File: uv_utils.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 45,124 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 29
file content (231 lines) | stat: -rw-r--r-- 8,531 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/

#ifndef VCG_UV_UTILS
#define VCG_UV_UTILS

#include <vcg/space/point2.h>
#include <vcg/space/box2.h>
#include <vcg/space/triangle2.h>
#include <vcg/space/triangle3.h>

namespace vcg {
namespace tri{
template <class MeshType>
class UV_Utils
{
    typedef typename MeshType::CoordType CoordType;
    typedef typename MeshType::ScalarType ScalarType;
    typedef typename MeshType::FaceType FaceType;
    typedef typename MeshType::VertexType VertexType;
    typedef typename MeshType::VertexIterator VertexIterator;
    typedef typename MeshType::FaceIterator FaceIterator;
    typedef typename vcg::Point2<ScalarType> UVCoordType;

public:

    ///calculate the area in UV space
    static ScalarType PerVertUVArea(MeshType &m)
    {
        FaceIterator fi;
        ScalarType Area=0;
        for (fi=m.face.begin();fi!=m.face.end();fi++)
        {
            if ((*fi).IsD()) continue;
            UVCoordType E0= (*fi).V(1)->T().P()-(*fi).V(0)->T().P();
            UVCoordType E1= (*fi).V(2)->T().P()-(*fi).V(0)->T().P();
            ScalarType doubleA=fabs(E0^E1);
            Area+=doubleA/2;
        }
        return Area;
    }

    ///scale vert UV to match 3D area
    static void ScaleVertUVToMatchArea(MeshType &m)
    {
        FaceIterator fi;
        ScalarType Area3D=0;
        for (fi=m.face.begin();fi!=m.face.end();fi++)
        {
            if ((*fi).IsD()) continue;
            Area3D+=vcg::DoubleArea((*fi))/2;
        }
        ScalarType Area2D=PerVertUVArea(m);
        ScalarType ScaleFact=sqrt( Area3D / Area2D );

        VertexIterator vi;
        for (vi=m.vert.begin();vi!=m.vert.end();vi++)
        {
            if ((*vi).IsD()) continue;
            (*vi).T().P()*=ScaleFact;
        }
    }

    ///calculate the BBox in UV space
    static vcg::Box2<ScalarType> PerWedgeUVBox(MeshType &m)
    {
        vcg::Box2<ScalarType> UVBox;
        FaceIterator fi;
        for (fi=m.face.begin();fi!=m.face.end();fi++)
        {
            if ((*fi).IsD()) continue;
            for (int i=0;i<3;i++)
                UVBox.Add((*fi).WT(i).P());
        }
        return UVBox;
    }

    ///calculate the BBox in UV space
    static vcg::Box2<ScalarType> PerVertUVBox(MeshType &m)
    {
        vcg::Box2<ScalarType> UVBox;
        VertexIterator vi;
        for (vi=m.vert.begin();vi!=m.vert.end();vi++)
        {
            if ((*vi).IsD()) continue;
            UVBox.Add((*vi).T().P());
        }
        return UVBox;
    }

    void PerWedgeMakeUnitaryUV(MeshType &m)
    {
        vcg::Box2<typename MeshType::ScalarType> UVBox = PerWedgeUVBox(m);

        typename MeshType::FaceIterator fi;
        Point2f boxSize(UVBox.max-UVBox.min);
        for (fi=m.face.begin();fi!=m.face.end();fi++)
        {
            if ((*fi).IsD()) continue;
            for (int i=0;i<3;i++)
            {
                (*fi).WT(i).U() = ((*fi).WT(i).U()-UVBox.min[0])/boxSize[0] ;
                (*fi).WT(i).V() = ((*fi).WT(i).V()-UVBox.min[1])/boxSize[1] ;
            }
        }
    }
    ///transform curvature to UV space
    static UVCoordType Coord3DtoUV(FaceType &f,const CoordType &dir)
    {
        ///then transform to UV
        CoordType bary3d=(f.P(0)+f.P(1)+f.P(2))/3.0;
        UVCoordType baryUV=(f.WT(0).P()+f.WT(1).P()+f.WT(2).P())/3.0;
        CoordType dir3d=bary3d+dir;
        CoordType baryCoordsUV;
        vcg::InterpolationParameters<FaceType,ScalarType>(f,dir3d,baryCoordsUV);
        UVCoordType dirUV=baryCoordsUV.X()*f.WT(0).P()+
                baryCoordsUV.Y()*f.WT(1).P()+
                baryCoordsUV.Z()*f.WT(2).P()-baryUV;
        dirUV.Normalize();
        return dirUV;
    }

    static void GloballyMirrorX(MeshType &m)
    {
        vcg::Box2<ScalarType> BBuv=PerVertUVBox(m);
        ScalarType Xmin=BBuv.min.X();
        ScalarType Xmax=BBuv.max.X();
        ScalarType XAv=(Xmax+Xmin)/2;
        VertexIterator vi;
        for (vi=m.vert.begin();vi!=m.vert.end();vi++)
        {
            ScalarType distAV=(*vi).T().P().X()-XAv;
            (*vi).T().P().X()=XAv-distAV;
        }
    }

    static void GloballyRotate(MeshType &m,ScalarType Angle)
    {
        vcg::Box2<ScalarType> BB=PerWedgeUVBox(m);
        UVCoordType Origin=BB.Center();
        typename MeshType::FaceIterator fi;
        for (fi=m.face.begin();fi!=m.face.end();fi++)
        {
            if ((*fi).IsD()) continue;
            for (int i=0;i<3;i++)
            {
                (*fi).WT(i).P()-=Origin;
                ScalarType X1=(*fi).WT(i).P().X()*cos(Angle)-(*fi).WT(i).P().Y()*sin(Angle);
                ScalarType Y1=(*fi).WT(i).P().X()*cos(Angle)+(*fi).WT(i).P().Y()*sin(Angle);
                (*fi).WT(i).P().X()=X1;
                (*fi).WT(i).P().Y()=Y1;
                (*fi).WT(i).P()+=Origin;
            }
        }
    }

    static void LaplacianUVVert(MeshType &m,bool fix_borders=false,int steps=3)
    {
        FaceIterator fi;
        for (int s=0;s<steps;s++)
        {
            std::vector<int> num(m.vert.size(),0);
            std::vector<UVCoordType> UVpos(m.vert.size(),UVCoordType(0,0));
            for (fi=m.face.begin();fi!=m.face.end();fi++)
            {
                for (int j=0;j<3;j++)
                {
                    VertexType *v0=(*fi).V(0);
                    VertexType *v1=(*fi).V1(0);
                    VertexType *v2=(*fi).V2(0);
                    assert(v0!=v1);
                    assert(v1!=v2);
                    assert(v0!=v2);
                    UVCoordType uv1=v1->T().P();
                    UVCoordType uv2=v2->T().P();
                    int index=v0-&(m.vert[0]);
                    num[index]+=2;
                    UVpos[index]+=uv1;
                    UVpos[index]+=uv2;
                }
            }
            VertexIterator vi;
            for (int i=0;i<m.vert.size();i++)
            {
                if ((fix_borders)&&(m.vert[i].IsB()))continue;
                if (num[i]==0)continue;
                m.vert[i].T().P()=UVpos[i]/(ScalarType)num[i];
            }
        }
    }

    static void CopyVertUVWedge(MeshType &m)
    {
        for (size_t i=0;i<m.face.size();i++)
            for (size_t j=0;j<3;j++)
                m.face[i].WT(j).P()=m.face[i].V(j)->T().P();
    }

    static void CopyWedgeVertUV(MeshType &m,bool onlyS=false)
    {
        for (size_t i=0;i<m.face.size();i++)
        {
            if ((onlyS)&&(!m.face[i].IsS()))continue;
            for (int j=0;j<3;j++)
                m.face[i].V(j)->T().P()=m.face[i].WT(j).P();
        }
    }
};
} //End Namespace Tri
} // End Namespace vcg
#endif