1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef VCG_USE_EIGEN
#include "deprecated_point4.h"
#else
#ifndef __VCGLIB_POINT4
#define __VCGLIB_POINT4
#include "../math/eigen.h"
namespace vcg{
template<typename Scalar> class Point4;
}
namespace Eigen {
template<typename Scalar> struct ei_traits<vcg::Point4<Scalar> > : ei_traits<Eigen::Matrix<Scalar,4,1> > {};
template<typename XprType> struct ei_to_vcgtype<XprType,4,1,0,4,1>
{ typedef vcg::Point4<typename XprType::Scalar> type; };
}
namespace vcg {
/** \addtogroup space */
/*@{*/
/**
The templated class for representing a point in 4D space.
The class is templated over the ScalarType class that is used to represent coordinates.
All the usual operator (* + - ...) are defined.
*/
template <class T> class Point4 : public Eigen::Matrix<T,4,1>
{
//----------------------------------------
// template typedef part
// use it as follow: typename Point4<S>::Type instead of simply Point4<S>
//----------------------------------------
public:
typedef Eigen::Matrix<T,4,1> Type;
//----------------------------------------
// inheritence part
//----------------------------------------
private:
typedef Eigen::Matrix<T,4,1> _Base;
public:
using _Base::coeff;
using _Base::coeffRef;
using _Base::setZero;
using _Base::data;
_EIGEN_GENERIC_PUBLIC_INTERFACE(Point4,_Base);
typedef Scalar ScalarType;
VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Point4)
inline Point4() : Base() {}
inline Point4( const T nx, const T ny, const T nz , const T nw ) : Base(nx,ny,nz,nw) {}
inline Point4(const T p[4]) : Base(p) {}
inline Point4(const Point4& p) : Base(p) {}
template<typename OtherDerived>
inline Point4(const Eigen::MatrixBase<OtherDerived>& other) : Base(other) {}
inline Point4 VectProd ( const Point4 &x, const Point4 &z ) const
{
Point4 res;
const Point4 &y = *this;
res[0] = y[1]*x[2]*z[3]-y[1]*x[3]*z[2]-x[1]*y[2]*z[3]+
x[1]*y[3]*z[2]+z[1]*y[2]*x[3]-z[1]*y[3]*x[2];
res[1] = y[0]*x[3]*z[2]-z[0]*y[2]*x[3]-y[0]*x[2]*
z[3]+z[0]*y[3]*x[2]+x[0]*y[2]*z[3]-x[0]*y[3]*z[2];
res[2] = -y[0]*z[1]*x[3]+x[0]*z[1]*y[3]+y[0]*x[1]*
z[3]-x[0]*y[1]*z[3]-z[0]*x[1]*y[3]+z[0]*y[1]*x[3];
res[3] = -z[0]*y[1]*x[2]-y[0]*x[1]*z[2]+x[0]*y[1]*
z[2]+y[0]*z[1]*x[2]-x[0]*z[1]*y[2]+z[0]*x[1]*y[2];
return res;
}
//@{
/** @name Dot products
**/
inline Point4 operator ^ ( const Point4& p ) const
{
assert(0 && "not defined by two vectors (only put for metaprogramming)");
return Point4();
}
/// slower version, more stable (double precision only)
T StableDot ( const Point4<T> & p ) const
{
T k0=data()[0]*p.data()[0], k1=data()[1]*p.data()[1], k2=data()[2]*p.data()[2], k3=data()[3]*p.data()[3];
int exp0,exp1,exp2,exp3;
frexp( double(k0), &exp0 );frexp( double(k1), &exp1 );
frexp( double(k2), &exp2 );frexp( double(k3), &exp3 );
if (exp0>exp1) { math::Swap(k0,k1); math::Swap(exp0,exp1); }
if (exp2>exp3) { math::Swap(k2,k3); math::Swap(exp2,exp3); }
if (exp0>exp2) { math::Swap(k0,k2); math::Swap(exp0,exp2); }
if (exp1>exp3) { math::Swap(k1,k3); math::Swap(exp1,exp3); }
if (exp2>exp3) { math::Swap(k2,k3); math::Swap(exp2,exp3); }
return ( (k0 + k1) + k2 ) +k3;
}
//@}
}; // end class definition
typedef Point4<short> Point4s;
typedef Point4<int> Point4i;
typedef Point4<float> Point4f;
typedef Point4<double> Point4d;
// typedef Eigen::Matrix<short ,4,1> Point4s;
// typedef Eigen::Matrix<int ,4,1> Point4i;
// typedef Eigen::Matrix<float ,4,1> Point4f;
// typedef Eigen::Matrix<double,4,1> Point4d;
// typedef Eigen::Matrix<short ,4,1> Vector4s;
// typedef Eigen::Matrix<int ,4,1> Vector4i;
// typedef Eigen::Matrix<float ,4,1> Vector4f;
// typedef Eigen::Matrix<double,4,1> Vector4d;
/// slower version of dot product, more stable (double precision only)
template<class T>
double StableDot ( Point4<T> const & p0, Point4<T> const & p1 )
{
return p0.StableDot(p1);
}
/*@}*/
} // end namespace
#endif
#endif
|