File: clean.h

package info (click to toggle)
meshlab 1.3.2+dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: buster, sid
  • size: 21,096 kB
  • ctags: 33,630
  • sloc: cpp: 224,813; ansic: 8,170; xml: 119; makefile: 80
file content (1776 lines) | stat: -rw-r--r-- 59,680 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004                                                \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/

#ifndef __VCGLIB_CLEAN
#define __VCGLIB_CLEAN

// Standard headers
#include <map>
#include <algorithm>
#include <stack>
#include <utility>

// VCG headers
#include <vcg/simplex/face/pos.h>
#include <vcg/simplex/face/topology.h>
#include <vcg/complex/complex.h>
#include <vcg/complex/algorithms/closest.h>
#include <vcg/space/index/grid_static_ptr.h>
#include <vcg/space/index/spatial_hashing.h>
#include <vcg/complex/allocate.h>
#include <vcg/complex/algorithms/update/selection.h>
#include <vcg/complex/algorithms/update/flag.h>
#include <vcg/complex/algorithms/update/normal.h>
#include <vcg/complex/algorithms/update/topology.h>
#include <vcg/space/triangle3.h>


namespace vcg {
	namespace tri{
template <class ConnectedMeshType>
class ConnectedIterator
{
  	public:
			typedef ConnectedMeshType MeshType; 
			typedef typename MeshType::VertexType     VertexType;
			typedef typename MeshType::VertexPointer  VertexPointer;
			typedef typename MeshType::VertexIterator VertexIterator;
			typedef	typename MeshType::ScalarType			ScalarType;
			typedef typename MeshType::FaceType       FaceType;
			typedef typename MeshType::FacePointer    FacePointer;
			typedef typename MeshType::FaceIterator   FaceIterator;
			typedef typename MeshType::ConstFaceIterator   ConstFaceIterator;
			typedef typename MeshType::FaceContainer  FaceContainer;


public:
 void operator ++()
 {
	FacePointer fpt=sf.top();
  sf.pop();
	for(int j=0;j<3;++j)
		if( !face::IsBorder(*fpt,j) )
			{
				FacePointer l=fpt->FFp(j);
        if( !tri::IsMarked(*mp,l) )
				{
          tri::Mark(*mp,l);
					sf.push(l);
				}
			}
}

 void start(MeshType &m, FacePointer p)
 {
  mp=&m;
  while(!sf.empty()) sf.pop();
  UnMarkAll(m);
  assert(p);
  assert(!p->IsD());
  tri::Mark(m,p);
	sf.push(p);
 }
 bool completed() {
   return sf.empty();
 }

 FacePointer operator *() 
 {
   return sf.top();
 }
private:
  std::stack<FacePointer> sf;
  MeshType *mp;
};


		/// 
		/** \addtogroup trimesh */
		/*@{*/
    /// Class of static functions to clean//restore meshs.
		template <class CleanMeshType>
		class Clean
		{

		public:
			typedef CleanMeshType MeshType; 
			typedef typename MeshType::VertexType     VertexType;
			typedef typename MeshType::VertexPointer  VertexPointer;
			typedef typename MeshType::VertexIterator VertexIterator;
			typedef typename MeshType::ConstVertexIterator ConstVertexIterator;
		  typedef typename MeshType::EdgeIterator   EdgeIterator;
		  typedef typename MeshType::EdgePointer  EdgePointer;
			typedef	typename MeshType::ScalarType			ScalarType;
			typedef typename MeshType::FaceType       FaceType;
			typedef typename MeshType::FacePointer    FacePointer;
			typedef typename MeshType::FaceIterator   FaceIterator;
			typedef typename MeshType::ConstFaceIterator   ConstFaceIterator;
			typedef typename MeshType::FaceContainer  FaceContainer;
      typedef typename vcg::Box3<ScalarType>  Box3Type;

			typedef GridStaticPtr<FaceType, ScalarType > TriMeshGrid;
			typedef Point3<ScalarType> Point3x;

			//TriMeshGrid   gM;
			//FaceIterator fi;
			//FaceIterator gi;
			//vcg::face::Pos<FaceType> he;
			//vcg::face::Pos<FaceType> hei;

			/* classe di confronto per l'algoritmo di eliminazione vertici duplicati*/
			class RemoveDuplicateVert_Compare{
			public:
				inline bool operator()(VertexPointer const &a, VertexPointer const &b)
				{
					return (*a).cP() < (*b).cP();
				}
			};


			/** This function removes all duplicate vertices of the mesh by looking only at their spatial positions. 
			Note that it does not update any topology relation that could be affected by this like the VT or TT relation.
			the reason this function is usually performed BEFORE building any topology information.
			*/
			static int RemoveDuplicateVertex( MeshType & m, bool RemoveDegenerateFlag=true)    // V1.0
			{
				if(m.vert.size()==0 || m.vn==0) return 0;

				std::map<VertexPointer, VertexPointer> mp;
				size_t i,j;
				VertexIterator vi; 
				int deleted=0;
				int k=0;
				size_t num_vert = m.vert.size();
				std::vector<VertexPointer> perm(num_vert);
				for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi, ++k)
					perm[k] = &(*vi);

				RemoveDuplicateVert_Compare c_obj;

				std::sort(perm.begin(),perm.end(),c_obj);

				j = 0;
				i = j;
				mp[perm[i]] = perm[j];
				++i;
				for(;i!=num_vert;)
				{
					if( (! (*perm[i]).IsD()) && 
						(! (*perm[j]).IsD()) && 
						(*perm[i]).P() == (*perm[j]).cP() )
					{
						VertexPointer t = perm[i];
						mp[perm[i]] = perm[j];
						++i;
						Allocator<MeshType>::DeleteVertex(m,*t);
						deleted++;
					}
					else
					{
						j = i;
						++i;
					}
				}

        for(FaceIterator fi = m.face.begin(); fi!=m.face.end(); ++fi)
					if( !(*fi).IsD() )
						for(k = 0; k < 3; ++k)
							if( mp.find( (typename MeshType::VertexPointer)(*fi).V(k) ) != mp.end() )
							{
								(*fi).V(k) = &*mp[ (*fi).V(k) ];
							}


        for(EdgeIterator ei = m.edge.begin(); ei!=m.edge.end(); ++ei)
          if( !(*ei).IsD() )
            for(k = 0; k < 2; ++k)
              if( mp.find( (typename MeshType::VertexPointer)(*ei).V(k) ) != mp.end() )
              {
                (*ei).V(k) = &*mp[ (*ei).V(k) ];
              }
        if(RemoveDegenerateFlag) RemoveDegenerateFace(m);
        if(RemoveDegenerateFlag && m.en>0) {
          RemoveDegenerateEdge(m);
          RemoveDuplicateEdge(m);
        }
				return deleted;
      }

			class SortedPair
				  {
				  public:
				   SortedPair() {}
					   SortedPair(unsigned int v0, unsigned int v1, EdgePointer _fp)
					  {
						  v[0]=v0;v[1]=v1;
						  fp=_fp;
						  if(v[0]>v[1]) std::swap(v[0],v[1]);
					  }
					  bool operator < (const SortedPair &p) const
					  {
						  return (v[1]!=p.v[1])?(v[1]<p.v[1]):
									 (v[0]<p.v[0]);				}

					  bool operator == (const SortedPair &s) const
					  {
					   if( (v[0]==s.v[0]) && (v[1]==s.v[1]) ) return true;
					   return false;
					  }

					  unsigned int v[2];
					  EdgePointer fp;
				  };
      class SortedTriple
			{ 
			public:
			 SortedTriple() {}
				 SortedTriple(unsigned int v0, unsigned int v1, unsigned int v2,FacePointer _fp)
				{
					v[0]=v0;v[1]=v1;v[2]=v2;
					fp=_fp;
					std::sort(v,v+3);
				}
				bool operator < (const SortedTriple &p) const 
				{
					return (v[2]!=p.v[2])?(v[2]<p.v[2]):
							(v[1]!=p.v[1])?(v[1]<p.v[1]):
						       (v[0]<p.v[0]);				}

				bool operator == (const SortedTriple &s) const 
				{
				 if( (v[0]==s.v[0]) && (v[1]==s.v[1]) && (v[2]==s.v[2]) ) return true;
				 return false;
				}

				unsigned int v[3];
				FacePointer fp;
			};
			 
			
			/** This function removes all duplicate faces of the mesh by looking only at their vertex reference. 
			So it should be called after unification of vertices.
			Note that it does not update any topology relation that could be affected by this like the VT or TT relation.
			the reason this function is usually performed BEFORE building any topology information.
			*/
			static int RemoveDuplicateFace( MeshType & m)    // V1.0
			{
				FaceIterator fi;
				std::vector<SortedTriple> fvec;
				for(fi=m.face.begin();fi!=m.face.end();++fi)
					if(!(*fi).IsD())
						{
						 fvec.push_back(SortedTriple(	tri::Index(m,(*fi).V(0)),  
																					tri::Index(m,(*fi).V(1)),  
																					tri::Index(m,(*fi).V(2)),  
																																										&*fi));
						}
				assert (size_t(m.fn) == fvec.size());
				//for(int i=0;i<fvec.size();++i) qDebug("fvec[%i] = (%i %i %i)(%i)",i,fvec[i].v[0],fvec[i].v[1],fvec[i].v[2],tri::Index(m,fvec[i].fp));
				std::sort(fvec.begin(),fvec.end());
				int total=0;
				for(int i=0;i<int(fvec.size())-1;++i)
				{
					if(fvec[i]==fvec[i+1])
					{ 
						total++;
						tri::Allocator<MeshType>::DeleteFace(m, *(fvec[i].fp) );
						//qDebug("deleting face %i (pos in fvec %i)",tri::Index(m,fvec[i].fp) ,i);
					}
				}
				return total;
			}

			/** This function removes all duplicate faces of the mesh by looking only at their vertex reference.
			So it should be called after unification of vertices.
			Note that it does not update any topology relation that could be affected by this like the VT or TT relation.
			the reason this function is usually performed BEFORE building any topology information.
			*/
			static int RemoveDuplicateEdge( MeshType & m)    // V1.0
			{
			  assert(m.fn == 0 && m.en >0); // just to be sure we are using an edge mesh...
			  std::vector<SortedPair> eVec;
			  for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
				if(!(*ei).IsD())
				{
				  eVec.push_back(SortedPair(	tri::Index(m,(*ei).V(0)), tri::Index(m,(*ei).V(1)), &*ei));
				}
			  assert (size_t(m.en) == eVec.size());
			  //for(int i=0;i<fvec.size();++i) qDebug("fvec[%i] = (%i %i %i)(%i)",i,fvec[i].v[0],fvec[i].v[1],fvec[i].v[2],tri::Index(m,fvec[i].fp));
			  std::sort(eVec.begin(),eVec.end());
			  int total=0;
			  for(int i=0;i<int(eVec.size())-1;++i)
			  {
				if(eVec[i]==eVec[i+1])
				{
				  total++;
				  tri::Allocator<MeshType>::DeleteEdge(m, *(eVec[i].fp) );
				  //qDebug("deleting face %i (pos in fvec %i)",tri::Index(m,fvec[i].fp) ,i);
				}
			  }
			  return total;
			}
			static int CountUnreferencedVertex( MeshType& m)
			{
			  return RemoveUnreferencedVertex(m,false);
			}


			/** This function removes that are not referenced by any face. The function updates the vn counter.
			@param m The mesh
			@return The number of removed vertices
			*/
			static int RemoveUnreferencedVertex( MeshType& m, bool DeleteVertexFlag=true)   // V1.0
			{
				FaceIterator fi;
				EdgeIterator ei;
				VertexIterator vi;
				int referredBit = VertexType::NewBitFlag();

				int j;
				int deleted = 0;

				for(vi=m.vert.begin();vi!=m.vert.end();++vi)
					(*vi).ClearUserBit(referredBit);

				for(fi=m.face.begin();fi!=m.face.end();++fi)
					if( !(*fi).IsD() )
						for(j=0;j<3;++j)
							(*fi).V(j)->SetUserBit(referredBit);

				for(ei=m.edge.begin();ei!=m.edge.end();++ei)
					if( !(*ei).IsD() ){
					  (*ei).V(0)->SetUserBit(referredBit);
					  (*ei).V(1)->SetUserBit(referredBit);
					}

				for(vi=m.vert.begin();vi!=m.vert.end();++vi)
					if( (!(*vi).IsD()) && (!(*vi).IsUserBit(referredBit)))
					{
						if(DeleteVertexFlag) Allocator<MeshType>::DeleteVertex(m,*vi);
						++deleted;
					}
				VertexType::DeleteBitFlag(referredBit);
				return deleted;
			}

      /**
      Degenerate vertices are vertices that have coords with invalid floating point values, 
      All the faces incident on deleted vertices are also deleted
			*/ 
      static int RemoveDegenerateVertex(MeshType& m)
      {
				VertexIterator vi;
				int count_vd = 0;

				for(vi=m.vert.begin(); vi!=m.vert.end();++vi)
					if(math::IsNAN( (*vi).P()[0]) || 
             math::IsNAN( (*vi).P()[1]) || 
						 math::IsNAN( (*vi).P()[2]) )
					{
						count_vd++;
						Allocator<MeshType>::DeleteVertex(m,*vi);
					}
					
				FaceIterator fi;
				int count_fd = 0;

				for(fi=m.face.begin(); fi!=m.face.end();++fi)
				if(!(*fi).IsD()) 
					if( (*fi).V(0)->IsD() || 
							(*fi).V(1)->IsD() || 
							(*fi).V(2)->IsD() )
									{
										count_fd++;
										Allocator<MeshType>::DeleteFace(m,*fi);			
									}
				return count_vd;
			}
			
      /**
      Degenerate faces are faces that are Topologically degenerate, 
      i.e. have two or more vertex reference that link the same vertex 
      (and not only two vertexes with the same coordinates).
      All Degenerate faces are zero area faces BUT not all zero area faces are degenerate.
      We do not take care of topology because when we have degenerate faces the 
      topology calculation functions crash.
      */ 
      static int RemoveDegenerateFace(MeshType& m)
      {
				int count_fd = 0;

        for(FaceIterator fi=m.face.begin(); fi!=m.face.end();++fi)
					if(!(*fi).IsD()) 
					{
							if((*fi).V(0) == (*fi).V(1) || 
								 (*fi).V(0) == (*fi).V(2) ||
								 (*fi).V(1) == (*fi).V(2) )
							{
								count_fd++;
								Allocator<MeshType>::DeleteFace(m,*fi);
							}
					}
				return count_fd;
			}
			
      static int RemoveDegenerateEdge(MeshType& m)
            {
              int count_ed = 0;

              for(EdgeIterator ei=m.edge.begin(); ei!=m.edge.end();++ei)
                if(!(*ei).IsD())
                {
                    if((*ei).V(0) == (*ei).V(1) )
                    {
                      count_ed++;
                      Allocator<MeshType>::DeleteEdge(m,*ei);
                    }
                }
              return count_ed;
            }

			static int RemoveNonManifoldVertex(MeshType& m)
			{
        /*int count_vd = */
        CountNonManifoldVertexFF(m,true);
        /*int count_fd = */
        tri::UpdateSelection<MeshType>::FaceFromVertexLoose(m);
				int count_removed = 0;
				FaceIterator fi;
				for(fi=m.face.begin(); fi!=m.face.end();++fi)
					if(!(*fi).IsD() && (*fi).IsS()) 
						Allocator<MeshType>::DeleteFace(m,*fi);
				VertexIterator vi;
				for(vi=m.vert.begin(); vi!=m.vert.end();++vi)
					if(!(*vi).IsD() && (*vi).IsS()) {
						++count_removed;
						Allocator<MeshType>::DeleteVertex(m,*vi);
					}
					return count_removed;
			}
			

      /// Removal of faces that were incident on a non manifold edge.

      // Given a mesh with FF adjacency
      // it search for non manifold vertices and duplicate them.
      // Duplicated vertices are moved apart according to the move threshold param.
      // that is a percentage of the average vector from the non manifold vertex to the barycenter of the incident faces.

      static int SplitNonManifoldVertex(MeshType& m, float moveThreshold)
      {
        assert(HasFFAdjacency(m));
        typedef std::pair<FacePointer,int> FaceInt; // a face and the index of the vertex that we have to change
        //
        std::vector<std::pair<VertexPointer, std::vector<FaceInt> > >ToSplitVec;

        SelectionStack<MeshType> ss(m);
        ss.push();
        CountNonManifoldVertexFF(m,true);
        UpdateFlags<MeshType>::VertexClearV(m);
        for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)	if (!fi->IsD())
        {
          for(int i=0;i<3;i++)
            if((*fi).V(i)->IsS() && !(*fi).V(i)->IsV())
            {
              (*fi).V(i)->SetV();
              face::Pos<FaceType> startPos(&*fi,i);
              face::Pos<FaceType> curPos = startPos;
              std::set<FaceInt> faceSet;
              do
              {
                faceSet.insert(std::make_pair(curPos.F(),curPos.VInd()));
                curPos.NextE();
              } while (curPos != startPos);

              ToSplitVec.push_back(make_pair((*fi).V(i),std::vector<FaceInt>()));

              typename std::set<FaceInt>::const_iterator iii;

              for(iii=faceSet.begin();iii!=faceSet.end();++iii)
                ToSplitVec.back().second.push_back(*iii);
            }
        }
        ss.pop();
        // Second step actually add new vertices and split them.
        typename tri::Allocator<MeshType>::template PointerUpdater<VertexPointer> pu;
        VertexIterator firstVp = tri::Allocator<MeshType>::AddVertices(m,ToSplitVec.size(),pu);
        for(size_t i =0;i<ToSplitVec.size();++i)
        {
          qDebug("Splitting Vertex %i",ToSplitVec[i].first-&*m.vert.begin());
          VertexPointer np=ToSplitVec[i].first;
          pu.Update(np);
          firstVp->ImportData(*np);
          // loop on the face to be changed, and also compute the movement vector;
          Point3f delta(0,0,0);
          for(size_t j=0;j<ToSplitVec[i].second.size();++j)
          {
            FaceInt ff=ToSplitVec[i].second[j];
            ff.first->V(ff.second)=&*firstVp;
            delta+=Barycenter(*(ff.first))-np->cP();
          }
          delta /= ToSplitVec[i].second.size();
          firstVp->P() = firstVp->P() + delta * moveThreshold;
          firstVp++;
        }

        return ToSplitVec.size();
      }


      // Auxiliary function for sorting the non manifold faces according to their area. Used in  RemoveNonManifoldFace
      struct CompareAreaFP {
          bool operator ()(FacePointer const& f1, FacePointer const& f2) const {
             return DoubleArea(*f1) < DoubleArea(*f2);
          }
      };

      /// Removal of faces that were incident on a non manifold edge.
      static int RemoveNonManifoldFace(MeshType& m)
      {
				FaceIterator fi;
				int count_fd = 0;
				std::vector<FacePointer> ToDelVec;

				for(fi=m.face.begin(); fi!=m.face.end();++fi)
					if (!fi->IsD())
					{
						if ((!IsManifold(*fi,0))||
								(!IsManifold(*fi,1))||
								(!IsManifold(*fi,2)))
					                  ToDelVec.push_back(&*fi);
					}

          std::sort(ToDelVec.begin(),ToDelVec.end(),CompareAreaFP());

          for(size_t i=0;i<ToDelVec.size();++i)
          {
            if(!ToDelVec[i]->IsD())
            {
            FaceType &ff= *ToDelVec[i];
              if ((!IsManifold(ff,0))||
							  	(!IsManifold(ff,1))||
								  (!IsManifold(ff,2)))
              {
                for(int j=0;j<3;++j)
                    if(!face::IsBorder<FaceType>(ff,j)) 
                      vcg::face::FFDetach<FaceType>(ff,j);
                  
                Allocator<MeshType>::DeleteFace(m,ff);
                count_fd++;						   	
              }
            }
          }
				return count_fd;
			}
       
      /*
      The following functions remove faces that are geometrically "bad" according to edges and area criteria. 
      They remove the faces that are out of a given range of area or edges (e.g. faces too large or too small, or with edges too short or too long)
      but that could be topologically correct.
      These functions can optionally take into account only the selected faces.
      */
      template<bool Selected>  
		  static int RemoveFaceOutOfRangeAreaSel(MeshType& m, ScalarType MinAreaThr=0, ScalarType MaxAreaThr=(std::numeric_limits<ScalarType>::max)())
			{
				FaceIterator fi;
				int count_fd = 0;
        MinAreaThr*=2;
        MaxAreaThr*=2;
        for(fi=m.face.begin(); fi!=m.face.end();++fi)
     			if(!(*fi).IsD())
              if(!Selected || (*fi).IsS())
              {
                const ScalarType doubleArea=DoubleArea<FaceType>(*fi);
					      if((doubleArea<=MinAreaThr) || (doubleArea>=MaxAreaThr) )
					      {
								  Allocator<MeshType>::DeleteFace(m,*fi); 
						      count_fd++;
					      }
              }
				return count_fd;
			}

      	// alias for the old style. Kept for backward compatibility
      static int RemoveZeroAreaFace(MeshType& m) { return RemoveFaceOutOfRangeArea(m);}
      
      // Aliases for the functions that do not look at selection
      static int RemoveFaceOutOfRangeArea(MeshType& m, ScalarType MinAreaThr=0, ScalarType MaxAreaThr=(std::numeric_limits<ScalarType>::max)())
      {
        return RemoveFaceOutOfRangeAreaSel<false>(m,MinAreaThr,MaxAreaThr);
      }
			
			/**
			 * Is the mesh only composed by quadrilaterals?
			 */
			static bool IsBitQuadOnly(const MeshType &m) 
      {
        typedef typename MeshType::FaceType F;
        if (!HasPerFaceFlags(m)) return false;
				for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
          unsigned int tmp = fi->Flags()&(F::FAUX0|F::FAUX1|F::FAUX2);
          if ( tmp != F::FAUX0 && tmp != F::FAUX1 && tmp != F::FAUX2) return false;
        }
        return true;
      }
      

      /**
			 * Is the mesh only composed by triangles? (non polygonal faces)
			 */
      static bool IsBitTriOnly(const MeshType &m) 
			{
		if (!HasPerFaceFlags(m)) return true;
				for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) {
          if (
            !fi->IsD()  &&  fi->IsAnyF()  
          ) return false;
        }
        return true;
      }
      
      static bool IsBitPolygonal(const MeshType &m){
        return !IsBitTriOnly(m);
      }
      
      /**
			 * Is the mesh only composed by quadrilaterals and triangles? (no pentas, etc)
			 */
			static bool IsBitTriQuadOnly(const MeshType &m) 
      {
        typedef typename MeshType::FaceType F;
        if (!HasPerFaceFlags(m)) return false;
				for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
          unsigned int tmp = fi->Flags()&(F::FAUX0|F::FAUX1|F::FAUX2);
          if ( tmp!=F::FAUX0 && tmp!=F::FAUX1 && tmp!=F::FAUX2 && tmp!=0 ) return false;
        }
        return true;
      }
      
			/**
			 * How many quadrilaterals?
			 */
			static int CountBitQuads(const MeshType &m) 
      {
        if (!HasPerFaceFlags(m)) return 0;
        typedef typename MeshType::FaceType F;
        int count=0;
				for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
          unsigned int tmp = fi->Flags()&(F::FAUX0|F::FAUX1|F::FAUX2);
          if ( tmp==F::FAUX0 || tmp==F::FAUX1 || tmp==F::FAUX2) count++;
        }
        return count / 2;
      }

			/**
			 * How many triangles? (non polygonal faces)
			 */
			static int CountBitTris(const MeshType &m) 
      {
        if (!HasPerFaceFlags(m)) return m.fn;
        int count=0;
				for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
          if (!(fi->IsAnyF())) count++;
        }
        return count;
      }		

			/**
			 * How many polygons of any kind? (including triangles)
			 */
			static int CountBitPolygons(const MeshType &m) 
			{
		if (!HasPerFaceFlags(m)) return m.fn;
        typedef typename MeshType::FaceType F;
        int count = 0;
				for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD())  {
          if (fi->IsF(0)) count++;
          if (fi->IsF(1)) count++;
          if (fi->IsF(2)) count++;
        }
        return m.fn - count/2;
      }
      
		/**
			* The number of polygonal faces is 
			*  FN - EN_f (each faux edge hides exactly one triangular face or in other words a polygon of n edges has n-3 faux edges.)
			* In the general case where a The number of polygonal faces is 
			*	 FN - EN_f + VN_f 
			*	where: 
			*	 EN_f is the number of faux edges.
			*	 VN_f is the number of faux vertices (e.g vertices completely surrounded by faux edges)
      * as a intuitive proof think to a internal vertex that is collapsed onto a border of a polygon:
			* it deletes 2 faces, 1 faux edges and 1 vertex so to keep the balance you have to add back the removed vertex.
			*/
			static int CountBitLargePolygons(MeshType &m) 
			{
			
				UpdateFlags<MeshType>::VertexSetV(m);
				// First loop Clear all referenced vertices
				for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) 
						if (!fi->IsD())  
								for(int i=0;i<3;++i) fi->V(i)->ClearV();

				
        // Second Loop, count (twice) faux edges and mark all vertices touched by non faux edges (e.g vertexes on the boundary of a polygon) 
                if (!HasPerFaceFlags(m)) return m.fn;
        typedef typename MeshType::FaceType F;
        int countE = 0;
				for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) 
						if (!fi->IsD())  {
								for(int i=0;i<3;++i)
								{
									if (fi->IsF(i)) 
											countE++;
									else
									{
											fi->V0(i)->SetV();
											fi->V1(i)->SetV();
									}
								}
				}
				// Third Loop, count the number of referenced vertexes that are completely surrounded by faux edges.

        int countV = 0; 
				for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) 
						if (!vi->IsD() && !vi->IsV()) countV++;
				
        return m.fn - countE/2 + countV ;
      }
      
			
      /**
			 * Checks that the mesh has consistent per-face faux edges
			 * (the ones that merges triangles into larger polygons).
			 * A border edge should never be faux, and faux edges should always be
			 * reciprocated by another faux edges.
			 * It requires FF adjacency.
			 */
      static bool HasConsistentPerFaceFauxFlag(const MeshType &m)
      {
        assert(HasPerFaceFlags(m));
        assert(HasFFAdjacency(m)); // todo: remove this constraint
        
        for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
          if(!(*fi).IsD()) 
            for (int k=0; k<3; k++) 
				      if( fi->IsF(k) != fi->cFFp(k)->IsF(fi->cFFi(k)) ) {
                return false; 
              }
              // non-reciprocal faux edge! 
              // (OR: border faux edge, which is likewise inconsistent)
          
        return true;
      }
      
      static bool HasConsistentEdges(const MeshType &m)
      {
        assert(HasPerFaceFlags(m));
        
        for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
          if(!(*fi).IsD()) 
            for (int k=0; k<3; k++) 
						{
				      VertexType *v0=(*fi).V(0);
							VertexType *v1=(*fi).V(1);
							VertexType *v2=(*fi).V(2);
							if ((v0==v1)||(v0==v2)||(v1==v2))
								return false;
             }
          
        return true;
      }

      /**
       * Count the number of non manifold edges in a polylinemesh, e.g. the edges where there are more than 2 incident faces.
       *
       */
      static int CountNonManifoldEdgeEE( MeshType & m, bool SelectFlag=false)
      {
        assert(m.fn == 0 && m.en >0); // just to be sure we are using an edge mesh...
        assert(tri::HasEEAdjacency(m));
        tri::UpdateTopology<MeshType>::EdgeEdge(m);

        if(SelectFlag) UpdateSelection<MeshType>::VertexClear(m);

        int nonManifoldCnt=0;
        SimpleTempData<typename MeshType::VertContainer, int > TD(m.vert,0);

        // First Loop, just count how many faces are incident on a vertex and store it in the TemporaryData Counter.
        EdgeIterator ei;
        for (ei = m.edge.begin(); ei != m.edge.end(); ++ei)	if (!ei->IsD())
        {
          TD[(*ei).V(0)]++;
          TD[(*ei).V(1)]++;
        }

        tri::UpdateFlags<MeshType>::VertexClearV(m);
        // Second Loop, Check that each vertex have been seen 1 or 2 times.
        for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)	if (!vi->IsD())
        {
          if( TD[vi] >2 )
          {
            if(SelectFlag) (*vi).SetS();
            nonManifoldCnt++;
          }
        }
        return nonManifoldCnt;
      }

      /**
       * Count the number of non manifold edges in a mesh, e.g. the edges where there are more than 2 incident faces.
       *
       * Note that this test is not enough to say that a mesh is two manifold,
       * you have to count also the non manifold vertexes.
       */
      static int CountNonManifoldEdgeFF( MeshType & m, bool SelectFlag=false)
      {
        int nmfBit[3];
        nmfBit[0]= FaceType::NewBitFlag();
        nmfBit[1]= FaceType::NewBitFlag();
        nmfBit[2]= FaceType::NewBitFlag();


        UpdateFlags<MeshType>::FaceClear(m,nmfBit[0]+nmfBit[1]+nmfBit[2]);

        if(SelectFlag){
          UpdateSelection<MeshType>::VertexClear(m);
          UpdateSelection<MeshType>::FaceClear(m);
        }
        assert(tri::HasFFAdjacency(m));

        int edgeCnt = 0;
        for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
        {
          if (!fi->IsD())
          {
            for(int i=0;i<3;++i)
            if(!IsManifold(*fi,i))
              {
                if(!(*fi).IsUserBit(nmfBit[i]))
                  {
                      ++edgeCnt;
                      if(SelectFlag)
                      {
                        (*fi).V0(i)->SetS();
                        (*fi).V1(i)->SetS();
                      }
                      // follow the ring of faces incident on edge i;
                      face::Pos<FaceType> nmf(&*fi,i);
                      do
                      {
                        if(SelectFlag) nmf.F()->SetS();
                        nmf.F()->SetUserBit(nmfBit[nmf.E()]);
                        nmf.NextF();
                      }
                      while(nmf.f != &*fi);
                  }
              }
            }
          }
        return edgeCnt;
      }

      /** Count (and eventually select) non 2-Manifold vertexes of a mesh
       * e.g. the vertices with a non 2-manif. neighbourhood but that do not belong to not 2-manif edges.
       * typical situation two cones connected by one vertex.
       */
      static int CountNonManifoldVertexFF( MeshType & m, bool selectVert = true )
			{
        assert(tri::HasFFAdjacency(m));
        if(selectVert) UpdateSelection<MeshType>::VertexClear(m);

				int nonManifoldCnt=0;
				SimpleTempData<typename MeshType::VertContainer, int > TD(m.vert,0);
			
        // First Loop, just count how many faces are incident on a vertex and store it in the TemporaryData Counter.
				FaceIterator fi;
				for (fi = m.face.begin(); fi != m.face.end(); ++fi)	if (!fi->IsD())
				{
					TD[(*fi).V(0)]++;
					TD[(*fi).V(1)]++;
					TD[(*fi).V(2)]++;
				}

				tri::UpdateFlags<MeshType>::VertexClearV(m);
        // Second Loop.
        // mark out of the game the vertexes that are incident on non manifold edges.
        for (fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD())
          {
            for(int i=0;i<3;++i)
              if (!IsManifold(*fi,i))  {
                  (*fi).V0(i)->SetV();
                  (*fi).V1(i)->SetV();
            }
          }
        // Third Loop, for safe vertexes, check that the number of faces that you can reach starting
        // from it and using FF is the same of the previously counted.
				for (fi = m.face.begin(); fi != m.face.end(); ++fi)	if (!fi->IsD())
				{
					for(int i=0;i<3;i++) if(!(*fi).V(i)->IsV()){
						(*fi).V(i)->SetV();
						face::Pos<FaceType> pos(&(*fi),i);
						
						int starSizeFF = pos.NumberOfIncidentFaces();

						if (starSizeFF != TD[(*fi).V(i)])
						{
              if(selectVert) (*fi).V(i)->SetS();
							nonManifoldCnt++;
						}
					}
				}
				return nonManifoldCnt;				
			}
			
			static void CountEdges( MeshType & m, int &count_e, int &boundary_e ) 
			{
				count_e=0;
				boundary_e=0;
        		UpdateFlags<MeshType>::FaceClearV(m);
       			FaceIterator fi;
				vcg::face::Pos<FaceType> he;
				vcg::face::Pos<FaceType> hei;
				bool counted =false;
				for(fi=m.face.begin();fi!=m.face.end();fi++)
				{
					if(!((*fi).IsD()))
					{
                    (*fi).SetV();
					count_e +=3; //assume that we have to increase the number of edges with three
					for(int j=0; j<3; j++)
					{
            if (face::IsBorder(*fi,j)) //If this edge is a border edge
							boundary_e++; // then increase the number of boundary edges
						else if (IsManifold(*fi,j))//If this edge is manifold
						{
                            if((*fi).FFp(j)->IsV()) //If the face on the other side of the edge is already selected
								count_e--; // we counted one edge twice
						}
						else//We have a non-manifold edge
						{
							hei.Set(&(*fi), j , fi->V(j));
							he=hei;
							he.NextF();
							while (he.f!=hei.f)// so we have to iterate all faces that are connected to this edge
							{
                                if (he.f->IsV())// if one of the other faces was already visited than this edge was counted already.
								{
									counted=true;
									break;
								}
								else
								{
									he.NextF();
								}
							}
							if (counted)
							{
								count_e--;
								counted=false;
							}
						}
					}
					}
				}
			}


			static int CountHoles( MeshType & m)
			{
        int numholev=0;
        FaceIterator fi;
		
				FaceIterator gi;
				vcg::face::Pos<FaceType> he;
				vcg::face::Pos<FaceType> hei;

        std::vector< std::vector<Point3x> > holes; //indices of vertices

				vcg::tri::UpdateFlags<MeshType>::VertexClearS(m);

				gi=m.face.begin(); fi=gi;

				for(fi=m.face.begin();fi!=m.face.end();fi++)//for all faces do
				{
					for(int j=0;j<3;j++)//for all edges
					{
						if(fi->V(j)->IsS()) continue;

            if(face::IsBorder(*fi,j))//found an unvisited border edge
						{
							he.Set(&(*fi),j,fi->V(j)); //set the face-face iterator to the current face, edge and vertex
              std::vector<Point3x> hole; //start of a new hole
							hole.push_back(fi->P(j)); // including the first vertex
							numholev++;
							he.v->SetS(); //set the current vertex as selected
							he.NextB(); //go to the next boundary edge


							while(fi->V(j) != he.v)//will we do not encounter the first boundary edge.
							{
								Point3x newpoint = he.v->P(); //select its vertex.
								if(he.v->IsS())//check if this vertex was selected already, because then we have an additional hole.
								{
									//cut and paste the additional hole.
                  std::vector<Point3x> hole2;
									int index = static_cast<int>(find(hole.begin(),hole.end(),newpoint) 
										- hole.begin());
									for(unsigned int i=index; i<hole.size(); i++)
										hole2.push_back(hole[i]);

									hole.resize(index);
									if(hole2.size()!=0) //annoying in degenerate cases
										holes.push_back(hole2);
								}
								hole.push_back(newpoint);
								numholev++;
								he.v->SetS(); //set the current vertex as selected
								he.NextB(); //go to the next boundary edge
							}
							holes.push_back(hole);
						}
					}
				}
				return static_cast<int>(holes.size());
			}

      /*
  Compute the set of connected components of a given mesh
  it fills a vector of pair < int , faceptr > with, for each connecteed component its size and a represnant
 */
      static int CountConnectedComponents(MeshType &m)
      {
        std::vector< std::pair<int,FacePointer> > CCV;
        return ConnectedComponents(m,CCV);
      }

      static int ConnectedComponents(MeshType &m, std::vector< std::pair<int,FacePointer> > &CCV)
			{
				FaceIterator fi;
				FacePointer l;
		    CCV.clear();

				for(fi=m.face.begin();fi!=m.face.end();++fi)
					(*fi).ClearS();
		
        int Compindex=0;
        std::stack<FacePointer> sf;
        FacePointer fpt=&*(m.face.begin());
				for(fi=m.face.begin();fi!=m.face.end();++fi)
				{
					if(!((*fi).IsD()) && !(*fi).IsS())
					{
						(*fi).SetS();
						CCV.push_back(std::make_pair(0,&*fi));
						sf.push(&*fi);
						while (!sf.empty())
						{
							fpt=sf.top();
              ++CCV.back().first;
							sf.pop();
							for(int j=0;j<3;++j)
							{
								if( !face::IsBorder(*fpt,j) )
								{
									l=fpt->FFp(j);
									if( !(*l).IsS() )
									{
										(*l).SetS();
										sf.push(l);
									}
								}
							}
						}
						Compindex++;
					}
				}
        assert(int(CCV.size())==Compindex);
				return Compindex;
			}


			/**
			GENUS.
			
			A topologically invariant property of a surface defined as
			the largest number of non-intersecting simple closed curves that can be 
			drawn on the surface without separating it. 

      Roughly speaking, it is the number of holes in a surface. 
			The genus g of a closed surface, also called the geometric genus, is related to the 
			Euler characteristic by the relation $chi$ by $chi==2-2g$.
      
			The genus of a connected, orientable surface is an integer representing the maximum
			number of cuttings along closed simple curves without rendering the resultant 
			manifold disconnected. It is equal to the number of handles on it.

			For general polyhedra the <em>Euler Formula</em> is:

				  V - E + F = 2 - 2G - B

			where V is the number of vertices, F is the number of faces, E is the
			number of edges, G is the genus and B is the number of <em>boundary polygons</em>.

			The above formula is valid for a mesh with one single connected component. 
			By considering multiple connected components the formula becomes:

				  V - E + F = 2C - 2Gs - B   ->   2Gs = - ( V-E+F +B -2C)

			where C is the number of connected components and Gs is the sum of
			the genus of all connected components.

			Note that in the case of a mesh with boundaries the intuitive meaning of Genus is less intuitive that it could seem.
			A closed sphere, a sphere with one hole (e.g. a disk) and a sphere with two holes (e.g. a tube) all of them have Genus == 0

			*/

			static int MeshGenus(int nvert,int nedges,int nfaces, int numholes, int numcomponents)
			{
				return -((nvert + nfaces - nedges + numholes - 2 * numcomponents) / 2);
			}
			
			static int MeshGenus(MeshType &m)
			{
				int nvert=m.vn;
				int nfaces=m.fn;
				int boundary_e,nedges;
				CountEdges(m,nedges,boundary_e);
				int numholes=CountHoles(m);
				int numcomponents=CountConnectedComponents(m);
				int G=MeshGenus(nvert,nedges,nfaces,numholes,numcomponents);
				return G;
			}

			/**
			 * Check if the given mesh is regular, semi-regular or irregular.
			 *
			 * Each vertex of a \em regular mesh has valence 6 except for border vertices
			 * which have valence 4.
			 *
			 * A \em semi-regular mesh is derived from an irregular one applying
			 * 1-to-4 subdivision recursively. (not checked for now)
			 *
			 * All other meshes are \em irregular.
			 */
			static void IsRegularMesh(MeshType &m, bool &Regular, bool &Semiregular)
			{
				// This algorithm requires Vertex-Face topology
				assert(m.HasVFTopology());

				Regular = true;
			
				VertexIterator vi;

				// for each vertex the number of edges are count
				for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
				{
					if (!vi->IsD())
					{
						face::Pos<FaceType> he((*vi).VFp(), &*vi);
						face::Pos<FaceType> ht = he;

						int n=0;
						bool border=false;
						do
						{
							++n;
							ht.NextE();
							if (ht.IsBorder()) 
								border=true;
						} 
						while (ht != he);

						if (border)
							n = n/2;

						if ((n != 6)&&(!border && n != 4))
						{
							Regular = false;
							break;
						}
					}
				}

				if (!Regular)
					Semiregular = false;
				else
				{
					// For now we do not account for semi-regularity
					Semiregular = false;
				}
			}
//      static void IsOrientedMesh(MeshType &m, bool &Oriented, bool &Orientable)
      static void OrientCoherentlyMesh(MeshType &m, bool &Oriented, bool &Orientable)
			{
        assert(&Oriented != &Orientable);
				// This algorithms requires FF topology
				assert(HasFFAdjacency(m));
				// This algorithms require FF topology initialized
				assert(m.face.back().FFp(0));


				Orientable = true;
				Oriented = true;

				// Ensure that each face is deselected
				FaceIterator fi;
				for (fi = m.face.begin(); fi != m.face.end(); ++fi)
					fi->ClearS();

				// initialize stack
        std::stack<FacePointer> faces;

				// for each face of the mesh
				FacePointer fp,fpaux;
				int iaux;
				for (fi = m.face.begin(); fi != m.face.end(); ++fi)
				{
					if (!fi->IsD() && !fi->IsS())
					{
						// each face put in the stack is selected (and oriented)
						fi->SetS();
						faces.push(&(*fi));

						// empty the stack
						while (!faces.empty())
						{
							fp = faces.top();
							faces.pop();
								
							// make consistently oriented the adjacent faces
							for (int j = 0; j < 3; j++)
							{
								// get one of the adjacent face
								fpaux = fp->FFp(j);
								iaux = fp->FFi(j);

								if (!fpaux->IsD() && fpaux != fp && face::IsManifold<FaceType>(*fp, j))
								{
									if (!CheckOrientation(*fpaux, iaux))
									{
                    Oriented = false;

										if (!fpaux->IsS())
										{
											face::SwapEdge<FaceType,true>(*fpaux, iaux);
											assert(CheckOrientation(*fpaux, iaux));
										}
										else
                    {
											Orientable = false;
                      break;
                    }
									}

									// put the oriented face into the stack

									if (!fpaux->IsS())
									{
										fpaux->SetS();
										faces.push(fpaux);
									}
								}
							}
						}
					}

					if (!Orientable)	break;
				}
			}
      /// Flip the orientation of the whole mesh flipping all the faces (by swapping the first two vertices)
			static void FlipMesh(MeshType &m, bool selected=false)
      {
        for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD())
	      if(!selected || (*fi).IsS())
        {
			       face::SwapEdge<FaceType,false>((*fi), 0);
      			 if (HasPerWedgeTexCoord(m))
			        		std::swap((*fi).WT(0),(*fi).WT(1));
        }
      }
      /// Flip a mesh so that its normals are orented outside.
      /// Just for safety it uses a voting scheme.
      /// It assumes that
      /// mesh has already has coherent normals.
      /// mesh is watertight and signle component.
      static bool FlipNormalOutside(MeshType &m)
      {
        if(m.vert.empty()) return false;

        tri::UpdateNormals<MeshType>::PerVertexAngleWeighted(m);
        tri::UpdateNormals<MeshType>::NormalizeVertex(m);

        std::vector< VertexPointer > minVertVec;
        std::vector< VertexPointer > maxVertVec;

        // The set of directions to be choosen
        std::vector< Point3x > dirVec;
        dirVec.push_back(Point3x(1,0,0));
        dirVec.push_back(Point3x(0,1,0));
        dirVec.push_back(Point3x(0,0,1));
        dirVec.push_back(Point3x( 1, 1,1));
        dirVec.push_back(Point3x(-1, 1,1));
        dirVec.push_back(Point3x(-1,-1,1));
        dirVec.push_back(Point3x( 1,-1,1));
        for(size_t i=0;i<dirVec.size();++i)
        {
          Normalize(dirVec[i]);
          minVertVec.push_back(&*m.vert.begin());
          maxVertVec.push_back(&*m.vert.begin());
        }
        for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD())
        {
          for(size_t i=0;i<dirVec.size();++i)
          {
            if( (*vi).cP().dot(dirVec[i]) < minVertVec[i]->P().dot(dirVec[i])) minVertVec[i] = &*vi;
            if( (*vi).cP().dot(dirVec[i]) > maxVertVec[i]->P().dot(dirVec[i])) maxVertVec[i] = &*vi;
          }
        }

        int voteCount=0;
        ScalarType angleThreshold = cos(math::ToRad(85.0));
        for(size_t i=0;i<dirVec.size();++i)
        {
//          qDebug("Min vert along (%f %f %f) is %f %f %f",dirVec[i][0],dirVec[i][1],dirVec[i][2],minVertVec[i]->P()[0],minVertVec[i]->P()[1],minVertVec[i]->P()[2]);
//          qDebug("Max vert along (%f %f %f) is %f %f %f",dirVec[i][0],dirVec[i][1],dirVec[i][2],maxVertVec[i]->P()[0],maxVertVec[i]->P()[1],maxVertVec[i]->P()[2]);
          if(minVertVec[i]->N().dot(dirVec[i]) > angleThreshold ) voteCount++;
          if(maxVertVec[i]->N().dot(dirVec[i]) < -angleThreshold ) voteCount++;
        }
//        qDebug("votecount = %i",voteCount);
        if(voteCount < int(dirVec.size())/2) return false;
        FlipMesh(m);
        return true;
      }

      // Search and remove small single triangle folds
      // - a face has normal opposite to all other faces
      // - choose the edge that brings to the face f1 containing the vertex opposite to that edge.
      static int RemoveFaceFoldByFlip(MeshType &m, float normalThresholdDeg=175, bool repeat=true)
      {
            assert(HasFFAdjacency(m));
            assert(HasPerVertexMark(m));
            //Counters for logging and convergence
            int count, total = 0;

            do {
                tri::UpdateTopology<MeshType>::FaceFace(m);
                tri::UnMarkAll(m);
                count = 0;

                ScalarType NormalThrRad = math::ToRad(normalThresholdDeg);
                ScalarType eps = 0.0001; // this epsilon value is in absolute value. It is a distance from edge in baricentric coords.
                //detection stage
                for(FaceIterator fi=m.face.begin();fi!= m.face.end();++fi ) if(!(*fi).IsV())
                { Point3<ScalarType> NN = vcg::NormalizedNormal((*fi));
                  if( vcg::Angle(NN,vcg::NormalizedNormal(*(*fi).FFp(0))) > NormalThrRad &&
                      vcg::Angle(NN,vcg::NormalizedNormal(*(*fi).FFp(1))) > NormalThrRad &&
                      vcg::Angle(NN,vcg::NormalizedNormal(*(*fi).FFp(2))) > NormalThrRad )
                  {
                    (*fi).SetS();
                    //(*fi).C()=Color4b(Color4b::Red);
                    // now search the best edge to flip
                    for(int i=0;i<3;i++)
                    {
                      Point3<ScalarType> &p=(*fi).P2(i);
                      Point3<ScalarType> L;
                      bool ret = vcg::InterpolationParameters((*(*fi).FFp(i)),vcg::Normal(*(*fi).FFp(i)),p,L);
                      if(ret && L[0]>eps && L[1]>eps && L[2]>eps)
                      {
                        (*fi).FFp(i)->SetS();
                        (*fi).FFp(i)->SetV();
                        //(*fi).FFp(i)->C()=Color4b(Color4b::Green);
                        if(face::CheckFlipEdge<FaceType>( *fi, i ))  {
                                face::FlipEdge<FaceType>( *fi, i );
                                ++count; ++total;
                            }
                      }
                    }
                  }
                }

                // tri::UpdateNormals<MeshType>::PerFace(m);
            }
            while( repeat && count );
            return total;
        }


	static int RemoveTVertexByFlip(MeshType &m, float threshold=40, bool repeat=true)
	{
		assert(HasFFAdjacency(m));
		assert(HasPerVertexMark(m));
        //Counters for logging and convergence
        int count, total = 0;

        do {
            tri::UpdateTopology<MeshType>::FaceFace(m);
            tri::UnMarkAll(m);
            count = 0;

            //detection stage
            for(unsigned int index = 0 ; index < m.face.size(); ++index )
            {
                FacePointer f = &(m.face[index]);    float sides[3]; Point3<float> dummy;
                sides[0] = Distance(f->P(0), f->P(1));
                sides[1] = Distance(f->P(1), f->P(2));
                sides[2] = Distance(f->P(2), f->P(0));
                // Find largest triangle side
                int i = std::find(sides, sides+3, std::max( std::max(sides[0],sides[1]), sides[2])) - (sides);
                if( tri::IsMarked(m,f->V2(i) )) continue;

                if( PSDist(f->P2(i),f->P(i),f->P1(i),dummy)*threshold <= sides[i] )
                {
                    tri::Mark(m,f->V2(i));
                    if(face::CheckFlipEdge<FaceType>( *f, i ))  {
                        // Check if EdgeFlipping improves quality
                        FacePointer g = f->FFp(i); int k = f->FFi(i);
                        Triangle3<float> t1(f->P(i), f->P1(i), f->P2(i)), t2(g->P(k), g->P1(k), g->P2(k)),
                                         t3(f->P(i), g->P2(k), f->P2(i)), t4(g->P(k), f->P2(i), g->P2(k));

                        if ( std::min( QualityFace(t1), QualityFace(t2) ) < std::min( QualityFace(t3), QualityFace(t4) ))
                        {
                            face::FlipEdge<FaceType>( *f, i );
                            ++count; ++total;
                        }
                    }
                    
                }
            }

            // tri::UpdateNormals<MeshType>::PerFace(m);
        }
        while( repeat && count );
        return total;
    }

	static int RemoveTVertexByCollapse(MeshType &m, float threshold=40, bool repeat=true)
	{
      assert(tri::HasPerVertexMark(m));
        //Counters for logging and convergence
        int count, total = 0;

        do {
            tri::UnMarkAll(m);
            count = 0;

            //detection stage
            for(unsigned int index = 0 ; index < m.face.size(); ++index )
            {
                FacePointer f = &(m.face[index]);    float sides[3]; Point3<float> dummy;
                sides[0] = Distance(f->P(0), f->P(1)); sides[1] = Distance(f->P(1), f->P(2)); sides[2] = Distance(f->P(2), f->P(0));
                int i = std::find(sides, sides+3, std::max( std::max(sides[0],sides[1]), sides[2])) - (sides);
                if( tri::IsMarked(m,f->V2(i) )) continue;

                if( PSDist(f->P2(i),f->P(i),f->P1(i),dummy)*threshold <= sides[i] )
                {
                    tri::Mark(m,f->V2(i));
                    
                    int j = Distance(dummy,f->P(i))<Distance(dummy,f->P1(i))?i:(i+1)%3;
                    f->P2(i) = f->P(j);  tri::Mark(m,f->V(j));
                    ++count; ++total;
                }
            }

        
            tri::Clean<MeshType>::RemoveDuplicateVertex(m);
            tri::Allocator<MeshType>::CompactFaceVector(m);
            tri::Allocator<MeshType>::CompactVertexVector(m);
        }
        while( repeat && count );

        return total;
    }

      static bool SelfIntersections(MeshType &m, std::vector<FaceType*> &ret)
			{
        assert(HasPerFaceMark(m));// Needed by the UG
				Box3< ScalarType> bbox;
				TriMeshGrid   gM;
        ret.clear();
				FaceIterator fi;
	      int referredBit = FaceType::NewBitFlag();
        tri::UpdateFlags<MeshType>::FaceClear(m,referredBit);

				std::vector<FaceType*> inBox;
				gM.Set(m.face.begin(),m.face.end());
				
				for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
				{
          (*fi).SetUserBit(referredBit);
					(*fi).GetBBox(bbox);
					vcg::tri::GetInBoxFace(m, gM, bbox,inBox);
					bool Intersected=false;
          typename std::vector<FaceType*>::iterator fib;
          for(fib=inBox.begin();fib!=inBox.end();++fib)
          {
            if(!(*fib)->IsUserBit(referredBit) && (*fib != &*fi) )
              if(TestFaceFaceIntersection(&*fi,*fib)){
                ret.push_back(*fib);
                if(!Intersected) {
                  ret.push_back(&*fi);
                  Intersected=true;
                }
              }
          }
					inBox.clear();
				}	
				
        FaceType::DeleteBitFlag(referredBit);
				return (ret.size()>0);
			}

      /**
      This function simply test that the vn and fn counters be consistent with the size of the containers and the number of deleted simplexes.
      */
      static bool IsSizeConsistent(MeshType &m)
      {
        int DeletedVertexNum=0;
        for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
          if((*vi).IsD()) DeletedVertexNum++;

        int DeletedFaceNum=0;
        for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
          if((*fi).IsD()) DeletedFaceNum++;

        if(size_t(m.vn+DeletedVertexNum) != m.vert.size()) return false;
        if(size_t(m.fn+DeletedFaceNum) != m.face.size()) return false;

        return true;
      }

      /**
      This function simply test that all the faces have a consistent face-face topology relation.
      useful for checking that a topology modifying algorithm does not mess something.
      */
      static bool IsFFAdjacencyConsistent(MeshType &m)
      {
        if(!HasFFAdjacency(m)) return false;

        for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
          if(!(*fi).IsD()) 
          {
            for(int i=0;i<3;++i)
              if(!FFCorrectness(*fi, i)) return false;
          }
        return true;
      }

/**
      This function simply test that a mesh has some reasonable tex coord.
      */
      static bool HasConsistentPerWedgeTexCoord(MeshType &m)
      {
        if(!HasPerWedgeTexCoord(m)) return false;

        for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
          if(!(*fi).IsD()) 
          { FaceType &f=(*fi);
					 if( ! ( (f.WT(0).N() == f.WT(1).N()) && (f.WT(0).N() == (*fi).WT(2).N()) )  )
							return false; // all the vertices must have the same index.
												
					 if((*fi).WT(0).N() <0) return false; // no undefined texture should be allowed
          }
        return true;
      }

		/**
		Simple check that there are no face with all collapsed tex coords.
		*/
		static bool HasZeroTexCoordFace(MeshType &m)
		{
			if(!HasPerWedgeTexCoord(m)) return false;
			
			for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
				if(!(*fi).IsD()) 
				{
					if( (*fi).WT(0).P() == (*fi).WT(1).P() && (*fi).WT(0).P() == (*fi).WT(2).P() ) return false;
				}
			return true;
		}


  /**
        This function test if two triangular faces of a mesh intersect.
        It assumes that the faces (as storage) are different (e.g different address)
        If the two faces are different but coincident (same set of vertexes) return true.
        if the faces share an edge no test is done.
        if the faces share only a vertex, the opposite edge is tested against the face
  */
  static	bool TestFaceFaceIntersection(FaceType *f0,FaceType *f1)
	{
    assert(f0!=f1);
    int sv = face::CountSharedVertex(f0,f1);
    if(sv==3) return true;
    if(sv==0) return (vcg::IntersectionTriangleTriangle<FaceType>((*f0),(*f1)));
    //  if the faces share only a vertex, the opposite edge is tested against the face
    if(sv==1)
    {
      int i0,i1; ScalarType a,b;
      face::FindSharedVertex(f0,f1,i0,i1);
      if(vcg::IntersectionSegmentTriangle(Segment3<ScalarType>((*f0).V1(i0)->P(),(*f0).V2(i0)->P()), *f1, a, b) )  return true;
      if(vcg::IntersectionSegmentTriangle(Segment3<ScalarType>((*f1).V1(i1)->P(),(*f1).V2(i1)->P()), *f0, a, b) )  return true;
     }
		return false;
	}



/**
      This function merge all the vertices that are closer than the given radius
*/
static int MergeCloseVertex(MeshType &m, const ScalarType radius)
	{
			int mergedCnt=0;
                        mergedCnt = ClusterVertex(m,radius);
			RemoveDuplicateVertex(m,true);
			return mergedCnt;
	}
	
static int ClusterVertex(MeshType &m, const ScalarType radius)
	{
      if(m.vn==0) return 0;
      // some spatial indexing structure does not work well with deleted vertices...
      tri::Allocator<MeshType>::CompactVertexVector(m);
      typedef vcg::SpatialHashTable<VertexType, ScalarType> SampleSHT;
			SampleSHT sht;
			tri::VertTmark<MeshType> markerFunctor;
			typedef vcg::vertex::PointDistanceFunctor<ScalarType> VDistFunct;
			std::vector<VertexType*> closests;
			int mergedCnt=0;
      sht.Set(m.vert.begin(), m.vert.end());
			UpdateFlags<MeshType>::VertexClearV(m);
			for(VertexIterator viv = m.vert.begin(); viv!= m.vert.end(); ++viv) 
				if(!(*viv).IsD() && !(*viv).IsV())
					{
						(*viv).SetV();
						Point3<ScalarType> p = viv->cP();
						Box3<ScalarType> bb(p-Point3<ScalarType>(radius,radius,radius),p+Point3<ScalarType>(radius,radius,radius));
						GridGetInBox(sht, markerFunctor, bb, closests);
						// qDebug("Vertex %i has %i closest", &*viv - &*m.vert.begin(),closests.size());
            for(size_t i=0; i<closests.size(); ++i)
						{
							ScalarType dist = Distance(p,closests[i]->cP());
							if(dist < radius && !closests[i]->IsV())
												{
//													printf("%f %f \n",dist,radius);
													mergedCnt++;
													closests[i]->SetV();
													closests[i]->P()=p;
												}
						}
					}
			return mergedCnt;
	}


static std::pair<int,int>  RemoveSmallConnectedComponentsSize(MeshType &m, int maxCCSize)
{
  std::vector< std::pair<int, typename MeshType::FacePointer> > CCV;
      int TotalCC=ConnectedComponents(m, CCV); 
			int DeletedCC=0; 
      
      ConnectedIterator<MeshType> ci;
      for(unsigned int i=0;i<CCV.size();++i)
      {
        std::vector<typename MeshType::FacePointer> FPV;
        if(CCV[i].first<maxCCSize)
        {
					DeletedCC++;
          for(ci.start(m,CCV[i].second);!ci.completed();++ci)
            FPV.push_back(*ci);
          
          typename std::vector<typename MeshType::FacePointer>::iterator fpvi;
          for(fpvi=FPV.begin(); fpvi!=FPV.end(); ++fpvi)
						Allocator<MeshType>::DeleteFace(m,(**fpvi));
        }
      }
      return std::make_pair(TotalCC,DeletedCC);
}


/// Remove the connected components smaller than a given diameter
// it returns a pair with the number of connected components and the number of deleted ones.
static std::pair<int,int> RemoveSmallConnectedComponentsDiameter(MeshType &m, ScalarType maxDiameter)
{
  std::vector< std::pair<int, typename MeshType::FacePointer> > CCV;
      int TotalCC=ConnectedComponents(m, CCV); 
      int DeletedCC=0; 
      tri::ConnectedIterator<MeshType> ci;
      for(unsigned int i=0;i<CCV.size();++i)
      {
        Box3f bb;
        std::vector<typename MeshType::FacePointer> FPV;
        for(ci.start(m,CCV[i].second);!ci.completed();++ci)
        {
            FPV.push_back(*ci);
            bb.Add((*ci)->P(0));
            bb.Add((*ci)->P(1));
            bb.Add((*ci)->P(2));
        } 
        if(bb.Diag()<maxDiameter)
        {
					DeletedCC++;
          typename std::vector<typename MeshType::FacePointer>::iterator fpvi;
          for(fpvi=FPV.begin(); fpvi!=FPV.end(); ++fpvi)
						tri::Allocator<MeshType>::DeleteFace(m,(**fpvi));
        }
      }
			return std::make_pair(TotalCC,DeletedCC);
}

/// Remove the connected components greater than a given diameter
// it returns a pair with the number of connected components and the number of deleted ones.
static std::pair<int,int> RemoveHugeConnectedComponentsDiameter(MeshType &m, ScalarType minDiameter)
{
  std::vector< std::pair<int, typename MeshType::FacePointer> > CCV;
      int TotalCC=ConnectedComponents(m, CCV); 
      int DeletedCC=0; 
      tri::ConnectedIterator<MeshType> ci;
      for(unsigned int i=0;i<CCV.size();++i)
      {
        Box3f bb;
        std::vector<typename MeshType::FacePointer> FPV;
        for(ci.start(m,CCV[i].second);!ci.completed();++ci)
        {
            FPV.push_back(*ci);
            bb.Add((*ci)->P(0));
            bb.Add((*ci)->P(1));
            bb.Add((*ci)->P(2));
        } 
        if(bb.Diag()>minDiameter)
        {
					DeletedCC++;
          typename std::vector<typename MeshType::FacePointer>::iterator fpvi;
          for(fpvi=FPV.begin(); fpvi!=FPV.end(); ++fpvi)
						tri::Allocator<MeshType>::DeleteFace(m,(**fpvi));
        }
      }
			return std::make_pair(TotalCC,DeletedCC);
}

		}; // end class
		/*@}*/
	
	} //End Namespace Tri
} // End Namespace vcg
#endif