File: distortion.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 45,124 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 29
file content (544 lines) | stat: -rw-r--r-- 18,534 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/

#ifndef VCG_PARAM_DISTORTION
#define VCG_PARAM_DISTORTION
#include <vcg/complex/algorithms/parametrization/uv_utils.h>
#include <vcg/complex/algorithms/parametrization/tangent_field_operators.h>
#include <Eigen/Dense>

namespace vcg {
namespace tri {


template <class MeshType, bool PerWedge>
struct UVHelper {};

template <class MeshType>
struct UVHelper<MeshType, true>
{
	typedef typename MeshType::FaceType                FaceType;
    typedef typename FaceType::TexCoordType::PointType TexCoordType;
	static TexCoordType Coord(const FaceType *f, int i)
	{
		return f->cWT(i).P();
	}
};

template <class MeshType>
struct UVHelper<MeshType, false>
{
	typedef typename MeshType::FaceType                  FaceType;
	typedef typename MeshType::VertexType                VertexType;
	typedef typename VertexType::TexCoordType::PointType TexCoordType;
	static TexCoordType Coord(const FaceType *f, int i)
	{
		return f->cV(i)->T().P();
	}
};

/*
 *  Energy types:
 *
 *    AreaDist : 0 for equiareal (equipotent) mappings
 *    EdgeDist (hack): 0 for isometric mappings (computed on edges only)
 *    AngleDist (hack): 0 for conformal mappings
 *    CrossDist : as above, but computed on tangent directions (not UVs)
 *    L2Stretch : 1 for isometric mappings (averaged case on the mesh),
 *                +inf on degenerate / folded cases
 *                Described in [1]
 *    LInfStretch : as above, but WORST case
 *                  (returns the worst stretch on any position and direction)
 *                  Described in [1]
 *    ARAPEnergy : 0 for isometric mappings
 *                 Described in [2]
 *
 * [1] Sander, P. V., Snyder, J., Gortler, S. J., & Hoppe, H.
 *     "Texture mapping progressive meshes."
 *      In Proc. ACM SIGGRAPH (pp. 409-416). 2001
 *
 * [2] Liu, L., Zhang, L., Xu, Y., Gotsman, C., & Gortler, S. J. (2008, July).
 *     A local/global approach to mesh parameterization.
 *     Computer Graphics Forum (Vol. 27, No. 5, pp. 1495-1504). Blackwell Publishing Ltd.
 */

template <class MeshType, bool PerWedgeFlag>
class Distortion
{
public:
    typedef typename MeshType::FaceType FaceType;
    typedef typename MeshType::VertexType VertexType;
    typedef typename MeshType::CoordType CoordType;
    typedef typename MeshType::ScalarType ScalarType;
    typedef typename MeshType::FaceType::CurVecType CurVecType;
    typedef UVHelper<MeshType, PerWedgeFlag>          UV;
    typedef typename UV::TexCoordType                 TexCoordType;
	typedef typename TexCoordType::ScalarType         TexScalarType;

	static TexCoordType UVCoord(const FaceType *f, int i)
	{
		return UV::Coord(f, i);
	}

    static ScalarType Area3D(const FaceType *f)
    {
        return DoubleArea(*f)*(0.5);
    }

    static ScalarType AreaUV(const FaceType *f)
    {
		TexCoordType uv0 = UVCoord(f, 0);
		TexCoordType uv1 = UVCoord(f, 1);
		TexCoordType uv2 = UVCoord(f, 2);
        ScalarType AreaUV=((uv1-uv0)^(uv2-uv0))/2.0;
        return AreaUV;
    }

    static ScalarType EdgeLenght3D(const FaceType *f,int e)
    {
        assert((e>=0)&&(e<3));
        ScalarType length=(f->cP0(e)-f->cP1(e)).Norm();
        return (length);
    }

    static ScalarType EdgeLenghtUV(const FaceType *f,int e)
    {
        assert((e>=0)&&(e<3));
		TexCoordType uv0 = UVCoord(f, e+0);
		TexCoordType uv1 = UVCoord(f, (e+1)%3);
        ScalarType UVlength=Distance(uv0,uv1);
        return UVlength;
    }

    static ScalarType AngleCos3D(const FaceType *f,int e)
    {
        assert((e>=0)&&(e<3));
        CoordType p0=f->P((e+2)%3);
        CoordType p1=f->P(e);
        CoordType p2=f->P((e+1)%3);
        CoordType dir0=p2-p1;
        CoordType dir1=p0-p1;
        dir0.Normalize();
        dir1.Normalize();
        ScalarType angle=dir0*dir1;
        return angle;
    }

    static ScalarType AngleCosUV(const FaceType *f,int e)
    {
		TexCoordType uv0 = UVCoord(f, (e+2)%3);
		TexCoordType uv1 = UVCoord(f,  e);
		TexCoordType uv2 = UVCoord(f, (e+1)%3);
        vcg::Point2<ScalarType> dir0=uv2-uv1;
        vcg::Point2<ScalarType> dir1=uv0-uv1;
        dir0.Normalize();
        dir1.Normalize();
        ScalarType angle=dir0*dir1;
        return angle;
    }

    static ScalarType AngleRad3D(const FaceType *f,int e)
    {
        assert((e>=0)&&(e<3));
        CoordType p0=f->cP((e+2)%3);
        CoordType p1=f->cP(e);
        CoordType p2=f->cP((e+1)%3);
        CoordType dir0=p2-p1;
        CoordType dir1=p0-p1;
        return Angle(dir0,dir1);
    }

    static ScalarType AngleRadUV(const FaceType *f,int e)
    {
		TexCoordType uv0 = UVCoord(f, (e+2)%3);
		TexCoordType uv1 = UVCoord(f,  e);
		TexCoordType uv2 = UVCoord(f, (e+1)%3);
        vcg::Point2<TexScalarType> dir0=uv2-uv1;
        vcg::Point2<TexScalarType> dir1=uv0-uv1;
        dir0.Normalize();
        dir1.Normalize();
        ScalarType t=dir0*dir1;
        if(t>1) t = 1;
        else if(t<-1) t = -1;
        return acos(t);
    }


public:
    enum DistType{AreaDist,EdgeDist,AngleDist,CrossDist,L2Stretch,LInfStretch,ARAPDist};

    ///return the absolute difference between angle in 3D space and texture space
    ///Actually the difference in cos space
    static ScalarType AngleCosDistortion(const FaceType *f,int e)
    {
        ScalarType Angle_3D=AngleCos3D(f,e);
        ScalarType Angle_UV=AngleCosUV(f,e);
        ScalarType diff=fabs(Angle_3D-Angle_UV);///Angle_3D;
        return diff;
    }
    ///return the absolute difference between angle in 3D space and texture space
    ///Actually the difference in cos space
    static ScalarType AngleRadDistortion(const FaceType *f,int e)
    {
        ScalarType Angle_3D=AngleRad3D(f,e);
        ScalarType Angle_UV=AngleRadUV(f,e);
        ScalarType diff=fabs(Angle_3D-Angle_UV)/Angle_3D;///Angle_3D;
        return diff;
    }

    ///return the variance of angle, normalized
    ///in absolute value
    static ScalarType AngleDistortion(const FaceType *f)
    {
        return  (AngleRadDistortion(f,0) +
                AngleRadDistortion(f,1) +
                AngleRadDistortion(f,2))/3.0;
    }

    ///return the global scaling factors  from 3D to UV
    static void MeshScalingFactor(const MeshType &m,
                                  ScalarType &AreaScale,
                                  ScalarType &EdgeScale)
    {
        ScalarType SumArea3D=0;
        ScalarType SumArea2D=0;
        ScalarType SumEdge3D=0;
        ScalarType SumEdge2D=0;
        for (size_t i=0;i<m.face.size();i++)
        {
            SumArea3D+=Area3D(&m.face[i]);
            SumArea2D+=AreaUV(&m.face[i]);
            for (int j=0;j<3;j++)
            {
                SumEdge3D+=EdgeLenght3D(&m.face[i],j);
                SumEdge2D+=EdgeLenghtUV(&m.face[i],j);
            }
        }
        AreaScale=SumArea3D/SumArea2D;
        EdgeScale=SumEdge3D/SumEdge2D;
    }

    ///return the variance of edge length, normalized in absolute value,
    ///the needed scaling factor EdgeScaleVal may be calculated
    ///by using the ScalingFactor function
    static ScalarType EdgeDistortion(const FaceType *f,int e,
                                     ScalarType EdgeScaleVal)
    {
        ScalarType edgeUV=EdgeLenghtUV(f,e)*EdgeScaleVal;
        ScalarType edge3D=EdgeLenght3D(f,e);
        assert(edge3D > 0);
        ScalarType diff=fabs(edge3D-edgeUV)/edge3D;
        assert(!math::IsNAN(diff));
        return diff;
    }

    ///return the variance of area, normalized
    ///in absolute value, the scalar AreaScaleVal may be calculated
    ///by using the ScalingFactor function
    static ScalarType AreaDistortion(const FaceType *f,
                                     ScalarType AreaScaleVal)
    {
        ScalarType areaUV=AreaUV(f)*AreaScaleVal;
        ScalarType area3D=Area3D(f);
        assert(area3D > 0);
        ScalarType diff=fabs(areaUV-area3D)/area3D;
        assert(!math::IsNAN(diff));
        return diff;
    }

    static ScalarType L2StretchEnergySquared(const FaceType *f,
                                             ScalarType AreaScaleVal)
    {
		TexCoordType p0 = UVCoord(f, 0);
		TexCoordType p1 = UVCoord(f, 1);
		TexCoordType p2 = UVCoord(f, 2);

        CoordType q0 = f->cP(0);
        CoordType q1 = f->cP(1);
        CoordType q2 = f->cP(2);

        TexScalarType A2 = ((p1-p0)^(p2-p0));

        if (A2<0) A2 = 0; // will be NAN, +infinity

        CoordType Ss = ( q0 * ( p1[1]-p2[1] ) + q1 * (p2[1]-p0[1]) + q2 * (p0[1]-p1[1]) ) / A2;
        CoordType St = ( q0 * ( p2[0]-p1[0] ) + q1 * (p0[0]-p2[0]) + q2 * (p1[0]-p0[0]) ) / A2;

        ScalarType a = Ss.SquaredNorm() / AreaScaleVal;
        ScalarType c = St.SquaredNorm() / AreaScaleVal;

        return ((a+c)/2);
    }



    static ScalarType LInfStretchEnergy(const FaceType *f,  ScalarType AreaScaleVal)
    {
		TexCoordType p0 = UVCoord(f, 0);
		TexCoordType p1 = UVCoord(f, 1);
		TexCoordType p2 = UVCoord(f, 2);

        CoordType q0 = f->cP(0);
        CoordType q1 = f->cP(1);
        CoordType q2 = f->cP(2);

        TexScalarType A2 = ((p1-p0)^(p2-p0));

        if (A2<0) A2 = 0; // will be NAN, +infinity

        CoordType Ss = ( q0 * ( p1[1]-p2[1] ) + q1 * (p2[1]-p0[1]) + q2 * (p0[1]-p1[1]) ) / A2;
        CoordType St = ( q0 * ( p2[0]-p1[0] ) + q1 * (p0[0]-p2[0]) + q2 * (p1[0]-p0[0]) ) / A2;

        ScalarType a = Ss.SquaredNorm() / AreaScaleVal;
        ScalarType b = Ss*St / AreaScaleVal;
        ScalarType c = St.SquaredNorm() / AreaScaleVal;

        ScalarType delta = sqrt((a-c)*(a-c)+4*b*b);
        ScalarType G =  sqrt( (a+c+delta)/2 );
        //ScalarType g = sqrt( (a+c-delta)/2 ); // not needed
        return G;
    }

	static ScalarType ARAPEnergy(const FaceType *f)
	{
		if (f == NULL)
		{
			return std::numeric_limits<ScalarType>::infinity();
		}

		const Eigen::Matrix2d F = mappingTransform2D(*f);
		const Eigen::Vector2d singular = svd2x2(F);
		const double a = singular(0) - 1;
		const double b = singular(1) - 1;
		return ScalarType(0.5 * (a*a + b*b));
	}

	static Eigen::Matrix2d mappingTransform2D(const FaceType & triangle)
	{
		typedef  Eigen::Matrix<double, 3, 2> Matrix32;
		typedef  Eigen::Matrix2d             Matrix22;


		Matrix22 param3d, param2d;
		// 3D
		{
			Matrix32 edges3D, P3D;
			Eigen::Vector3d e0, e1;
			(triangle.cP(1) - triangle.cP(0)).ToEigenVector(e0); // 0->1
			(triangle.cP(2) - triangle.cP(0)).ToEigenVector(e1); // 0->2
			edges3D.col(0) = e0;
			edges3D.col(1) = e1;

			// Projection/frame change matrix
			P3D.col(0) = edges3D.col(0).normalized(); // 0->1 normalized                                 e0 basis
			P3D.col(1) = (edges3D.col(1) - edges3D.col(1).dot(P3D.col(0)) * P3D.col(0)).normalized(); // e1 basis orthogonal to e0

			param3d = (P3D.transpose() * edges3D);
		}

		// 2D
		{
			Matrix22 edges2D, P2D;
			TexCoordType uv0 = UVCoord(&triangle, 0);
			TexCoordType uv1 = UVCoord(&triangle, 1);
			TexCoordType uv2 = UVCoord(&triangle, 2);

			const TexCoordType e0 = (uv1 - uv0); // 0->1
			const TexCoordType e1 = (uv2 - uv0); // 0->2
			param2d << e0.X(), e1.X(),
			           e0.Y(), e1.Y();
		}

		return param2d * param3d.inverse(); // transf mapping
	}

	// svd 2x2 matrix (singular values only)
	static Eigen::Vector2d svd2x2(const Eigen::Matrix2d & M)
	{
		const double a=M(0,0), b=M(0,1), c=M(1,0), d=M(1,1);
		const double tmp1 = a*a + b*b;
		const double tmp2 = c*c + d*d;
		const double s1 = tmp1 + tmp2;
		const double s2 = std::sqrt(std::pow((tmp1 -tmp2), 2.0) + 4 * std::pow(a*c + b*d, 2.0));
		return Eigen::Vector2d(std::sqrt((s1+s2)/2.0), std::sqrt((s1-s2)/2.0));
	}


    ///return the number of folded faces
    static bool IsFolded(const FaceType *f)
    {
        ScalarType areaUV=AreaUV(f);
        /*if (areaUV<0)
                    printf("area %5.5f \n",areaUV);*/
        return (areaUV<0);
    }

    static int FoldedNum(const MeshType &m)
    {
        int folded=0;

        ForEachFace(m, std::function<void (const FaceType&)>([&folded](const FaceType &f){
          if(IsFolded(&f)) folded++;
        }));
        
        return folded;
    }

    static bool GloballyUnFolded(const MeshType &m)
    {
        int num=FoldedNum(m);
        return (num>(m.fn)/2);
    }

    static ScalarType MeshAngleDistortion(const MeshType &m)
    {
        ScalarType UDdist=0;
        ForEachFace(m, std::function<void (const FaceType&)>([&UDdist](const FaceType &f){
          UDdist += AngleDistortion(f)*Area3D(f);
        }));
        
        return UDdist;
    }

    static ScalarType SetFQAsCrossDirDistortion(MeshType &m)
    {
        //first save the old UV dir
        std::vector<CurVecType> Dir1,Dir2;
        for (size_t i=0;i<m.face.size();i++)
        {
            Dir1.push_back(m.face[i].PD1());
            Dir2.push_back(m.face[i].PD2());
        }
        vcg::tri::CrossField<MeshType>::InitDirFromWEdgeUV(m);

        ScalarType tot = 0, totA = 0;

        //then compute angle deficit
        for (size_t i=0;i<m.face.size();i++)
        {

            FaceType &f( m.face[i] );
            CoordType transfPD1=vcg::tri::CrossField<MeshType>::K_PI(CoordType::Construct( Dir1[i] ),
                                                                     CoordType::Construct( f.PD1() ),
                                                                     f.N());
            transfPD1.Normalize();
            ScalarType AngleDeficit=vcg::Angle(transfPD1,CoordType::Construct( f.PD1() ));
            AngleDeficit=math::ToDeg(AngleDeficit);
            if ((AngleDeficit>45)||(AngleDeficit<0))
            {
                std::cout<<"Warnign A Deficit "<<AngleDeficit<<std::endl;
            }
//            assert(AngleDeficit<45);
//            assert(AngleDeficit>=0);

            ScalarType doubleArea = vcg::DoubleArea( f );
            ScalarType distortion = (AngleDeficit)/ 45 ;

            m.face[i].Q()= distortion;
            tot += distortion * doubleArea;
            totA += doubleArea;
        }

        //finally restore the original directions
        for (size_t i=0;i<m.face.size();i++)
        {
            m.face[i].PD1()=Dir1[i];
            m.face[i].PD2()=Dir2[i];
        }

        return tot / totA;
    }

    static ScalarType SetQasDistorsion(MeshType &m, DistType DType=AreaDist)
    {
        if (DType==CrossDist)
        {
            ScalarType res = SetFQAsCrossDirDistortion(m);

            vcg::tri::UpdateQuality<MeshType>::VertexFromFace(m,true);
            return res;
        }

        ScalarType edge_scale,area_scale;
        MeshScalingFactor(m,area_scale,edge_scale);

        ScalarType tot = 0;
        ScalarType totA = 0;

        for (size_t i=0;i<m.face.size();i++)
        {
            if (m.face[i].IsD())continue;
            ScalarType q;
            switch (DType) {
            case CrossDist:
                // make compiler happy
                q = 0;
                break;
            case AreaDist:
                q = AreaDistortion(&m.face[i],area_scale);
                break;
            case AngleDist:
                q = AngleDistortion(&m.face[i]);
                break;
            case EdgeDist:
                q =( EdgeDistortion(&m.face[i],0,edge_scale)+
                     EdgeDistortion(&m.face[i],1,edge_scale)+
                     EdgeDistortion(&m.face[i],2,edge_scale) )/3;
                break;
            case L2Stretch:
                q = L2StretchEnergySquared( &m.face[i],area_scale );
                break;
            case LInfStretch:
                q = LInfStretchEnergy( &m.face[i],area_scale );
                break;
            case ARAPDist:
                q = ARAPEnergy(&m.face[i]);
                break;
            }

            m.face[i].Q() = q; // note: for L2Stretch, we are puttning E^2 on Q

            // aggregate:
            if (DType==LInfStretch) {
                tot = std::max( tot, q );
            } else {
                ScalarType a = Area3D(&m.face[i]);
                tot += q*a;
                totA += a;
            }

        }

        vcg::tri::UpdateQuality<MeshType>::VertexFromFace(m,true);

        switch (DType) {
            case L2Stretch: return sqrt(tot/totA);
            case LInfStretch: return tot;
            default:  return tot/totA;
        }
    }
};

}} // namespace end

#endif