1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************/
#ifndef __VCG_DISTANCE3
#define __VCG_DISTANCE3
#include <limits>
#include <vcg/space/intersection3.h>
namespace vcg {
/*
* Computes the minimum distance between a 3D box and a point
* @param[in] p The input point
* @param[in] b The input bounding box
* return The distance
* This function returns 0 for points Inside the bbox while the next one return the distance from the surface
*/
template<class Scalar>
Scalar PointFilledBoxDistance(const Point3<Scalar> &p, const Box3<Scalar> &bbox)
{
Scalar dist2 = 0.;
Scalar aux;
for (int k=0 ; k<3 ; ++k)
{
if ( (aux = (p[k]-bbox.min[k]))<0. )
dist2 += aux*aux;
else if ( (aux = (bbox.max[k]-p[k]))<0. )
dist2 += aux*aux;
}
return sqrt(dist2);
}
/*
* Computes the minimum distance between a 3D box and a point
* @param[in] p The input point
* @param[in] b The input bounding box
* @param[out] dist The distance
* Note that this function with respect to the previous one compute the distance between a point
* and the 'surface' of a Box3.
*
*/
template <class ScalarType>
void PointBoxDistance(const Point3<ScalarType> &p,
const Box3<ScalarType> &b,
ScalarType& dist)
{
///if fall inside return distance to a face
if (b.IsIn(p))
{
const ScalarType dx = std::min<ScalarType>(b.max.X()-p.X(), p.X()-b.min.X());
const ScalarType dy = std::min<ScalarType>(b.max.Y()-p.Y(), p.Y()-b.min.Y());
const ScalarType dz = std::min<ScalarType>(b.max.Z()-p.Z(), p.Z()-b.min.Z());
dist= std::min<ScalarType>(dx, std::min<ScalarType>(dy, dz));
return;
}
{
ScalarType sq_dist = ScalarType(0);
for (int i=0; i<3; ++i)
{
ScalarType delta = ScalarType(0);
if (p[i] < b.min[i]) delta = p[i] - b.min[i];
else if (p[i] > b.max[i]) delta = p[i] - b.max[i];
sq_dist += delta * delta;
}
dist= math::Sqrt(sq_dist);
}
}
/*
* Computes the minimum distance between a sphere and a point
* @param[in] p The input point
* @param[in] sphere The input sphere
* @param[out] dist The distance
*/
template <class ScalarType>
void SpherePointDistance(const Sphere3<ScalarType> &sphere,
const Point3<ScalarType> &p,
ScalarType& dist)
{
dist = Distance(p, sphere.Center()) - sphere.Radius();
if(dist < 0) dist = 0;
}
/*
* Computes the minimum distance between two spheres
* @param[in] sphere0 The input sphere
* @param[in] sphere1 The input sphere
* @param[out] dist The distance
*/
template <class ScalarType>
void SphereSphereDistance(const Sphere3<ScalarType> &sphere0,
const Sphere3<ScalarType> &sphere1,
ScalarType& dist)
{
dist = (sphere1.Center()-sphere0.Center()).Norm()
- sphere0.Radius() - sphere1.Radius();
if(dist < 0) dist = 0;
return dist;
}
/*
* Computes the minimum squared distance between a between a point and a line
* @param[in] l The input line
* @param[in] p The input point
* @param[out] closest The closest point
* @param[out] dist The squared distance
*/
template <class ScalarType>
void LinePointSquaredDistance(const Line3<ScalarType> &l,const Point3<ScalarType> &p,
Point3<ScalarType> &closest,ScalarType &dist)
{
closest=l.P(l.Projection(p));
dist= (closest - p).SquaredNorm();
}
/*
* Computes the minimum distance between a between a point and a line
* @param[in] l The input line
* @param[in] p The input point
* @param[out] closest The closest point
* @param[out] dist The distance
*/
template <class ScalarType>
void LinePointDistance(const Line3<ScalarType> &l,const Point3<ScalarType> &p,
Point3<ScalarType> &closest,ScalarType &dist)
{
LinePointSquaredDistance(l,p,closest,dist);
dist=sqrt(dist);
}
/*
* Computes the minimum distance between two lines
* @param[in] mLine0 The input line0
* @param[in] mLine1 The input line1
* @param[out] parallel true if the two lines are parallel
* @param[mClosestPoint0] the closest point on line0
* @param[mClosestPoint1] the closest point on line1
*/
template <class ScalarType>
void LineLineDistance(const vcg::Line3<ScalarType> &mLine0,
const vcg::Line3<ScalarType> &mLine1,
bool ¶llel,
ScalarType &dist,
vcg::Point3<ScalarType> &mClosestPoint0,
vcg::Point3<ScalarType> &mClosestPoint1)
{
const ScalarType loc_EPSILON=ScalarType(0.000000001);
typedef typename vcg::Point3<ScalarType> CoordType;
CoordType diff = mLine0.Origin() - mLine1.Origin();
ScalarType a01 = -mLine0.Direction()* mLine1.Direction();
ScalarType b0 = diff *(mLine0.Direction());
ScalarType c = diff.SquaredNorm();
ScalarType det = fabs((ScalarType)1 - a01*a01);
ScalarType b1, s0, s1, sqrDist;
if (det >=loc_EPSILON)
{
// Lines are not parallel.
b1 = -diff*(mLine1.Direction());
ScalarType invDet = ((ScalarType)1)/det;
s0 = (a01*b1 - b0)*invDet;
s1 = (a01*b0 - b1)*invDet;
sqrDist = s0*(s0 + a01*s1 + ((ScalarType)2)*b0) +
s1*(a01*s0 + s1 + ((ScalarType)2)*b1) + c;
parallel=false;
}
else
{
// Lines are parallel, select any closest pair of points.
s0 = -b0;
s1 = (ScalarType)0;
sqrDist = b0*s0 + c;
parallel=true;
}
///find the two closest points
mClosestPoint0 = mLine0.Origin() + mLine0.Direction()*s0;
mClosestPoint1 = mLine1.Origin() + mLine1.Direction()*s1;
/*mLine0Parameter = s0;
mLine1Parameter = s1;*/
// Account for numerical round-off errors.
if (sqrDist < (ScalarType)0)
{
sqrDist = (ScalarType)0;
}
dist=sqrt(sqrDist);
}
/*
* Computes the minimum distance between a segment and a point
* @param[in] segment The input segment
* @param[in] p The input point
* @param[in] clos The closest point
* @param[in] sqr_dist The squared distance
*/
template <class ScalarType>
void SegmentPointSquaredDistance( const Segment3<ScalarType> &s,
const Point3<ScalarType> & p,
Point3< ScalarType > &closest,
ScalarType &sqr_dist)
{
Point3<ScalarType> e = s.P1()-s.P0();
ScalarType eSquaredNorm = e.SquaredNorm();
if (eSquaredNorm < std::numeric_limits<ScalarType>::min())
{
closest=s.MidPoint();
sqr_dist=SquaredDistance(closest,p);
}
else
{
ScalarType t = ((p-s.P0())*e)/eSquaredNorm;
if(t<0) t = 0;
else if(t>1) t = 1;
closest = s.P0()+e*t;
sqr_dist = SquaredDistance(p,closest);
assert(!math::IsNAN(sqr_dist));
}
}
/*
* Computes the minimum distance between a segment and a point
* @param[in] segment The input segment
* @param[in] p The input point
* @param[in] clos The closest point
* @param[in] dist The distance
*/
template <class ScalarType>
void SegmentPointDistance( Segment3<ScalarType> s,
const Point3<ScalarType> & p,
Point3< ScalarType > &clos,
ScalarType &dist)
{
SegmentPointSquaredDistance(s,p,clos,dist);
dist=sqrt(dist);
}
/*
* Computes the minimum distance between two segments
* @param[in] s0 The input segment0
* @param[in] s1 The input segment1
* @param[out] parallel true if the two segments are parallel
* @param[out] dist the distance
* @param[closest0] the closest point on segment0
* @param[closest1] the closest point on segment1
*/
template <class ScalarType>
void SegmentSegmentDistance(const vcg::Segment3<ScalarType> &s0,
const vcg::Segment3<ScalarType> &s1,
ScalarType &dist,
bool ¶llel,
vcg::Point3<ScalarType> &closest0,
vcg::Point3<ScalarType> &closest1)
{
typedef typename vcg::Point3<ScalarType> CoordType;
vcg::Line3<ScalarType> l0,l1;
///construct two lines
l0.SetOrigin(s0.P0());
l0.SetDirection((s0.P1()-s0.P0()).Normalize());
l1.SetOrigin(s1.P0());
l1.SetDirection((s1.P1()-s1.P0()).Normalize());
///then find closest point
ScalarType line_dist;
CoordType closest_test0,closest_test1;
LineLineDistance(l0,l1,parallel,line_dist,closest_test0,closest_test1);
///special case if the two lines are parallel
if (parallel)
{
///find the minimum distance between extremes to segments
ScalarType dist_test;
CoordType clos_test;
//CoordType to_test[4]={s1.P0(),s1.P1(),s0.P0(),s1.P1()};
///find combination of distances between all extremes and segments
SegmentPointSquaredDistance(s0,s1.P0(),clos_test,dist);
closest0=clos_test;
closest1=s1.P0();
///and find the minimum updating coherently the closest points
SegmentPointSquaredDistance(s0,s1.P1(),clos_test,dist_test);
if (dist_test<dist)
{
dist=dist_test;
closest0=clos_test;
closest1=s1.P1();
}
SegmentPointSquaredDistance(s1,s0.P0(),clos_test,dist_test);
if (dist_test<dist)
{
dist=dist_test;
closest0=s0.P0();
closest1=clos_test;
}
SegmentPointSquaredDistance(s1,s0.P1(),clos_test,dist_test);
if (dist_test<dist)
{
dist=dist_test;
closest0=s0.P1();
closest1=clos_test;
}
dist=sqrt(dist);
return;
}
///then ffind the closest segments points...
///means that if it is not an extreme then take
///the closest extreme
ScalarType sqr_dist0;
SegmentPointSquaredDistance(s0,closest_test0,closest0,sqr_dist0);
ScalarType sqr_dist1;
SegmentPointSquaredDistance(s1,closest_test1,closest1,sqr_dist1);
///then return the distance
dist=(closest0-closest1).Norm();
}
/* @brief Computes the distance between a triangle and a point.
*
* @param t reference to the triangle
* @param q point location
* @param dist distance from p to t
* @param closest perpendicular projection of p onto t
*/
template<class ScalarType>
void TrianglePointDistance(const vcg::Triangle3<ScalarType> &t,
const typename vcg::Point3<ScalarType> & q,
ScalarType & dist,
typename vcg::Point3<ScalarType> & closest )
{
typedef typename vcg::Point3<ScalarType> CoordType;
CoordType clos[3];
ScalarType distv[3];
CoordType clos_proj;
ScalarType distproj;
///find distance on the plane
vcg::Plane3<ScalarType> plane;
plane.Init(t.P(0),t.P(1),t.P(2));
clos_proj=plane.Projection(q);
///control if inside/outside
CoordType n=(t.P(1)-t.P(0))^(t.P(2)-t.P(0));
CoordType n0=(t.P(0)-clos_proj)^(t.P(1)-clos_proj);
CoordType n1=(t.P(1)-clos_proj)^(t.P(2)-clos_proj);
CoordType n2=(t.P(2)-clos_proj)^(t.P(0)-clos_proj);
distproj=(clos_proj-q).Norm();
if (((n*n0)>=0)&&((n*n1)>=0)&&((n*n2)>=0))
{
closest=clos_proj;
dist=distproj;
return;
}
//distance from the edges
vcg::Segment3<ScalarType> e0=vcg::Segment3<ScalarType>(t.P(0),t.P(1));
vcg::Segment3<ScalarType> e1=vcg::Segment3<ScalarType>(t.P(1),t.P(2));
vcg::Segment3<ScalarType> e2=vcg::Segment3<ScalarType>(t.P(2),t.P(0));
SegmentPointDistance(e0,q,clos[0],distv[0]);
SegmentPointDistance(e1,q,clos[1],distv[1]);
SegmentPointDistance(e2,q,clos[2],distv[2]);
/*clos[0]=ClosestPoint<ScalarType>( e0, q);
clos[1]=ClosestPoint<ScalarType>( e1, q);
clos[2]=ClosestPoint<ScalarType>( e2, q);
*/
//distv[0]=(clos[0]-q).Norm();
//distv[1]=(clos[1]-q).Norm();
//distv[2]=(clos[2]-q).Norm();
int min=0;
///find minimum distance
for (int i=1;i<3;i++)
{
if (distv[i]<distv[min])
min=i;
}
closest=clos[min];
dist=distv[min];
}
/*
* return the distance between a triangle and a segment
* @param[in] t The input triangle
* @param[in] s The input segment
* @param[out] dist the distance
*/
template<class ScalarType>
void TriangleSegmentDistance(const vcg::Triangle3<ScalarType> &t,
const vcg::Segment3<ScalarType> &s,
ScalarType & dist)
{
dist=std::numeric_limits<ScalarType>::max();
///test the intersection
ScalarType a,b;
typedef typename vcg::Point3<ScalarType> CoordType;
bool intersect=IntersectionSegmentTriangle<vcg::Triangle3<ScalarType> >(s,t,a,b);
if (intersect)
{
dist=0;
return;
}
///project endpoints and see if they fall into the triangle
vcg::Plane3<ScalarType> pl3;
pl3.Init(t.P(0),t.P(1),t.P(2));
CoordType pj0=pl3.Projection(s.P(0));
CoordType pj1=pl3.Projection(s.P(1));
///take distances
ScalarType dpj0=(pj0-s.P(0)).Norm();
ScalarType dpj1=(pj1-s.P(1)).Norm();
///test if they fall inside the triangle
CoordType bary0,bary1;
bool Inside0=vcg::InterpolationParameters(t,pj0,bary0);
bool Inside1=vcg::InterpolationParameters(t,pj1,bary1);
if (Inside0&&Inside1)
{
dist=std::min(dpj0,dpj1);
return;
}
///initialize with the sdistance if only once falls into
if (Inside0)
dist=dpj0;
if (Inside1)
dist=dpj1;
///then test segment-to segment distance with edges of the triangle
for (int i=0;i<3;i++)
{
vcg::Segment3<ScalarType> edge=vcg::Segment3<ScalarType>(t.P0(i),t.P0((i+1)%3));
ScalarType test_dist;
CoordType clos1,clos2;
bool parallel;
vcg::SegmentSegmentDistance<ScalarType>(s,edge,test_dist,parallel,clos1,clos2);
if (test_dist<dist)
dist=test_dist;
}
}
/*
* return the minimum distance between two triangles
* @param[in] t0 The input triangle0
* @param[in] t1 The input triangle1
* @param[out] dist the distance
*/
template<class ScalarType>
void TriangleTriangleDistance(const vcg::Triangle3<ScalarType> &t0,
const vcg::Triangle3<ScalarType> &t1,
ScalarType &dist)
{
const ScalarType loc_EPSILON=(vcg::DoubleArea(t0)+vcg::DoubleArea(t1))*(ScalarType)0.0000001;
dist=std::numeric_limits<ScalarType>::max();
///test each segment of t1 with t0
///keeping the minimum distance
for (int i=0;i<3;i++)
{
vcg::Segment3<ScalarType> edge=vcg::Segment3<ScalarType>(t0.P0(i),t0.P0((i+1)%3));
ScalarType test_dist;
vcg::TriangleSegmentDistance<ScalarType>(t1,edge,test_dist);
if (test_dist<loc_EPSILON)
{
dist=0;
return;
}
if (test_dist<dist)
dist=test_dist;
}
///then viceversa
for (int i=0;i<3;i++)
{
vcg::Segment3<ScalarType> edge=vcg::Segment3<ScalarType>(t1.P0(i),t1.P0((i+1)%3));
ScalarType test_dist;
vcg::TriangleSegmentDistance<ScalarType>(t0,edge,test_dist);
if (test_dist<loc_EPSILON)
{
dist=0;
return;
}
if (test_dist<dist)
dist=test_dist;
}
}
}///end namespace vcg
#endif
|