1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef VCG_PARAM_DISTORTION
#define VCG_PARAM_DISTORTION
#include <vcg/complex/algorithms/parametrization/uv_utils.h>
#include <vcg/complex/algorithms/parametrization/tangent_field_operators.h>
#include <Eigen/Dense>
namespace vcg {
namespace tri {
template <class MeshType, bool PerWedge>
struct UVHelper {};
template <class MeshType>
struct UVHelper<MeshType, true>
{
typedef typename MeshType::FaceType FaceType;
typedef typename FaceType::TexCoordType::PointType TexCoordType;
static TexCoordType Coord(const FaceType *f, int i)
{
return f->cWT(i).P();
}
};
template <class MeshType>
struct UVHelper<MeshType, false>
{
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::VertexType VertexType;
typedef typename VertexType::TexCoordType::PointType TexCoordType;
static TexCoordType Coord(const FaceType *f, int i)
{
return f->cV(i)->T().P();
}
};
/*
* Energy types:
*
* AreaDist : 0 for equiareal (equipotent) mappings
* EdgeDist (hack): 0 for isometric mappings (computed on edges only)
* AngleDist (hack): 0 for conformal mappings
* CrossDist : as above, but computed on tangent directions (not UVs)
* L2Stretch : 1 for isometric mappings (averaged case on the mesh),
* +inf on degenerate / folded cases
* Described in [1]
* LInfStretch : as above, but WORST case
* (returns the worst stretch on any position and direction)
* Described in [1]
* ARAPEnergy : 0 for isometric mappings
* Described in [2]
*
* [1] Sander, P. V., Snyder, J., Gortler, S. J., & Hoppe, H.
* "Texture mapping progressive meshes."
* In Proc. ACM SIGGRAPH (pp. 409-416). 2001
*
* [2] Liu, L., Zhang, L., Xu, Y., Gotsman, C., & Gortler, S. J. (2008, July).
* A local/global approach to mesh parameterization.
* Computer Graphics Forum (Vol. 27, No. 5, pp. 1495-1504). Blackwell Publishing Ltd.
*/
template <class MeshType, bool PerWedgeFlag>
class Distortion
{
public:
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::FaceType::CurVecType CurVecType;
typedef UVHelper<MeshType, PerWedgeFlag> UV;
typedef typename UV::TexCoordType TexCoordType;
typedef typename TexCoordType::ScalarType TexScalarType;
static TexCoordType UVCoord(const FaceType *f, int i)
{
return UV::Coord(f, i);
}
static ScalarType Area3D(const FaceType *f)
{
return DoubleArea(*f)*(0.5);
}
static ScalarType AreaUV(const FaceType *f)
{
TexCoordType uv0 = UVCoord(f, 0);
TexCoordType uv1 = UVCoord(f, 1);
TexCoordType uv2 = UVCoord(f, 2);
ScalarType AreaUV=((uv1-uv0)^(uv2-uv0))/2.0;
return AreaUV;
}
static ScalarType EdgeLenght3D(const FaceType *f,int e)
{
assert((e>=0)&&(e<3));
ScalarType length=(f->cP0(e)-f->cP1(e)).Norm();
return (length);
}
static ScalarType EdgeLenghtUV(const FaceType *f,int e)
{
assert((e>=0)&&(e<3));
TexCoordType uv0 = UVCoord(f, e+0);
TexCoordType uv1 = UVCoord(f, (e+1)%3);
ScalarType UVlength=Distance(uv0,uv1);
return UVlength;
}
static ScalarType AngleCos3D(const FaceType *f,int e)
{
assert((e>=0)&&(e<3));
CoordType p0=f->P((e+2)%3);
CoordType p1=f->P(e);
CoordType p2=f->P((e+1)%3);
CoordType dir0=p2-p1;
CoordType dir1=p0-p1;
dir0.Normalize();
dir1.Normalize();
ScalarType angle=dir0*dir1;
return angle;
}
static ScalarType AngleCosUV(const FaceType *f,int e)
{
TexCoordType uv0 = UVCoord(f, (e+2)%3);
TexCoordType uv1 = UVCoord(f, e);
TexCoordType uv2 = UVCoord(f, (e+1)%3);
vcg::Point2<ScalarType> dir0=uv2-uv1;
vcg::Point2<ScalarType> dir1=uv0-uv1;
dir0.Normalize();
dir1.Normalize();
ScalarType angle=dir0*dir1;
return angle;
}
static ScalarType AngleRad3D(const FaceType *f,int e)
{
assert((e>=0)&&(e<3));
CoordType p0=f->cP((e+2)%3);
CoordType p1=f->cP(e);
CoordType p2=f->cP((e+1)%3);
CoordType dir0=p2-p1;
CoordType dir1=p0-p1;
return Angle(dir0,dir1);
}
static ScalarType AngleRadUV(const FaceType *f,int e)
{
TexCoordType uv0 = UVCoord(f, (e+2)%3);
TexCoordType uv1 = UVCoord(f, e);
TexCoordType uv2 = UVCoord(f, (e+1)%3);
vcg::Point2<TexScalarType> dir0=uv2-uv1;
vcg::Point2<TexScalarType> dir1=uv0-uv1;
dir0.Normalize();
dir1.Normalize();
ScalarType t=dir0*dir1;
if(t>1) t = 1;
else if(t<-1) t = -1;
return acos(t);
}
public:
enum DistType{AreaDist,EdgeDist,AngleDist,CrossDist,L2Stretch,LInfStretch,ARAPDist};
///return the absolute difference between angle in 3D space and texture space
///Actually the difference in cos space
static ScalarType AngleCosDistortion(const FaceType *f,int e)
{
ScalarType Angle_3D=AngleCos3D(f,e);
ScalarType Angle_UV=AngleCosUV(f,e);
ScalarType diff=fabs(Angle_3D-Angle_UV);///Angle_3D;
return diff;
}
///return the absolute difference between angle in 3D space and texture space
///Actually the difference in cos space
static ScalarType AngleRadDistortion(const FaceType *f,int e)
{
ScalarType Angle_3D=AngleRad3D(f,e);
ScalarType Angle_UV=AngleRadUV(f,e);
ScalarType diff=fabs(Angle_3D-Angle_UV)/Angle_3D;///Angle_3D;
return diff;
}
///return the variance of angle, normalized
///in absolute value
static ScalarType AngleDistortion(const FaceType *f)
{
return (AngleRadDistortion(f,0) +
AngleRadDistortion(f,1) +
AngleRadDistortion(f,2))/3.0;
}
///return the global scaling factors from 3D to UV
static void MeshScalingFactor(const MeshType &m,
ScalarType &AreaScale,
ScalarType &EdgeScale)
{
ScalarType SumArea3D=0;
ScalarType SumArea2D=0;
ScalarType SumEdge3D=0;
ScalarType SumEdge2D=0;
for (size_t i=0;i<m.face.size();i++)
{
SumArea3D+=Area3D(&m.face[i]);
SumArea2D+=AreaUV(&m.face[i]);
for (int j=0;j<3;j++)
{
SumEdge3D+=EdgeLenght3D(&m.face[i],j);
SumEdge2D+=EdgeLenghtUV(&m.face[i],j);
}
}
AreaScale=SumArea3D/SumArea2D;
EdgeScale=SumEdge3D/SumEdge2D;
}
///return the variance of edge length, normalized in absolute value,
///the needed scaling factor EdgeScaleVal may be calculated
///by using the ScalingFactor function
static ScalarType EdgeDistortion(const FaceType *f,int e,
ScalarType EdgeScaleVal)
{
ScalarType edgeUV=EdgeLenghtUV(f,e)*EdgeScaleVal;
ScalarType edge3D=EdgeLenght3D(f,e);
assert(edge3D > 0);
ScalarType diff=fabs(edge3D-edgeUV)/edge3D;
assert(!math::IsNAN(diff));
return diff;
}
///return the variance of area, normalized
///in absolute value, the scalar AreaScaleVal may be calculated
///by using the ScalingFactor function
static ScalarType AreaDistortion(const FaceType *f,
ScalarType AreaScaleVal)
{
ScalarType areaUV=AreaUV(f)*AreaScaleVal;
ScalarType area3D=Area3D(f);
assert(area3D > 0);
ScalarType diff=fabs(areaUV-area3D)/area3D;
assert(!math::IsNAN(diff));
return diff;
}
static ScalarType L2StretchEnergySquared(const FaceType *f,
ScalarType AreaScaleVal)
{
TexCoordType p0 = UVCoord(f, 0);
TexCoordType p1 = UVCoord(f, 1);
TexCoordType p2 = UVCoord(f, 2);
CoordType q0 = f->cP(0);
CoordType q1 = f->cP(1);
CoordType q2 = f->cP(2);
TexScalarType A2 = ((p1-p0)^(p2-p0));
if (A2<0) A2 = 0; // will be NAN, +infinity
CoordType Ss = ( q0 * ( p1[1]-p2[1] ) + q1 * (p2[1]-p0[1]) + q2 * (p0[1]-p1[1]) ) / A2;
CoordType St = ( q0 * ( p2[0]-p1[0] ) + q1 * (p0[0]-p2[0]) + q2 * (p1[0]-p0[0]) ) / A2;
ScalarType a = Ss.SquaredNorm() / AreaScaleVal;
ScalarType c = St.SquaredNorm() / AreaScaleVal;
return ((a+c)/2);
}
static ScalarType LInfStretchEnergy(const FaceType *f, ScalarType AreaScaleVal)
{
TexCoordType p0 = UVCoord(f, 0);
TexCoordType p1 = UVCoord(f, 1);
TexCoordType p2 = UVCoord(f, 2);
CoordType q0 = f->cP(0);
CoordType q1 = f->cP(1);
CoordType q2 = f->cP(2);
TexScalarType A2 = ((p1-p0)^(p2-p0));
if (A2<0) A2 = 0; // will be NAN, +infinity
CoordType Ss = ( q0 * ( p1[1]-p2[1] ) + q1 * (p2[1]-p0[1]) + q2 * (p0[1]-p1[1]) ) / A2;
CoordType St = ( q0 * ( p2[0]-p1[0] ) + q1 * (p0[0]-p2[0]) + q2 * (p1[0]-p0[0]) ) / A2;
ScalarType a = Ss.SquaredNorm() / AreaScaleVal;
ScalarType b = Ss*St / AreaScaleVal;
ScalarType c = St.SquaredNorm() / AreaScaleVal;
ScalarType delta = sqrt((a-c)*(a-c)+4*b*b);
ScalarType G = sqrt( (a+c+delta)/2 );
//ScalarType g = sqrt( (a+c-delta)/2 ); // not needed
return G;
}
static ScalarType ARAPEnergy(const FaceType *f)
{
if (f == NULL)
{
return std::numeric_limits<ScalarType>::infinity();
}
const Eigen::Matrix2d F = mappingTransform2D(*f);
const Eigen::Vector2d singular = svd2x2(F);
const double a = singular(0) - 1;
const double b = singular(1) - 1;
return ScalarType(0.5 * (a*a + b*b));
}
static Eigen::Matrix2d mappingTransform2D(const FaceType & triangle)
{
typedef Eigen::Matrix<double, 3, 2> Matrix32;
typedef Eigen::Matrix2d Matrix22;
Matrix22 param3d, param2d;
// 3D
{
Matrix32 edges3D, P3D;
Eigen::Vector3d e0, e1;
(triangle.cP(1) - triangle.cP(0)).ToEigenVector(e0); // 0->1
(triangle.cP(2) - triangle.cP(0)).ToEigenVector(e1); // 0->2
edges3D.col(0) = e0;
edges3D.col(1) = e1;
// Projection/frame change matrix
P3D.col(0) = edges3D.col(0).normalized(); // 0->1 normalized e0 basis
P3D.col(1) = (edges3D.col(1) - edges3D.col(1).dot(P3D.col(0)) * P3D.col(0)).normalized(); // e1 basis orthogonal to e0
param3d = (P3D.transpose() * edges3D);
}
// 2D
{
Matrix22 edges2D, P2D;
TexCoordType uv0 = UVCoord(&triangle, 0);
TexCoordType uv1 = UVCoord(&triangle, 1);
TexCoordType uv2 = UVCoord(&triangle, 2);
const TexCoordType e0 = (uv1 - uv0); // 0->1
const TexCoordType e1 = (uv2 - uv0); // 0->2
param2d << e0.X(), e1.X(),
e0.Y(), e1.Y();
}
return param2d * param3d.inverse(); // transf mapping
}
// svd 2x2 matrix (singular values only)
static Eigen::Vector2d svd2x2(const Eigen::Matrix2d & M)
{
const double a=M(0,0), b=M(0,1), c=M(1,0), d=M(1,1);
const double tmp1 = a*a + b*b;
const double tmp2 = c*c + d*d;
const double s1 = tmp1 + tmp2;
const double s2 = std::sqrt(std::pow((tmp1 -tmp2), 2.0) + 4 * std::pow(a*c + b*d, 2.0));
return Eigen::Vector2d(std::sqrt((s1+s2)/2.0), std::sqrt((s1-s2)/2.0));
}
///return the number of folded faces
static bool IsFolded(const FaceType *f)
{
ScalarType areaUV=AreaUV(f);
/*if (areaUV<0)
printf("area %5.5f \n",areaUV);*/
return (areaUV<0);
}
static int FoldedNum(const MeshType &m)
{
int folded=0;
ForEachFace(m, std::function<void (const FaceType&)>([&folded](const FaceType &f){
if(IsFolded(&f)) folded++;
}));
return folded;
}
static bool GloballyUnFolded(const MeshType &m)
{
int num=FoldedNum(m);
return (num>(m.fn)/2);
}
static ScalarType MeshAngleDistortion(const MeshType &m)
{
ScalarType UDdist=0;
ForEachFace(m, std::function<void (const FaceType&)>([&UDdist](const FaceType &f){
UDdist += AngleDistortion(f)*Area3D(f);
}));
return UDdist;
}
static ScalarType SetFQAsCrossDirDistortion(MeshType &m)
{
//first save the old UV dir
std::vector<CurVecType> Dir1,Dir2;
for (size_t i=0;i<m.face.size();i++)
{
Dir1.push_back(m.face[i].PD1());
Dir2.push_back(m.face[i].PD2());
}
vcg::tri::CrossField<MeshType>::InitDirFromWEdgeUV(m);
ScalarType tot = 0, totA = 0;
//then compute angle deficit
for (size_t i=0;i<m.face.size();i++)
{
FaceType &f( m.face[i] );
CoordType transfPD1=vcg::tri::CrossField<MeshType>::K_PI(CoordType::Construct( Dir1[i] ),
CoordType::Construct( f.PD1() ),
f.N());
transfPD1.Normalize();
ScalarType AngleDeficit=vcg::Angle(transfPD1,CoordType::Construct( f.PD1() ));
AngleDeficit=math::ToDeg(AngleDeficit);
if ((AngleDeficit>45)||(AngleDeficit<0))
{
std::cout<<"Warnign A Deficit "<<AngleDeficit<<std::endl;
}
// assert(AngleDeficit<45);
// assert(AngleDeficit>=0);
ScalarType doubleArea = vcg::DoubleArea( f );
ScalarType distortion = (AngleDeficit)/ 45 ;
m.face[i].Q()= distortion;
tot += distortion * doubleArea;
totA += doubleArea;
}
//finally restore the original directions
for (size_t i=0;i<m.face.size();i++)
{
m.face[i].PD1()=Dir1[i];
m.face[i].PD2()=Dir2[i];
}
return tot / totA;
}
static ScalarType SetQasDistorsion(MeshType &m, DistType DType=AreaDist)
{
if (DType==CrossDist)
{
ScalarType res = SetFQAsCrossDirDistortion(m);
vcg::tri::UpdateQuality<MeshType>::VertexFromFace(m,true);
return res;
}
ScalarType edge_scale,area_scale;
MeshScalingFactor(m,area_scale,edge_scale);
ScalarType tot = 0;
ScalarType totA = 0;
for (size_t i=0;i<m.face.size();i++)
{
if (m.face[i].IsD())continue;
ScalarType q;
switch (DType) {
case CrossDist:
// make compiler happy
q = 0;
break;
case AreaDist:
q = AreaDistortion(&m.face[i],area_scale);
break;
case AngleDist:
q = AngleDistortion(&m.face[i]);
break;
case EdgeDist:
q =( EdgeDistortion(&m.face[i],0,edge_scale)+
EdgeDistortion(&m.face[i],1,edge_scale)+
EdgeDistortion(&m.face[i],2,edge_scale) )/3;
break;
case L2Stretch:
q = L2StretchEnergySquared( &m.face[i],area_scale );
break;
case LInfStretch:
q = LInfStretchEnergy( &m.face[i],area_scale );
break;
case ARAPDist:
q = ARAPEnergy(&m.face[i]);
break;
}
m.face[i].Q() = q; // note: for L2Stretch, we are puttning E^2 on Q
// aggregate:
if (DType==LInfStretch) {
tot = std::max( tot, q );
} else {
ScalarType a = Area3D(&m.face[i]);
tot += q*a;
totA += a;
}
}
vcg::tri::UpdateQuality<MeshType>::VertexFromFace(m,true);
switch (DType) {
case L2Stretch: return sqrt(tot/totA);
case LInfStretch: return tot;
default: return tot/totA;
}
}
};
}} // namespace end
#endif
|