File: triangle_triangle3.h

package info (click to toggle)
meshlab 1.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 21,096 kB
  • ctags: 33,630
  • sloc: cpp: 224,813; ansic: 8,170; xml: 119; makefile: 80
file content (625 lines) | stat: -rw-r--r-- 20,776 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004                                                \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
/****************************************************************************
  History

$Log: not supported by cvs2svn $
Revision 1.2  2005/10/24 09:19:33  ponchio
Added newline at end of file (tired of stupid warnings...)

Revision 1.1  2004/04/26 12:33:59  ganovelli
first version

****************************************************************************/
#ifndef __VCGLIB_INTERSECTIONTRITRI3
#define __VCGLIB_INTERSECTIONTRITRI3

#include <vcg/space/point3.h>
#include <math.h>


namespace vcg {

/** \addtogroup space */
/*@{*/
/** 
		Triangle/triangle intersection ,based on the algorithm presented in "A Fast Triangle-Triangle Intersection Test",
		Journal of Graphics Tools, 2(2), 1997
 */
#ifndef FABS
#define FABS(x) (T(fabs(x)))  
#endif
#define USE_EPSILON_TEST
#define TRI_TRI_INT_EPSILON 0.000001



#define CROSS(dest,v1,v2){                     \
              dest[0]=v1[1]*v2[2]-v1[2]*v2[1]; \
              dest[1]=v1[2]*v2[0]-v1[0]*v2[2]; \
              dest[2]=v1[0]*v2[1]-v1[1]*v2[0];}

#define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])

#define SUB(dest,v1,v2){         \
            dest[0]=v1[0]-v2[0]; \
            dest[1]=v1[1]-v2[1]; \
            dest[2]=v1[2]-v2[2];}


#define SORT(a,b)       \
             if(a>b)    \
             {          \
               T c; \
               c=a;     \
               a=b;     \
               b=c;     \
             }


#define EDGE_EDGE_TEST(V0,U0,U1)                      \
  Bx=U0[i0]-U1[i0];                                   \
  By=U0[i1]-U1[i1];                                   \
  Cx=V0[i0]-U0[i0];                                   \
  Cy=V0[i1]-U0[i1];                                   \
  f=Ay*Bx-Ax*By;                                      \
  d=By*Cx-Bx*Cy;                                      \
  if((f>0 && d>=0 && d<=f) || (f<0 && d<=0 && d>=f))  \
  {                                                   \
    e=Ax*Cy-Ay*Cx;                                    \
    if(f>0)                                           \
    {                                                 \
      if(e>=0 && e<=f) return 1;                      \
    }                                                 \
    else                                              \
    {                                                 \
      if(e<=0 && e>=f) return 1;                      \
    }                                                 \
  }

#define EDGE_AGAINST_TRI_EDGES(V0,V1,U0,U1,U2) \
{                                              \
  T Ax,Ay,Bx,By,Cx,Cy,e,d,f;               \
  Ax=V1[i0]-V0[i0];                            \
  Ay=V1[i1]-V0[i1];                            \
  /* test edge U0,U1 against V0,V1 */          \
  EDGE_EDGE_TEST(V0,U0,U1);                    \
  /* test edge U1,U2 against V0,V1 */          \
  EDGE_EDGE_TEST(V0,U1,U2);                    \
  /* test edge U2,U1 against V0,V1 */          \
  EDGE_EDGE_TEST(V0,U2,U0);                    \
}

#define POINT_IN_TRI(V0,U0,U1,U2)           \
{                                           \
  T a,b,c,d0,d1,d2;                     \
  /* is T1 completly inside T2? */          \
  /* check if V0 is inside tri(U0,U1,U2) */ \
  a=U1[i1]-U0[i1];                          \
  b=-(U1[i0]-U0[i0]);                       \
  c=-a*U0[i0]-b*U0[i1];                     \
  d0=a*V0[i0]+b*V0[i1]+c;                   \
                                            \
  a=U2[i1]-U1[i1];                          \
  b=-(U2[i0]-U1[i0]);                       \
  c=-a*U1[i0]-b*U1[i1];                     \
  d1=a*V0[i0]+b*V0[i1]+c;                   \
                                            \
  a=U0[i1]-U2[i1];                          \
  b=-(U0[i0]-U2[i0]);                       \
  c=-a*U2[i0]-b*U2[i1];                     \
  d2=a*V0[i0]+b*V0[i1]+c;                   \
  if(d0*d1>0.0)                             \
  {                                         \
    if(d0*d2>0.0) return 1;                 \
  }                                         \
}

template<class T>
/** CHeck two triangles for coplanarity
	@param N
	@param V0 A vertex of the first triangle
	@param V1 A vertex of the first triangle
	@param V2 A vertex of the first triangle
	@param U0 A vertex of the second triangle
	@param U1 A vertex of the second triangle
	@param U2 A vertex of the second triangle
	@return true se due triangoli sono cooplanari, false altrimenti

*/
bool coplanar_tri_tri(const Point3<T> N, const Point3<T> V0, const Point3<T> V1,const Point3<T> V2,
										 const Point3<T> U0, const Point3<T> U1,const Point3<T> U2)
{
   T A[3];
   short i0,i1;
   /* first project onto an axis-aligned plane, that maximizes the area */
   /* of the triangles, compute indices: i0,i1. */
   A[0]=FABS(N[0]);
   A[1]=FABS(N[1]);
   A[2]=FABS(N[2]);
   if(A[0]>A[1])
   {
      if(A[0]>A[2])
      {
          i0=1;      /* A[0] is greatest */
          i1=2;
      }
      else
      {
          i0=0;      /* A[2] is greatest */
          i1=1;
      }
   }
   else   /* A[0]<=A[1] */
   {
      if(A[2]>A[1])
      {
          i0=0;      /* A[2] is greatest */
          i1=1;
      }
      else
      {
          i0=0;      /* A[1] is greatest */
          i1=2;
      }
    }

    /* test all edges of triangle 1 against the edges of triangle 2 */
    EDGE_AGAINST_TRI_EDGES(V0,V1,U0,U1,U2);
    EDGE_AGAINST_TRI_EDGES(V1,V2,U0,U1,U2);
    EDGE_AGAINST_TRI_EDGES(V2,V0,U0,U1,U2);

    /* finally, test if tri1 is totally contained in tri2 or vice versa */
    POINT_IN_TRI(V0,U0,U1,U2);
    POINT_IN_TRI(U0,V0,V1,V2);

    return 0;
}



#define NEWCOMPUTE_INTERVALS(VV0,VV1,VV2,D0,D1,D2,D0D1,D0D2,A,B,C,X0,X1) \
{ \
        if(D0D1>0.0f) \
        { \
                /* here we know that D0D2<=0.0 */ \
            /* that is D0, D1 are on the same side, D2 on the other or on the plane */ \
                A=VV2; B=(VV0-VV2)*D2; C=(VV1-VV2)*D2; X0=D2-D0; X1=D2-D1; \
        } \
        else if(D0D2>0.0f)\
        { \
                /* here we know that d0d1<=0.0 */ \
            A=VV1; B=(VV0-VV1)*D1; C=(VV2-VV1)*D1; X0=D1-D0; X1=D1-D2; \
        } \
        else if(D1*D2>0.0f || D0!=0.0f) \
        { \
                /* here we know that d0d1<=0.0 or that D0!=0.0 */ \
                A=VV0; B=(VV1-VV0)*D0; C=(VV2-VV0)*D0; X0=D0-D1; X1=D0-D2; \
        } \
        else if(D1!=0.0f) \
        { \
                A=VV1; B=(VV0-VV1)*D1; C=(VV2-VV1)*D1; X0=D1-D0; X1=D1-D2; \
        } \
        else if(D2!=0.0f) \
        { \
                A=VV2; B=(VV0-VV2)*D2; C=(VV1-VV2)*D2; X0=D2-D0; X1=D2-D1; \
        } \
        else \
        { \
                /* triangles are coplanar */ \
                return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2); \
        } \
}


template<class T>
/* 
	@param V0 A vertex of the first triangle
	@param V1 A vertex of the first triangle
	@param V2 A vertex of the first triangle
	@param U0 A vertex of the second triangle
	@param U1 A vertex of the second triangle
	@param U2 A vertex of the second triangle
	@return true if the two triangles interesect
*/
bool NoDivTriTriIsect(const Point3<T> V0,const Point3<T> V1,const Point3<T> V2,
                      const Point3<T> U0,const Point3<T> U1,const Point3<T> U2)
{
  Point3<T> E1,E2;
  Point3<T> N1,N2;
	T d1,d2;
  T du0,du1,du2,dv0,dv1,dv2;
  Point3<T> D;
  T isect1[2], isect2[2];
  T du0du1,du0du2,dv0dv1,dv0dv2;
  short index;
  T vp0,vp1,vp2;
  T up0,up1,up2;
  T bb,cc,max;

  /* compute plane equation of triangle(V0,V1,V2) */
  SUB(E1,V1,V0);
  SUB(E2,V2,V0);
  CROSS(N1,E1,E2);
	N1.Normalize(); // aggiunto rispetto al codice orig.
  d1=-DOT(N1,V0);
  /* plane equation 1: N1.X+d1=0 */

  /* put U0,U1,U2 into plane equation 1 to compute signed distances to the plane*/
  du0=DOT(N1,U0)+d1;
  du1=DOT(N1,U1)+d1;
  du2=DOT(N1,U2)+d1;

  /* coplanarity robustness check */
#ifdef USE_TRI_TRI_INT_EPSILON_TEST
  if(FABS(du0)<TRI_TRI_INT_EPSILON) du0=0.0;
  if(FABS(du1)<TRI_TRI_INT_EPSILON) du1=0.0;
  if(FABS(du2)<TRI_TRI_INT_EPSILON) du2=0.0;
#endif
  du0du1=du0*du1;
  du0du2=du0*du2;

  if(du0du1>0.0f && du0du2>0.0f) /* same sign on all of them + not equal 0 ? */
    return 0;                    /* no intersection occurs */

  /* compute plane of triangle (U0,U1,U2) */
  SUB(E1,U1,U0);
  SUB(E2,U2,U0);
  CROSS(N2,E1,E2);
  d2=-DOT(N2,U0);
  /* plane equation 2: N2.X+d2=0 */

  /* put V0,V1,V2 into plane equation 2 */
  dv0=DOT(N2,V0)+d2;
  dv1=DOT(N2,V1)+d2;
  dv2=DOT(N2,V2)+d2;

#ifdef USE_TRI_TRI_INT_EPSILON_TEST
  if(FABS(dv0)<TRI_TRI_INT_EPSILON) dv0=0.0;
  if(FABS(dv1)<TRI_TRI_INT_EPSILON) dv1=0.0;
  if(FABS(dv2)<TRI_TRI_INT_EPSILON) dv2=0.0;
#endif

  dv0dv1=dv0*dv1;
  dv0dv2=dv0*dv2;

  if(dv0dv1>0.0f && dv0dv2>0.0f) /* same sign on all of them + not equal 0 ? */
    return 0;                    /* no intersection occurs */

  /* compute direction of intersection line */
  CROSS(D,N1,N2);

  /* compute and index to the largest component of D */
  max=(T)FABS(D[0]);
  index=0;
  bb=(T)FABS(D[1]);
  cc=(T)FABS(D[2]);
  if(bb>max) max=bb,index=1;
  if(cc>max) max=cc,index=2;

  /* this is the simplified projection onto L*/
  vp0=V0[index];
  vp1=V1[index];
  vp2=V2[index];

  up0=U0[index];
  up1=U1[index];
  up2=U2[index];

  /* compute interval for triangle 1 */
  T a,b,c,x0,x1;
  NEWCOMPUTE_INTERVALS(vp0,vp1,vp2,dv0,dv1,dv2,dv0dv1,dv0dv2,a,b,c,x0,x1);

  /* compute interval for triangle 2 */
  T d,e,f,y0,y1;
  NEWCOMPUTE_INTERVALS(up0,up1,up2,du0,du1,du2,du0du1,du0du2,d,e,f,y0,y1);

  T xx,yy,xxyy,tmp;
  xx=x0*x1;
  yy=y0*y1;
  xxyy=xx*yy;

  tmp=a*xxyy;
  isect1[0]=tmp+b*x1*yy;
  isect1[1]=tmp+c*x0*yy;

  tmp=d*xxyy;
  isect2[0]=tmp+e*xx*y1;
  isect2[1]=tmp+f*xx*y0;

  SORT(isect1[0],isect1[1]);
  SORT(isect2[0],isect2[1]);

  if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return 0;
  return 1;
}



#define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
#define ADD(dest,v1,v2) dest[0]=v1[0]+v2[0]; dest[1]=v1[1]+v2[1]; dest[2]=v1[2]+v2[2]; 
#define MULT(dest,v,factor) dest[0]=factor*v[0]; dest[1]=factor*v[1]; dest[2]=factor*v[2];
#define SET(dest,src) dest[0]=src[0]; dest[1]=src[1]; dest[2]=src[2]; 
/* sort so that a<=b */
#define SORT2(a,b,smallest)       \
             if(a>b)       \
             {             \
               float c;    \
               c=a;        \
               a=b;        \
               b=c;        \
               smallest=1; \
             }             \
             else smallest=0;

template <class T>
inline void isect2(Point3<T> VTX0,Point3<T> VTX1,Point3<T> VTX2,float VV0,float VV1,float VV2,
	    float D0,float D1,float D2,float *isect0,float *isect1,Point3<T> &isectpoint0,Point3<T> &isectpoint1) 
{
  float tmp=D0/(D0-D1);          
  float diff[3];
  *isect0=VV0+(VV1-VV0)*tmp;         
  SUB(diff,VTX1,VTX0);              
  MULT(diff,diff,tmp);               
  ADD(isectpoint0,diff,VTX0);        
  tmp=D0/(D0-D2);                    
  *isect1=VV0+(VV2-VV0)*tmp;          
  SUB(diff,VTX2,VTX0);                   
  MULT(diff,diff,tmp);                 
  ADD(isectpoint1,VTX0,diff);          
}

template <class T>
inline int compute_intervals_isectline(Point3<T> VERT0,Point3<T> VERT1,Point3<T> VERT2,
				       float VV0,float VV1,float VV2,float D0,float D1,float D2,
				       float D0D1,float D0D2,float *isect0,float *isect1,
				       Point3<T> & isectpoint0, Point3<T> & isectpoint1)
{
  if(D0D1>0.0f)                                        
  {                                                    
    /* here we know that D0D2<=0.0 */                  
    /* that is D0, D1 are on the same side, D2 on the other or on the plane */
    isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,isect0,isect1,isectpoint0,isectpoint1);
  } 
  else if(D0D2>0.0f)                                   
    {                                                   
    /* here we know that d0d1<=0.0 */             
    isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,isect0,isect1,isectpoint0,isectpoint1);
  }                                                  
  else if(D1*D2>0.0f || D0!=0.0f)   
  {                                   
    /* here we know that d0d1<=0.0 or that D0!=0.0 */
    isect2(VERT0,VERT1,VERT2,VV0,VV1,VV2,D0,D1,D2,isect0,isect1,isectpoint0,isectpoint1);   
  }                                                  
  else if(D1!=0.0f)                                  
  {                                               
    isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,isect0,isect1,isectpoint0,isectpoint1); 
  }                                         
  else if(D2!=0.0f)                                  
  {                                                   
    isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,isect0,isect1,isectpoint0,isectpoint1);     
  }                                                 
  else                                               
  {                                                   
    /* triangles are coplanar */    
    return 1;
  }
  return 0;
}

#define COMPUTE_INTERVALS_ISECTLINE(VERT0,VERT1,VERT2,VV0,VV1,VV2,D0,D1,D2,D0D1,D0D2,isect0,isect1,isectpoint0,isectpoint1) \
  if(D0D1>0.0f)                                         \
  {                                                     \
    /* here we know that D0D2<=0.0 */                   \
    /* that is D0, D1 are on the same side, D2 on the other or on the plane */ \
    isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,&isect0,&isect1,isectpoint0,isectpoint1);          \
  }                                                     
#if 0
  else if(D0D2>0.0f)                                    \
  {                                                     \
    /* here we know that d0d1<=0.0 */                   \
    isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,&isect0,&isect1,isectpoint0,isectpoint1);          \
  }                                                     \
  else if(D1*D2>0.0f || D0!=0.0f)                       \
  {                                                     \
    /* here we know that d0d1<=0.0 or that D0!=0.0 */   \
    isect2(VERT0,VERT1,VERT2,VV0,VV1,VV2,D0,D1,D2,&isect0,&isect1,isectpoint0,isectpoint1);          \
  }                                                     \
  else if(D1!=0.0f)                                     \
  {                                                     \
    isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,&isect0,&isect1,isectpoint0,isectpoint1);          \
  }                                                     \
  else if(D2!=0.0f)                                     \
  {                                                     \
    isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,&isect0,&isect1,isectpoint0,isectpoint1);          \
  }                                                     \
  else                                                  \
  {                                                     \
    /* triangles are coplanar */                        \
    coplanar=1;                                         \
    return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2);      \
  }
#endif

template <class T>
bool tri_tri_intersect_with_isectline(	Point3<T> V0,Point3<T> V1,Point3<T> V2,
										Point3<T> U0,Point3<T> U1,Point3<T> U2,bool &coplanar,
										Point3<T> &isectpt1,Point3<T> &isectpt2)
{
  Point3<T> E1,E2;
  Point3<T> N1,N2;
  T d1,d2;
  float du0,du1,du2,dv0,dv1,dv2;
  Point3<T> D;
  float isect1[2], isect2[2];
  Point3<T> isectpointA1,isectpointA2;
  Point3<T> isectpointB1,isectpointB2;
  float du0du1,du0du2,dv0dv1,dv0dv2;
  short index;
  float vp0,vp1,vp2;
  float up0,up1,up2;
  float b,c,max;

  Point3<T> diff;
  int smallest1,smallest2;
  
  /* compute plane equation of triangle(V0,V1,V2) */
  SUB(E1,V1,V0);
  SUB(E2,V2,V0);
  CROSS(N1,E1,E2);
  d1=-DOT(N1,V0);
  /* plane equation 1: N1.X+d1=0 */

  /* put U0,U1,U2 into plane equation 1 to compute signed distances to the plane*/
  du0=DOT(N1,U0)+d1;
  du1=DOT(N1,U1)+d1;
  du2=DOT(N1,U2)+d1;

  /* coplanarity robustness check */
#ifdef USE_EPSILON_TEST
  if(fabs(du0)<TRI_TRI_INT_EPSILON) du0=0.0;
  if(fabs(du1)<TRI_TRI_INT_EPSILON) du1=0.0;
  if(fabs(du2)<TRI_TRI_INT_EPSILON) du2=0.0;
#endif
  du0du1=du0*du1;
  du0du2=du0*du2;

  if(du0du1>0.0f && du0du2>0.0f) /* same sign on all of them + not equal 0 ? */
    return 0;                    /* no intersection occurs */

  /* compute plane of triangle (U0,U1,U2) */
  SUB(E1,U1,U0);
  SUB(E2,U2,U0);
  CROSS(N2,E1,E2);
  d2=-DOT(N2,U0);
  /* plane equation 2: N2.X+d2=0 */

  /* put V0,V1,V2 into plane equation 2 */
  dv0=DOT(N2,V0)+d2;
  dv1=DOT(N2,V1)+d2;
  dv2=DOT(N2,V2)+d2;

#ifdef USE_EPSILON_TEST
  if(fabs(dv0)<TRI_TRI_INT_EPSILON) dv0=0.0;
  if(fabs(dv1)<TRI_TRI_INT_EPSILON) dv1=0.0;
  if(fabs(dv2)<TRI_TRI_INT_EPSILON) dv2=0.0;
#endif

  dv0dv1=dv0*dv1;
  dv0dv2=dv0*dv2;
        
  if(dv0dv1>0.0f && dv0dv2>0.0f) /* same sign on all of them + not equal 0 ? */
    return 0;                    /* no intersection occurs */

  /* compute direction of intersection line */
  CROSS(D,N1,N2);

  /* compute and index to the largest component of D */
  max=fabs(D[0]);
  index=0;
  b=fabs(D[1]);
  c=fabs(D[2]);
  if(b>max) max=b,index=1;
  if(c>max) max=c,index=2;

  /* this is the simplified projection onto L*/
  vp0=V0[index];
  vp1=V1[index];
  vp2=V2[index];
  
  up0=U0[index];
  up1=U1[index];
  up2=U2[index];

  /* compute interval for triangle 1 */
  coplanar=compute_intervals_isectline(V0,V1,V2,vp0,vp1,vp2,dv0,dv1,dv2,
				       dv0dv1,dv0dv2,&isect1[0],&isect1[1],isectpointA1,isectpointA2);
  if(coplanar) return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2);     


  /* compute interval for triangle 2 */
  compute_intervals_isectline(U0,U1,U2,up0,up1,up2,du0,du1,du2,
			      du0du1,du0du2,&isect2[0],&isect2[1],isectpointB1,isectpointB2);

  SORT2(isect1[0],isect1[1],smallest1);
  SORT2(isect2[0],isect2[1],smallest2);

  if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return 0;

  /* at this point, we know that the triangles intersect */

  if(isect2[0]<isect1[0])
  {
    if(smallest1==0) { SET(isectpt1,isectpointA1); }
    else { SET(isectpt1,isectpointA2); }

    if(isect2[1]<isect1[1])
    {
      if(smallest2==0) { SET(isectpt2,isectpointB2); }
      else { SET(isectpt2,isectpointB1); }
    }
    else
    {
      if(smallest1==0) { SET(isectpt2,isectpointA2); }
      else { SET(isectpt2,isectpointA1); }
    }
  }
  else
  {
    if(smallest2==0) { SET(isectpt1,isectpointB1); }
    else { SET(isectpt1,isectpointB2); }

    if(isect2[1]>isect1[1])
    {
      if(smallest1==0) { SET(isectpt2,isectpointA2); }
      else { SET(isectpt2,isectpointA1); }      
    }
    else
    {
      if(smallest2==0) { SET(isectpt2,isectpointB2); }
      else { SET(isectpt2,isectpointB1); } 
    }
  }
  return 1;
}


} // end namespace

#undef FABS
#undef USE_EPSILON_TEST
#undef TRI_TRI_INT_EPSILON 
#undef CROSS
#undef DOT
#undef SUB
#undef SORT 
#undef SORT2 
#undef ADD
#undef MULT
#undef SET
#undef EDGE_EDGE_TEST
#undef EDGE_AGAINST_TRI_EDGE
#undef POINT_IN_TRI
#undef COMPUTE_INTERVALS_ISECTLINE
#undef NEWCOMPUTE_INTERVALS
#endif