder(f,z) );
assert( face::IsManifold<FaceType>(f, z));
FaceType *g = f.FFp(z);
int w = f.FFi(z);
assert( g->V(w) == f.V1(z) );
assert( g->V1(w)== f.V(z) );
assert( g->V2(w)!= f.V(z) );
assert( g->V2(w)!= f.V1(z) );
assert( g->V2(w)!= f.V2(z) );
f.V1(z) = g->V2(w);
g->V1(w) = f.V2(z);
f.FFp(z) = g->FFp((w+1)%3);
f.FFi(z) = g->FFi((w+1)%3);
g->FFp(w) = f.FFp((z+1)%3);
g->FFi(w) = f.FFi((z+1)%3);
f.FFp((z+1)%3) = g;
f.FFi((z+1)%3) = (w+1)%3;
g->FFp((w+1)%3) = &f;
g->FFi((w+1)%3) = (z+1)%3;
if(f.FFp(z)==g)
{
f.FFp(z) = &f;
f.FFi(z) = z;
}
else
{
f.FFp(z)->FFp( f.FFi(z) ) = &f;
f.FFp(z)->FFi( f.FFi(z) ) = z;
}
if(g->FFp(w)==&f)
{
g->FFp(w)=g;
g->FFi(w)=w;
}
else
{
g->FFp(w)->FFp( g->FFi(w) ) = g;
g->FFp(w)->FFi( g->FFi(w) ) = w;
}
}
// Stacca la faccia corrente dalla catena di facce incidenti sul vertice z,
// NOTA funziona SOLO per la topologia VF!!!
// usata nelle classi di collapse
template <class FaceType>
void VFDetach(FaceType & f, int z)
{
if(f.V(z)->VFp()==&f ) //if it is the first face detach from the begin
{
int fz = f.V(z)->VFi();
f.V(z)->VFp() = f.VFp(fz);
f.V(z)->VFi() = f.VFi(fz);
}
else // scan the list of faces in order to finde the current face f to be detached
{
VFIterator<FaceType> x(f.V(z)->VFp(),f.V(z)->VFi());
VFIterator<FaceType> y;
for(;;)
{
y = x;
++x;
assert(x.f!=0);
if(x.f==&f) // found!
{
y.f->VFp(y.z) = f.VFp(z);
y.f->VFi(y.z) = f.VFi(z);
break;
}
}
}
}
/// Append a face in VF list of vertex f->V(z)
template <class FaceType>
void VFAppend(FaceType* & f, int z)
{
typename FaceType::VertexType *v = f->V(z);
if (v->VFp()!=0)
{
FaceType *f0=v->VFp();
int z0=v->VFi();
//append
f->VFp(z)=f0;
f->VFi(z)=z0;
}
v->VFp()=f;
v->VFi()=z;
}
/*!
* Compute the set of vertices adjacent to a given vertex using VF adjacency.
* \param vp pointer to the vertex whose star has to be computed.
* \param starVec a std::vector of Vertex pointer that is filled with the adjacent vertices.
*
*/
template <class FaceType>
void VVStarVF( typename FaceType::VertexType* vp, std::vector<typename FaceType::VertexType *> &starVec)
{
typedef typename FaceType::VertexType* VertexPointer;
starVec.clear();
face::VFIterator<FaceType> vfi(vp);
while(!vfi.End())
{
starVec.push_back(vfi.F()->V1(vfi.I()));
starVec.push_back(vfi.F()->V2(vfi.I()));
++vfi;
}
std::sort(starVec.begin(),starVec.end());
typename std::vector<VertexPointer>::iterator new_end = std::unique(starVec.begin(),starVec.end());
starVec.resize(new_end-starVec.begin());
}
/*!
* Compute the set of faces adjacent to a given vertex using VF adjacency.
* \param vp pointer to the vertex whose star has to be computed.
* \param faceVec a std::vector of Face pointer that is filled with the adjacent faces.
*
*/
template <class FaceType>
void VFStarVF( typename FaceType::VertexType* vp, std::vector<FaceType *> &faceVec)
{
typedef typename FaceType::VertexType* VertexPointer;
faceVec.clear();
face::VFIterator<FaceType> vfi(vp);
while(!vfi.End())
{
faceVec.push_back(vfi.F());
++vfi;
}
}
/*!
* Compute the ordered set of faces adjacent to a given vertex using VF adjacency.and FF adiacency
* \param vp pointer to the vertex whose star has to be computed.
* \param faceVec a std::vector of Face pointer that is filled with the adjacent faces.
*
*/
template <class FaceType>
static void VFOrderedStarVF_FF(typename FaceType::VertexType &vp,
std::vector<FaceType*> &faceVec)
{
///check that is not on border..
assert (!vp.IsB());
///get first face sharing the edge
FaceType *f_init=vp.VFp();
int edge_init=vp.VFi();
///and initialize the pos
vcg::face::Pos<FaceType> VFI(f_init,edge_init);
bool complete_turn=false;
do
{
FaceType *curr_f=VFI.F();
faceVec.push_back(curr_f);
int curr_edge=VFI.E();
///assert that is not a border edge
assert(curr_f->FFp(curr_edge)!=curr_f);
///continue moving
VFI.FlipF();
VFI.FlipE();
FaceType *next_f=VFI.F();
///test if I've finiseh with the face exploration
complete_turn=(next_f==f_init);
/// or if I've just crossed a mismatch
}while (!complete_turn);
}
/*!
* Check if two faces share and edge through the FF topology.
* \param f0,f1 the two face to be checked
* \param i0,i1 the index of the shared edge;
*/
template <class FaceType>
bool ShareEdgeFF(FaceType *f0,FaceType *f1, int *i0=0, int *i1=0)
{
assert((!f0->IsD())&&(!f1->IsD()));
for (int i=0;i<3;i++)
if (f0->FFp(i)==f1)
{
if((i0!=0) && (i1!=0)) {
*i0=i;
*i1=f0->FFi(i);
}
return true;
}
return false;
}
/*!
* Count the number of vertices shared between two faces.
* \param f0,f1 the two face to be checked
* ;
*/
template <class FaceType>
int CountSharedVertex(FaceType *f0,FaceType *f1)
{
int sharedCnt=0;
for (int i=0;i<3;i++)
for (int j=0;j<3;j++)
if (f0->V(i)==f1->V(j)) {
sharedCnt++;
}
return sharedCnt;
}
/*!
* find the first shared vertex between two faces.
* \param f0,f1 the two face to be checked
* \param i,j the indexes of the shared vertex in the two faces. Meaningful only if there is one single shared vertex
* ;
*/
template <class FaceType>
bool FindSharedVertex(FaceType *f0,FaceType *f1, int &i, int &j)
{
for (i=0;i<3;i++)
for (j=0;j<3;j++)
if (f0->V(i)==f1->V(j)) return true;
i=-1;j=-1;
return false;
}
/*!
* find the first shared edge between two faces.
* \param f0,f1 the two face to be checked
* \param i,j the indexes of the shared edge in the two faces. Meaningful only if there is a shared edge
*
*/
template <class FaceType>
bool FindSharedEdge(FaceType *f0,FaceType *f1, int &i, int &j)
{
for (i=0;i<3;i++)
for (j=0;j<3;j++)
if( ( f0->V0(i)==f1->V0(j) || f0->V0(i)==f1->V1(j) ) &&
( f0->V1(i)==f1->V0(j) || f0->V1(i)==f1->V1(j) ) )
return true;
i=-1;j=-1;
return false;
}
/*@}*/
} // end namespace
} // end namespace
#endif
|