1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
#ifndef KDTREE_H
#define KDTREE_H
#include "../../point3.h"
#include "../../box3.h"
#include "mlsutils.h"
#include "priorityqueue.h"
#include <vector>
#include <limits>
#include <iostream>
template<typename _DataType>
class ConstDataWrapper
{
public:
typedef _DataType DataType;
inline ConstDataWrapper()
: mpData(0), mStride(0), mSize(0)
{}
inline ConstDataWrapper(const DataType* pData, int size, int stride = sizeof(DataType))
: mpData(reinterpret_cast<const unsigned char*>(pData)), mStride(stride), mSize(size)
{}
inline const DataType& operator[] (int i) const
{
return *reinterpret_cast<const DataType*>(mpData + i*mStride);
}
inline size_t size() const { return mSize; }
protected:
const unsigned char* mpData;
int mStride;
size_t mSize;
};
/**
* This class allows to create a Kd-Tree thought to perform the k-nearest neighbour query
*/
template<typename _Scalar>
class KdTree
{
public:
typedef _Scalar Scalar;
typedef vcg::Point3<Scalar> VectorType;
typedef vcg::Box3<Scalar> AxisAlignedBoxType;
struct Node
{
union {
//standard node
struct {
Scalar splitValue;
unsigned int firstChildId:24;
unsigned int dim:2;
unsigned int leaf:1;
};
//leaf
struct {
unsigned int start;
unsigned short size;
};
};
};
typedef std::vector<Node> NodeList;
// return the protected members which store the nodes and the points list
inline const NodeList& _getNodes(void) { return mNodes; }
inline const std::vector<VectorType>& _getPoints(void) { return mPoints; }
void setMaxNofNeighbors(unsigned int k);
inline int getNofFoundNeighbors(void) { return mNeighborQueue.getNofElements(); }
inline const VectorType& getNeighbor(int i) { return mPoints[ mNeighborQueue.getIndex(i) ]; }
inline unsigned int getNeighborId(int i) { return mIndices[mNeighborQueue.getIndex(i)]; }
inline float getNeighborSquaredDistance(int i) { return mNeighborQueue.getWeight(i); }
public:
KdTree(const ConstDataWrapper<VectorType>& points, unsigned int nofPointsPerCell = 16, unsigned int maxDepth = 64);
~KdTree();
void doQueryK(const VectorType& p);
protected:
// element of the stack
struct QueryNode
{
QueryNode() {}
QueryNode(unsigned int id) : nodeId(id) {}
unsigned int nodeId; // id of the next node
Scalar sq; // squared distance to the next node
};
// used to build the tree: split the subset [start..end[ according to dim and splitValue,
// and returns the index of the first element of the second subset
unsigned int split(int start, int end, unsigned int dim, float splitValue);
void createTree(unsigned int nodeId, unsigned int start, unsigned int end, unsigned int level, unsigned int targetCellsize, unsigned int targetMaxDepth);
protected:
AxisAlignedBoxType mAABB; //BoundingBox
NodeList mNodes; //kd-tree nodes
std::vector<VectorType> mPoints; //points read from the input DataWrapper
std::vector<int> mIndices; //points indices
HeapMaxPriorityQueue<int,Scalar> mNeighborQueue; //used to perform the knn-query
QueryNode mNodeStack[64]; //used in the implementation of the knn-query
};
template<typename Scalar>
KdTree<Scalar>::KdTree(const ConstDataWrapper<VectorType>& points, unsigned int nofPointsPerCell, unsigned int maxDepth)
: mPoints(points.size()), mIndices(points.size())
{
// compute the AABB of the input
mPoints[0] = points[0];
mAABB.Set(mPoints[0]);
for (unsigned int i=1 ; i<mPoints.size() ; ++i)
{
mPoints[i] = points[i];
mIndices[i] = i;
mAABB.Add(mPoints[i]);
}
mNodes.reserve(4*mPoints.size()/nofPointsPerCell);
//first node inserted (no leaf). The others are made by the createTree function (recursively)
mNodes.resize(1);
mNodes.back().leaf = 0;
createTree(0, 0, mPoints.size(), 1, nofPointsPerCell, maxDepth);
}
template<typename Scalar>
KdTree<Scalar>::~KdTree()
{
}
template<typename Scalar>
void KdTree<Scalar>::setMaxNofNeighbors(unsigned int k)
{
mNeighborQueue.setMaxSize(k);
}
/** Performs the kNN query.
*
* This algorithm uses the simple distance to the split plane to prune nodes.
* A more elaborated approach consists to track the closest corner of the cell
* relatively to the current query point. This strategy allows to save about 5%
* of the leaves. However, in practice the slight overhead due to this tracking
* reduces the overall performance.
*
* This algorithm also use a simple stack while a priority queue using the squared
* distances to the cells as a priority values allows to save about 10% of the leaves.
* But, again, priority queue insertions and deletions are quite involved, and therefore
* a simple stack is by far much faster.
*
* The result of the query, the k-nearest neighbors, are internally stored into a stack, where the
* topmost element
*/
template<typename Scalar>
void KdTree<Scalar>::doQueryK(const VectorType& queryPoint)
{
mNeighborQueue.init();
mNeighborQueue.insert(0xffffffff, std::numeric_limits<Scalar>::max());
mNodeStack[0].nodeId = 0;
mNodeStack[0].sq = 0.f;
unsigned int count = 1;
while (count)
{
//we select the last node (AABB) inserted in the stack
QueryNode& qnode = mNodeStack[count-1];
//while going down the tree qnode.nodeId is the nearest sub-tree, otherwise,
//in backtracking, qnode.nodeId is the other sub-tree that will be visited iff
//the actual nearest node is further than the split distance.
Node& node = mNodes[qnode.nodeId];
//if the distance is less than the top of the max-heap, it could be one of the k-nearest neighbours
if (qnode.sq < mNeighborQueue.getTopWeight())
{
//when we arrive to a lef
if (node.leaf)
{
--count; //pop of the leaf
//end is the index of the last element of the leaf in mPoints
unsigned int end = node.start+node.size;
//adding the element of the leaf to the heap
for (unsigned int i=node.start ; i<end ; ++i)
mNeighborQueue.insert(i, vcg::SquaredNorm(queryPoint - mPoints[i]));
}
//otherwise, if we're not on a leaf
else
{
// the new offset is the distance between the searched point and the actual split coordinate
float new_off = queryPoint[node.dim] - node.splitValue;
//left sub-tree
if (new_off < 0.)
{
mNodeStack[count].nodeId = node.firstChildId;
//in the father's nodeId we save the index of the other sub-tree (for backtracking)
qnode.nodeId = node.firstChildId+1;
}
//right sub-tree (same as above)
else
{
mNodeStack[count].nodeId = node.firstChildId+1;
qnode.nodeId = node.firstChildId;
}
//distance is inherited from the father (while descending the tree it's equal to 0)
mNodeStack[count].sq = qnode.sq;
//distance of the father is the squared distance from the split plane
qnode.sq = new_off*new_off;
++count;
}
}
else
{
// pop
--count;
}
}
}
/**
* Split the subarray between start and end in two part, one with the elements less than splitValue,
* the other with the elements greater or equal than splitValue. The elements are compared
* using the "dim" coordinate [0 = x, 1 = y, 2 = z].
*/
template<typename Scalar>
unsigned int KdTree<Scalar>::split(int start, int end, unsigned int dim, float splitValue)
{
int l(start), r(end-1);
for ( ; l<r ; ++l, --r)
{
while (l < end && mPoints[l][dim] < splitValue)
l++;
while (r >= start && mPoints[r][dim] >= splitValue)
r--;
if (l > r)
break;
std::swap(mPoints[l],mPoints[r]);
std::swap(mIndices[l],mIndices[r]);
}
//returns the index of the first element on the second part
return (mPoints[l][dim] < splitValue ? l+1 : l);
}
/** recursively builds the kdtree
*
* The heuristic is the following:
* - if the number of points in the node is lower than targetCellsize then make a leaf
* - else compute the AABB of the points of the node and split it at the middle of
* the largest AABB dimension.
*
* This strategy might look not optimal because it does not explicitly prune empty space,
* unlike more advanced SAH-like techniques used for RT. On the other hand it leads to a shorter tree,
* faster to traverse and our experience shown that in the special case of kNN queries,
* this strategy is indeed more efficient (and much faster to build). Moreover, for volume data
* (e.g., fluid simulation) pruning the empty space is useless.
*
* Actually, storing at each node the exact AABB (we therefore have a binary BVH) allows
* to prune only about 10% of the leaves, but the overhead of this pruning (ball/ABBB intersection)
* is more expensive than the gain it provides and the memory consumption is x4 higher !
*/
template<typename Scalar>
void KdTree<Scalar>::createTree(unsigned int nodeId, unsigned int start, unsigned int end, unsigned int level, unsigned int targetCellSize, unsigned int targetMaxDepth)
{
//select the first node
Node& node = mNodes[nodeId];
AxisAlignedBoxType aabb;
//putting all the points in the bounding box
aabb.Set(mPoints[start]);
for (unsigned int i=start+1 ; i<end ; ++i)
aabb.Add(mPoints[i]);
//bounding box diagonal
VectorType diag = aabb.max - aabb.min;
//the split "dim" is the dimension of the box with the biggest value
unsigned int dim = vcg::MaxCoeffId(diag);
node.dim = dim;
//we divide the bounding box in 2 partitions, considering the average of the "dim" dimension
node.splitValue = Scalar(0.5*(aabb.max[dim] + aabb.min[dim]));
//midId is the index of the first element in the second partition
unsigned int midId = split(start, end, dim, node.splitValue);
node.firstChildId = mNodes.size();
mNodes.resize(mNodes.size()+2);
{
// left child
unsigned int childId = mNodes[nodeId].firstChildId;
Node& child = mNodes[childId];
if (midId - start <= targetCellSize || level>=targetMaxDepth)
{
child.leaf = 1;
child.start = start;
child.size = midId - start;
}
else
{
child.leaf = 0;
createTree(childId, start, midId, level+1, targetCellSize, targetMaxDepth);
}
}
{
// right child
unsigned int childId = mNodes[nodeId].firstChildId+1;
Node& child = mNodes[childId];
if (end - midId <= targetCellSize || level>=targetMaxDepth)
{
child.leaf = 1;
child.start = midId;
child.size = end - midId;
}
else
{
child.leaf = 0;
createTree(childId, midId, end, level+1, targetCellSize, targetMaxDepth);
}
}
}
#endif
|