1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
|
/***************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCGLIB_TRIALLOCATOR
#define __VCGLIB_TRIALLOCATOR
#ifndef __VCG_MESH
#error "This file should not be included alone. It is automatically included by complex.h"
#endif
namespace vcg {
namespace tri {
/** \addtogroup trimesh
@{
*/
template<class MeshType>
size_t Index(const MeshType &m, const typename MeshType::VertexType &v) {return &v-&*m.vert.begin();}
template<class MeshType>
size_t Index(const MeshType &m, const typename MeshType::FaceType &f) {return &f-&*m.face.begin();}
template<class MeshType>
size_t Index(const MeshType &m, const typename MeshType::EdgeType &e) {return &e-&*m.edge.begin();}
template<class MeshType>
size_t Index(const MeshType &m, const typename MeshType::HEdgeType &h) {return &h-&*m.hedge.begin();}
template <class MeshType>
size_t Index(const MeshType &m, const typename MeshType::TetraType &t) { return &t - &*m.tetra.begin(); }
template<class MeshType>
size_t Index(const MeshType &m, const typename MeshType::VertexType *vp) {return vp-&*m.vert.begin();}
template<class MeshType>
size_t Index(const MeshType &m, const typename MeshType::FaceType * fp) {return fp-&*m.face.begin();}
template<class MeshType>
size_t Index(const MeshType &m, const typename MeshType::EdgeType* e) {return e-&*m.edge.begin();}
template<class MeshType>
size_t Index(const MeshType &m, const typename MeshType::HEdgeType* h) {return h-&*m.hedge.begin();}
template <class MeshType>
size_t Index(const MeshType &m, const typename MeshType::TetraType *t) { return t - &*m.tetra.begin(); }
template<class MeshType>
bool IsValidPointer( MeshType & m, const typename MeshType::VertexType *vp) { return ( m.vert.size() > 0 && (vp >= &*m.vert.begin()) && (vp <= &m.vert.back()) ); }
template<class MeshType>
bool IsValidPointer(MeshType & m, const typename MeshType::EdgeType *ep) { return ( m.edge.size() > 0 && (ep >= &*m.edge.begin()) && (ep <= &m.edge.back())); }
template<class MeshType>
bool IsValidPointer(MeshType & m, const typename MeshType::FaceType *fp) { return ( m.face.size() > 0 && (fp >= &*m.face.begin()) && (fp <= &m.face.back())); }
template<class MeshType>
bool IsValidPointer(MeshType & m, const typename MeshType::HEdgeType *hp) { return ( m.hedge.size() > 0 && (hp >= &*m.hedge.begin()) && (hp <= &m.hedge.back())); }
template <class MeshType>
bool IsValidPointer(MeshType &m, const typename MeshType::TetraType *tp) { return (m.tetra.size() > 0 && (tp >= &*m.tetra.begin()) && (tp <= &m.tetra.back())); }
template <class MeshType, class ATTR_CONT>
void ReorderAttribute(ATTR_CONT &c, std::vector<size_t> & newVertIndex, MeshType & /* m */){
typename std::set<typename MeshType::PointerToAttribute>::iterator ai;
for(ai = c.begin(); ai != c.end(); ++ai)
((typename MeshType::PointerToAttribute)(*ai)).Reorder(newVertIndex);
}
template <class MeshType, class ATTR_CONT>
void ResizeAttribute(ATTR_CONT &c, size_t sz, MeshType &/*m*/){
typename std::set<typename MeshType::PointerToAttribute>::iterator ai;
for(ai =c.begin(); ai != c.end(); ++ai)
((typename MeshType::PointerToAttribute)(*ai)).Resize(sz);
}
/*!
\brief Class to safely add and delete elements in a mesh.
Adding elements to a mesh, like faces and vertices can involve the reallocation of the vectors of the involved elements.
This class provide the only safe methods to add elements.
It also provide an accessory class vcg::tri::PointerUpdater for updating pointers to mesh elements that are kept by the user.
*/
template <class MeshType>
class Allocator
{
public:
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::VertContainer VertContainer;
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::EdgePointer EdgePointer;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::EdgeContainer EdgeContainer;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::FaceContainer FaceContainer;
typedef typename MeshType::HEdgeType HEdgeType;
typedef typename MeshType::HEdgePointer HEdgePointer;
typedef typename MeshType::HEdgeIterator HEdgeIterator;
typedef typename MeshType::HEdgeContainer HEdgeContainer;
typedef typename MeshType::TetraType TetraType;
typedef typename MeshType::TetraPointer TetraPointer;
typedef typename MeshType::TetraIterator TetraIterator;
typedef typename MeshType::TetraContainer TetraContainer;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::PointerToAttribute PointerToAttribute;
typedef typename std::set<PointerToAttribute>::iterator AttrIterator;
typedef typename std::set<PointerToAttribute>::const_iterator AttrConstIterator;
typedef typename std::set<PointerToAttribute >::iterator PAIte;
/*!
\brief Accessory class to update pointers after eventual reallocation caused by adding elements.
This class is used whenever you trigger some allocation operation that can cause the invalidation of the pointers to mesh elements.
Typical situations are when you are allocating new vertexes, edges, halfedges of faces or when you compact
their containers to get rid of deleted elements.
This object allows you to update an invalidate pointer immediately after an action that invalidate it.
\note It can also be used to prevent any update of the various internal pointers caused by an invalidation.
This can be useful in case you are building all the internal connections by hand as it happens in a importer;
\sa \ref allocation
*/
template<class SimplexPointerType>
class PointerUpdater
{
public:
PointerUpdater(void) : newBase(0), oldBase(0), newEnd(0), oldEnd(0), preventUpdateFlag(false) { ; }
void Clear(){newBase=oldBase=newEnd=oldEnd=0; remap.clear();}
/*! \brief Update a pointer to an element of a mesh after a reallocation
The updating is correctly done only if this PointerUpdater have been passed to the corresponing allocation call. \sa \ref allocation
*/
void Update(SimplexPointerType &vp)
{
//if(vp>=newBase && vp<newEnd) return;
if(vp<oldBase || vp>oldEnd) return;
assert(vp>=oldBase);
assert(vp<oldEnd);
vp=newBase+(vp-oldBase);
if(!remap.empty())
vp = newBase + remap[vp-newBase];
}
/*!
\brief return true if the allocation operation that initialized this PointerUpdater has caused a reallocation
*/
bool NeedUpdate() {if((oldBase && newBase!=oldBase && !preventUpdateFlag) || !remap.empty()) return true; else return false;}
SimplexPointerType newBase;
SimplexPointerType oldBase;
SimplexPointerType newEnd;
SimplexPointerType oldEnd;
std::vector<size_t> remap; // this vector keep the new position of an element. Uninitialized elements have max_int value to denote an element that has not to be remapped.
bool preventUpdateFlag; /// when true no update is considered necessary.
};
/* +++++++++++++++ Add Vertices ++++++++++++++++ */
/** \brief Add n vertices to the mesh.
Function to add n vertices to the mesh.
The elements are added always to the end of the vector.
No attempt of reusing previously deleted element is done.
\sa PointerUpdater
\param m the mesh to be modified
\param n the number of elements to be added
\param pu a PointerUpdater initialized so that it can be used to update pointers to vertices that could have become invalid after this adding.
\retval the iterator to the first element added.
*/
static VertexIterator AddVertices(MeshType &m, size_t n, PointerUpdater<VertexPointer> &pu)
{
VertexIterator last;
if(n == 0)
return m.vert.end();
pu.Clear();
if(m.vert.empty())
pu.oldBase=0; // if the vector is empty we cannot find the last valid element
else {
pu.oldBase=&*m.vert.begin();
pu.oldEnd=&m.vert.back()+1;
}
m.vert.resize(m.vert.size()+n);
m.vn+=int(n);
typename std::set<PointerToAttribute>::iterator ai;
for(ai = m.vert_attr.begin(); ai != m.vert_attr.end(); ++ai)
((PointerToAttribute)(*ai)).Resize(m.vert.size());
pu.newBase = &*m.vert.begin();
pu.newEnd = &m.vert.back()+1;
if(pu.NeedUpdate())
{
for (FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi)
if(!(*fi).IsD())
for(int i=0; i < (*fi).VN(); ++i)
if ((*fi).cV(i)!=0) pu.Update((*fi).V(i));
for (EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei)
if(!(*ei).IsD())
{
// if(HasEVAdjacency (m))
pu.Update((*ei).V(0));
pu.Update((*ei).V(1));
// if(HasEVAdjacency(m)) pu.Update((*ei).EVp());
}
HEdgeIterator hi;
for (hi=m.hedge.begin(); hi!=m.hedge.end(); ++hi)
if(!(*hi).IsD())
{
if(HasHVAdjacency (m))
{
pu.Update((*hi).HVp());
}
}
for (TetraIterator ti = m.tetra.begin(); ti != m.tetra.end(); ++ti)
if (!(*ti).IsD())
for (int i = 0; i < 4; ++i)
if ((*ti).cV(i) != 0)
pu.Update((*ti).V(i));
// e poiche' lo spazio e' cambiato si ricalcola anche last da zero
}
size_t siz=(size_t)(m.vert.size()-n);
last = m.vert.begin();
advance(last,siz);
return last;// deve restituire l'iteratore alla prima faccia aggiunta;
}
/** \brief Wrapper to AddVertices(); no PointerUpdater
*/
static VertexIterator AddVertices(MeshType &m, size_t n)
{
PointerUpdater<VertexPointer> pu;
return AddVertices(m, n,pu);
}
/** \brief Wrapper to AddVertices() no PointerUpdater but a vector of VertexPointer pointers to be updated
*/
static VertexIterator AddVertices(MeshType &m, size_t n, std::vector<VertexPointer *> &local_vec)
{
PointerUpdater<VertexPointer> pu;
VertexIterator v_ret = AddVertices(m, n,pu);
typename std::vector<VertexPointer *>::iterator vi;
for(vi=local_vec.begin();vi!=local_vec.end();++vi)
pu.Update(**vi);
return v_ret;
}
/** \brief Wrapper to AddVertices() to add a single vertex with given coords
*/
static VertexIterator AddVertex(MeshType &m, const CoordType &p)
{
VertexIterator v_ret = AddVertices(m, 1);
v_ret->P()=p;
return v_ret;
}
/** \brief Wrapper to AddVertices() to add a single vertex with given coords and normal
*/
static VertexIterator AddVertex(MeshType &m, const CoordType &p, const CoordType &n)
{
VertexIterator v_ret = AddVertices(m, 1);
v_ret->P()=p;
v_ret->N()=n;
return v_ret;
}
/** \brief Wrapper to AddVertices() to add a single vertex with given coords and color
*/
static VertexIterator AddVertex(MeshType &m, const CoordType &p, const Color4b &c)
{
VertexIterator v_ret = AddVertices(m, 1);
v_ret->P()=p;
v_ret->C()=c;
return v_ret;
}
/* +++++++++++++++ Add Edges ++++++++++++++++ */
/** \brief Add n edges to the mesh.
Function to add n edges to the mesh.
The elements are added always to the end of the vector. No attempt of reusing previously deleted element is done.
\sa PointerUpdater
\param m the mesh to be modified
\param n the number of elements to be added
\param pu a PointerUpdater initialized so that it can be used to update pointers to edges that could have become invalid after this adding.
\retval the iterator to the first element added.
*/
static EdgeIterator AddEdges(MeshType &m, size_t n, PointerUpdater<EdgePointer> &pu)
{
if(n == 0) return m.edge.end();
pu.Clear();
if(m.edge.empty()) pu.oldBase=0; // if the vector is empty we cannot find the last valid element
else {
pu.oldBase=&*m.edge.begin();
pu.oldEnd=&m.edge.back()+1;
}
m.edge.resize(m.edge.size()+n);
m.en+=int(n);
size_t siz=(size_t)(m.edge.size()-n);
EdgeIterator firstNewEdge = m.edge.begin();
advance(firstNewEdge,siz);
typename std::set<typename MeshType::PointerToAttribute>::iterator ai;
for(ai = m.edge_attr.begin(); ai != m.edge_attr.end(); ++ai)
((typename MeshType::PointerToAttribute)(*ai)).Resize(m.edge.size());
pu.newBase = &*m.edge.begin();
pu.newEnd = &m.edge.back()+1;
if(pu.NeedUpdate())
{
if(HasFEAdjacency(m))
for (FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi){
if(!(*fi).IsD())
for(int i=0; i < (*fi).VN(); ++i)
if ((*fi).cFEp(i)!=0) pu.Update((*fi).FEp(i));
}
if(HasVEAdjacency(m)){
for (VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi)
if(!(*vi).IsD())
if ((*vi).cVEp()!=0) pu.Update((*vi).VEp());
for(EdgeIterator ei=m.edge.begin();ei!=firstNewEdge;++ei)
if(!(*ei).IsD())
{
if ((*ei).cVEp(0)!=0) pu.Update((*ei).VEp(0));
if ((*ei).cVEp(1)!=0) pu.Update((*ei).VEp(1));
}
}
if(HasHEAdjacency(m))
for (HEdgeIterator hi=m.hedge.begin(); hi!=m.hedge.end(); ++hi)
if(!(*hi).IsD())
if ((*hi).cHEp()!=0) pu.Update((*hi).HEp());
}
return firstNewEdge;// deve restituire l'iteratore alla prima faccia aggiunta;
}
/** Function to add a single edge to the mesh. and initializing it with two VertexPointer
*/
static EdgeIterator AddEdge(MeshType &m, VertexPointer v0, VertexPointer v1)
{
EdgeIterator ei= AddEdges(m, 1);
ei->V(0)=v0;
ei->V(1)=v1;
return ei;
}
/** Function to add a single edge to the mesh. and initializing it with two indexes to the vertexes
*/
static EdgeIterator AddEdge(MeshType &m, size_t v0, size_t v1)
{
assert(v0!=v1);
assert(v0>=0 && v0<m.vert.size());
assert(v1>=0 && v1<m.vert.size());
return AddEdge(m,&(m.vert[v0]),&(m.vert[v1]));
}
/** Function to add a face to the mesh and initializing it with the three given coords
*/
static EdgeIterator AddEdge(MeshType &m, CoordType p0, CoordType p1)
{
VertexIterator vi = AddVertices(m,2);
EdgeIterator ei = AddEdges(m,1);
vi->P()=p0;
ei->V(0)=&*vi++;
vi->P()=p1;
ei->V(1)=&*vi++;
return ei;
}
/** Function to add n edges to the mesh.
First wrapper, with no parameters
*/
static EdgeIterator AddEdges(MeshType &m, size_t n)
{
PointerUpdater<EdgePointer> pu;
return AddEdges(m, n,pu);
}
/** Function to add n edges to the mesh.
Second Wrapper, with a vector of vertex pointers to be updated.
*/
static EdgeIterator AddEdges(MeshType &m, size_t n, std::vector<EdgePointer*> &local_vec)
{
PointerUpdater<EdgePointer> pu;
EdgeIterator v_ret = AddEdges(m, n,pu);
typename std::vector<EdgePointer *>::iterator ei;
for(ei=local_vec.begin();ei!=local_vec.end();++ei)
pu.Update(**ei);
return v_ret;
}
/* +++++++++++++++ Add HalfEdges ++++++++++++++++ */
/** Function to add n halfedges to the mesh. The second parameter hold a vector of
pointers to pointer to elements of the mesh that should be updated after a
possible vector realloc.
\sa PointerUpdater
\param m the mesh to be modified
\param n the number of elements to be added
\param pu a PointerUpdater initialized so that it can be used to update pointers to edges that could have become invalid after this adding.
\retval the iterator to the first element added.
*/
static HEdgeIterator AddHEdges(MeshType &m, size_t n, PointerUpdater<HEdgePointer> &pu)
{
HEdgeIterator last;
if(n == 0) return m.hedge.end();
pu.Clear();
if(m.hedge.empty()) pu.oldBase=0; // if the vector is empty we cannot find the last valid element
else {
pu.oldBase=&*m.hedge.begin();
pu.oldEnd=&m.hedge.back()+1;
}
m.hedge.resize(m.hedge.size()+n);
m.hn+=int(n);
pu.newBase = &*m.hedge.begin();
pu.newEnd = &m.hedge.back()+1;
if(pu.NeedUpdate())
{
if(HasFHAdjacency(m)) {
for (FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi)
{
if(!(*fi).IsD() && (*fi).FHp())
pu.Update((*fi).FHp());
}
}
if(HasVHAdjacency(m)) {
for (VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi)
if(!(*vi).IsD() && (*vi).cVHp()!=0)
pu.Update((*vi).VHp());
}
if(HasEHAdjacency(m)) {
for (EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei)
if(!(*ei).IsD() && (*ei).cEHp()!=0)
pu.Update((*ei).EHp());
}
int ii = 0;
HEdgeIterator hi = m.hedge.begin();
while(ii < m.hn - int(n))// cycle on all the faces except the new ones
{
if(!(*hi).IsD())
{
if(HasHNextAdjacency(m)) pu.Update((*hi).HNp());
if(HasHPrevAdjacency(m)) pu.Update((*hi).HPp());
if(HasHOppAdjacency(m)) pu.Update((*hi).HOp());
++ii;
}
++hi;
}
}
size_t siz = (size_t)(m.hedge.size()-n);
last = m.hedge.begin();
advance(last,siz);
return last;// deve restituire l'iteratore alla prima faccia aggiunta;
}
/** Function to add n vertices to the mesh.
First wrapper, with no parameters
*/
static HEdgeIterator AddHEdges(MeshType &m, size_t n)
{
PointerUpdater<HEdgePointer> pu;
return AddHEdges(m, n,pu);
}
/** Function to add n vertices to the mesh.
Second Wrapper, with a vector of vertex pointers to be updated.
*/
static HEdgeIterator AddHEdges(MeshType &m, size_t n, std::vector<HEdgePointer*> &local_vec)
{
PointerUpdater<HEdgePointer> pu;
HEdgeIterator v_ret = AddHEdges(m, n,pu);
typename std::vector<HEdgePointer *>::iterator ei;
for(ei=local_vec.begin();ei!=local_vec.end();++ei)
pu.Update(**ei);
return v_ret;
}
/* +++++++++++++++ Add Faces ++++++++++++++++ */
/** Function to add a face to the mesh and initializing it with the three given VertexPointers
*/
static FaceIterator AddFace(MeshType &m, VertexPointer v0, VertexPointer v1, VertexPointer v2)
{
assert(m.vert.size()>0);
assert((v0!=v1) && (v1!=v2) && (v0!=v2));
assert(v0>=&m.vert.front() && v0<=&m.vert.back());
assert(v1>=&m.vert.front() && v1<=&m.vert.back());
assert(v2>=&m.vert.front() && v2<=&m.vert.back());
PointerUpdater<FacePointer> pu;
FaceIterator fi = AddFaces(m,1,pu);
fi->Alloc(3);
fi->V(0)=v0;
fi->V(1)=v1;
fi->V(2)=v2;
return fi;
}
/** Function to add a face to the mesh and initializing it with three indexes
*/
static FaceIterator AddFace(MeshType &m, size_t v0, size_t v1, size_t v2)
{
assert((v0!=v1) && (v1!=v2) && (v0!=v2));
assert(v0>=0 && v0<m.vert.size());
assert(v1>=0 && v1<m.vert.size());
assert(v2>=0 && v2<m.vert.size());
return AddFace(m,&(m.vert[v0]),&(m.vert[v1]),&(m.vert[v2]));
}
/** Function to add a face to the mesh and initializing it with the three given coords
*/
static FaceIterator AddFace(MeshType &m, CoordType p0, CoordType p1, CoordType p2)
{
VertexIterator vi = AddVertices(m,3);
FaceIterator fi = AddFaces(m,1);
fi->Alloc(3);
vi->P()=p0;
fi->V(0)=&*vi++;
vi->P()=p1;
fi->V(1)=&*vi++;
vi->P()=p2;
fi->V(2)=&*vi;
return fi;
}
/** Function to add a quad face to the mesh and initializing it with the four given VertexPointers
*
* Note that this function add a single polygonal face if the mesh has polygonal info or two tris with the corresponding faux bit set in the standard common case of a triangular mesh.
*/
static FaceIterator AddQuadFace(MeshType &m, VertexPointer v0, VertexPointer v1, VertexPointer v2, VertexPointer v3)
{
assert(m.vert.size()>0);
assert(v0>=&m.vert.front() && v0<=&m.vert.back());
assert(v1>=&m.vert.front() && v1<=&m.vert.back());
assert(v2>=&m.vert.front() && v2<=&m.vert.back());
assert(v3>=&m.vert.front() && v3<=&m.vert.back());
PointerUpdater<FacePointer> pu;
if(FaceType::HasPolyInfo())
{
FaceIterator fi = AddFaces(m,1,pu);
fi->Alloc(4);
fi->V(0)=v0; fi->V(1)=v1;
fi->V(2)=v2; fi->V(3)=v3;
return fi;
}
else
{
FaceIterator fi = AddFaces(m,2,pu);
fi->Alloc(3); fi->V(0)=v0; fi->V(1)=v1; fi->V(2)=v2;
fi->SetF(2);
++fi;
fi->Alloc(3); fi->V(0)=v0; fi->V(1)=v2; fi->V(2)=v3;
fi->SetF(0);
return fi;
}
}
/** \brief Function to add n faces to the mesh.
First wrapper, with no parameters
*/
static FaceIterator AddFaces(MeshType &m, size_t n)
{
PointerUpdater<FacePointer> pu;
return AddFaces(m,n,pu);
}
/** \brief Function to add n faces to the mesh.
Second Wrapper, with a vector of face pointer to be updated.
*/
static FaceIterator AddFaces(MeshType &m, size_t n,std::vector<FacePointer *> &local_vec)
{
PointerUpdater<FacePointer> pu;
FaceIterator f_ret= AddFaces(m,n,pu);
typename std::vector<FacePointer *>::iterator fi;
for(fi=local_vec.begin();fi!=local_vec.end();++fi)
pu.Update(**fi);
return f_ret;
}
/** \brief Function to add n faces to the mesh.
This is the only full featured function that is able to manage correctly
all the official internal pointers of the mesh (like the VF and FF adjacency relations)
\warning Calling this function can cause the invalidation of any not-managed FacePointer
just because we resize the face vector.
If you have such pointers you need to update them by mean of the PointerUpdater object.
\sa PointerUpdater
\param m the mesh to be modified
\param n the number of elements to be added
\param pu a PointerUpdater initialized so that it can be used to update pointers to edges that could have become invalid after this adding.
\retval the iterator to the first element added.
*/
static FaceIterator AddFaces(MeshType &m, size_t n, PointerUpdater<FacePointer> &pu)
{
pu.Clear();
if(n == 0) return m.face.end();
if(!m.face.empty()) // if the vector is empty we cannot find the last valid element
{
pu.oldBase=&*m.face.begin();
pu.oldEnd=&m.face.back()+1;
}
// The actual resize
m.face.resize(m.face.size()+n);
m.fn+=int(n);
size_t siz=(size_t)(m.face.size()-n);
FaceIterator firstNewFace = m.face.begin();
advance(firstNewFace,siz);
typename std::set<PointerToAttribute>::iterator ai;
for(ai = m.face_attr.begin(); ai != m.face_attr.end(); ++ai)
((PointerToAttribute)(*ai)).Resize(m.face.size());
pu.newBase = &*m.face.begin();
pu.newEnd = &m.face.back()+1;
if(pu.NeedUpdate())
{
if(HasFFAdjacency(m))
{ // cycle on all the faces except the new ones
for(FaceIterator fi=m.face.begin();fi!=firstNewFace;++fi)
if(!(*fi).IsD())
for(int i = 0; i < (*fi).VN(); ++i)
if ((*fi).cFFp(i)!=0) pu.Update((*fi).FFp(i));
}
if(HasPerVertexVFAdjacency(m) && HasPerFaceVFAdjacency(m))
{ // cycle on all the faces except the new ones
for(FaceIterator fi=m.face.begin();fi!=firstNewFace;++fi)
if(!(*fi).IsD())
for(int i = 0; i < (*fi).VN(); ++i)
if ((*fi).cVFp(i)!=0) pu.Update((*fi).VFp(i));
for (VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi)
if(!(*vi).IsD() && (*vi).cVFp()!=0)
pu.Update((*vi).VFp());
}
if(HasEFAdjacency(m))
{
for (EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei)
if(!(*ei).IsD() && (*ei).cEFp()!=0)
pu.Update((*ei).EFp());
}
if(HasHFAdjacency(m))
{
for (HEdgeIterator hi=m.hedge.begin(); hi!=m.hedge.end(); ++hi)
if(!(*hi).IsD() && (*hi).cHFp()!=0)
pu.Update((*hi).HFp());
}
}
return firstNewFace;
}
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
//:::::::::::::::::TETRAS ADDER FUNCTIONS:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
/** \brief Function to add n tetras to the mesh.
This is the only full featured function that is able to manage correctly
all the official internal pointers of the mesh (like the VT and TT adjacency relations)
\warning Calling this function can cause the invalidation of any not-managed TetraPointer
just because we resize the face vector.
If you have such pointers you need to update them by mean of the PointerUpdater object.
\sa PointerUpdater
\param m the mesh to be modified
\param n the number of elements to be added
\param pu a PointerUpdater initialized so that it can be used to update pointers to tetras that could have become invalid after this adding.
\retval the iterator to the first element added.
*/
static TetraIterator AddTetras(MeshType &m, size_t n, PointerUpdater<TetraPointer> &pu)
{
//nothing to do
if (n == 0)
return m.tetra.end();
//prepare the pointerupdater info
pu.Clear();
if (m.tetra.empty())
pu.oldBase = 0;
else
{
pu.oldBase = &*m.tetra.begin();
pu.oldEnd = &m.tetra.back() + 1;
}
//resize the tetra list and update tetra count
m.tetra.resize(m.tetra.size() + n);
m.tn += n;
//get the old size and advance to the first new tetrahedron position
size_t oldSize = (size_t)(m.tetra.size() - n);
TetraIterator firstNewTetra = m.tetra.begin();
advance(firstNewTetra, oldSize);
//for each attribute make adapt the list size
typename std::set<typename MeshType::PointerToAttribute>::iterator ai;
for (ai = m.tetra_attr.begin(); ai != m.tetra_attr.end(); ++ai)
((typename MeshType::PointerToAttribute)(*ai)).Resize(m.tetra.size());
//do the update
pu.newBase = &*m.tetra.begin();
pu.newEnd = &m.tetra.back() + 1;
if (pu.NeedUpdate())
{
if (HasVTAdjacency(m))
{
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if (!vi->IsD())
pu.Update(vi->VTp());
for (TetraIterator ti = m.tetra.begin(); ti != m.tetra.end(); ++ti)
if (!ti->IsD())
{
pu.Update(ti->VTp(0));
pu.Update(ti->VTp(1));
pu.Update(ti->VTp(2));
pu.Update(ti->VTp(3));
}
}
//do edge and face adjacency
if (HasTTAdjacency(m))
for (TetraIterator ti = m.tetra.begin(); ti != m.tetra.end(); ++ti)
if (!ti->IsD())
{
pu.Update(ti->TTp(0));
pu.Update(ti->TTp(1));
pu.Update(ti->TTp(2));
pu.Update(ti->TTp(3));
}
}
return firstNewTetra;
}
//TODO: ADD 4 FACES then add tetra
/** Function to add a face to the mesh and initializing it with the three given VertexPointers
*/
static TetraIterator AddTetra(MeshType &m, VertexPointer v0, VertexPointer v1, VertexPointer v2, VertexPointer v3)
{
assert(m.vert.size() > 0);
assert((v0 != v1) && (v0 != v2) && (v0 != v3) && (v1 != v2) && (v1 != v3) && (v2 != v3));
assert(v0 >= &m.vert.front() && v0 <= &m.vert.back());
assert(v1 >= &m.vert.front() && v1 <= &m.vert.back());
assert(v2 >= &m.vert.front() && v2 <= &m.vert.back());
assert(v3 >= &m.vert.front() && v3 <= &m.vert.back());
// AddFace(m, v0, v1, v2);
// AddFace(m, v0, v3, v1);
// AddFace(m, v0, v2, v3);
// AddFace(m, v1, v3, v2);
PointerUpdater<TetraPointer> pu;
TetraIterator ti = AddTetras(m, 1, pu);
ti->V(0) = v0;
ti->V(1) = v1;
ti->V(2) = v2;
ti->V(3) = v3;
return ti;
}
/** Function to add a face to the mesh and initializing it with three indexes
*/
static TetraIterator AddTetra(MeshType &m, const size_t v0, const size_t v1, const size_t v2, const size_t v3)
{
assert(m.vert.size() > 0);
assert((v0 != v1) && (v0 != v2) && (v0 != v3) && (v1 != v2) && (v1 != v3) && (v2 != v3));
assert(v0 >= 0 && v0 < m.vert.size());
assert(v1 >= 0 && v1 < m.vert.size());
assert(v2 >= 0 && v2 < m.vert.size());
assert(v3 >= 0 && v3 < m.vert.size());
return AddTetra(m, &(m.vert[v0]), &(m.vert[v1]), &(m.vert[v2]), &(m.vert[v3]));
}
/** Function to add a face to the mesh and initializing it with the three given coords
*/
static TetraIterator AddTetra(MeshType &m, const CoordType & p0, const CoordType & p1, const CoordType & p2, const CoordType & p3)
{
VertexIterator vi = AddVertices(m, 4);
VertexPointer v0 = &*vi++;
VertexPointer v1 = &*vi++;
VertexPointer v2 = &*vi++;
VertexPointer v3 = &*vi++;
v0->P() = p0;
v1->P() = p1;
v2->P() = p2;
v3->P() = p3;
return AddTetra(m, v0, v1, v2, v3);
}
// //requires no duplicate vertices on faces you use
// static TetraIterator AddTetra(MeshType &m, const FaceType & f0, const FaceType & f1, const FaceType & f2, const FaceType & f3)
// {
// assert(m.face.size() > 0);
// assert((f0 != f1) && (f0 != f2) && (f0 != f3) && (f1 != f2) && (f1 != f3) && (f2 != f3));
// assert(f1 >= 0 && f1 < m.face.size());
// assert(f2 >= 0 && f2 < m.face.size());
// assert(f3 >= 0 && f3 < m.face.size());
// assert(f0 >= 0 && f0 < m.face.size());
// //TODO: decide if you want to address this like this
// //ERROR: can't use position...so..could force to have no dup verts..and use pointers or avoid this kind of thing
// assert(f0.V(0) == f1.V(0) && f0.V(0) == f2.V(0) && //v0
// f0.V(1) == f1.V(2) && f0.V(1) == f3.V(0) && //v1
// f0.V(2) == f2.V(1) && f0.V(2) == f3.V(2) && //v2
// f1.V(1) == f2.V(2) && f1.V(1) == f3.V(1) ) //v3
// //add a tetra...and set vertices correctly
// PointerUpdater<TetraPointer> pu;
// TetraIterator ti = AddTetras(m, 1, pu);
// ti->V(0) = f0.V(0);
// ti->V(1) = f0.V(1);
// ti->V(2) = f0.V(2);
// ti->V(3) = f1.V(1);
// return ti;
// }
/** \brief Function to add n faces to the mesh.
First wrapper, with no parameters
*/
static TetraIterator AddTetras(MeshType &m, size_t n)
{
PointerUpdater<TetraPointer> pu;
return AddTetras(m, n, pu);
}
/** \brief Function to add n faces to the mesh.
Second Wrapper, with a vector of face pointer to be updated.
*/
static TetraIterator AddTetras(MeshType &m, size_t n, std::vector<TetraPointer *> &local_vec)
{
PointerUpdater<TetraPointer> pu;
TetraIterator t_ret = AddTetras(m, n, pu);
typename std::vector<TetraPointer *>::iterator ti;
for (ti = local_vec.begin(); ti != local_vec.end(); ++ti)
pu.Update(**ti);
return t_ret;
}
/* +++++++++++++++ Deleting ++++++++++++++++ */
/** Function to delete a face from the mesh.
NOTE: THIS FUNCTION ALSO UPDATE FN
*/
static void DeleteFace(MeshType &m, FaceType &f)
{
assert(&f >= &m.face.front() && &f <= &m.face.back());
assert(!f.IsD());
f.Dealloc();
f.SetD();
--m.fn;
}
/** Function to delete a vertex from the mesh.
NOTE: THIS FUNCTION ALSO UPDATE vn
*/
static void DeleteVertex(MeshType &m, VertexType &v)
{
assert(&v >= &m.vert.front() && &v <= &m.vert.back());
assert(!v.IsD());
v.SetD();
--m.vn;
}
/** Function to delete an edge from the mesh.
NOTE: THIS FUNCTION ALSO UPDATE en
*/
static void DeleteEdge(MeshType &m, EdgeType &e)
{
assert(&e >= &m.edge.front() && &e <= &m.edge.back());
assert(!e.IsD());
e.SetD();
--m.en;
}
/** Function to delete a hedge from the mesh.
NOTE: THIS FUNCTION ALSO UPDATE en
*/
static void DeleteHEdge(MeshType &m, HEdgeType &h)
{
assert(&h >= &m.hedge.front() && &h <= &m.hedge.back());
assert(!h.IsD());
h.SetD();
--m.hn;
}
/** Function to delete a tetra from the mesh.
NOTE: THIS FUNCTION ALSO UPDATE tn
*/
static void DeleteTetra(MeshType &m, TetraType &t)
{
assert(&t >= &m.tetra.front() && &t <= &m.tetra.back());
assert(!t.IsD());
t.SetD();
--m.tn;
}
/*
Function to rearrange the vertex vector according to a given index permutation
the permutation is vector such that after calling this function
m.vert[ newVertIndex[i] ] = m.vert[i];
e.g. newVertIndex[i] is the new index of the vertex i
*/
static void PermutateVertexVector(MeshType &m, PointerUpdater<VertexPointer> &pu)
{
if(m.vert.empty()) return;
for(size_t i=0;i<m.vert.size();++i)
{
if(pu.remap[i]<size_t(m.vn))
{
assert(!m.vert[i].IsD());
m.vert[ pu.remap [i] ].ImportData(m.vert[i]);
if(HasVFAdjacency(m))
{
if (m.vert[i].IsVFInitialized())
{
m.vert[ pu.remap[i] ].VFp() = m.vert[i].cVFp();
m.vert[ pu.remap[i] ].VFi() = m.vert[i].cVFi();
}
else m.vert [ pu.remap[i] ].VFClear();
}
if(HasVEAdjacency(m))
{
if (m.vert[i].IsVEInitialized())
{
m.vert[ pu.remap[i] ].VEp() = m.vert[i].cVEp();
m.vert[ pu.remap[i] ].VEi() = m.vert[i].cVEi();
}
else m.vert [ pu.remap[i] ].VEClear();
}
if (HasVTAdjacency(m))
{
if (m.vert[i].IsVTInitialized())
{
m.vert[ pu.remap[i] ].VTp() = m.vert[i].cVTp();
m.vert[ pu.remap[i] ].VTi() = m.vert[i].cVTi();
}
else m.vert[ pu.remap[i] ].VTClear();
}
}
}
// reorder the optional atttributes in m.vert_attr to reflect the changes
ReorderAttribute(m.vert_attr,pu.remap,m);
// setup the pointer updater
pu.oldBase = &m.vert[0];
pu.oldEnd = &m.vert.back()+1;
// resize
m.vert.resize(m.vn);
// setup the pointer updater
pu.newBase = (m.vert.empty())?0:&m.vert[0];
pu.newEnd = (m.vert.empty())?0:&m.vert.back()+1;
// resize the optional atttributes in m.vert_attr to reflect the changes
ResizeAttribute(m.vert_attr,m.vn,m);
// Loop on the face to update the pointers FV relation (vertex refs)
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int i=0;i<fi->VN();++i)
{
size_t oldIndex = (*fi).V(i) - pu.oldBase;
assert(pu.oldBase <= (*fi).V(i) && oldIndex < pu.remap.size());
(*fi).V(i) = pu.newBase+pu.remap[oldIndex];
}
// Loop on the tetras to update the pointers TV relation (vertex refs)
for(TetraIterator ti = m.tetra.begin(); ti != m.tetra.end(); ++ti)
if(!(*ti).IsD())
for(int i = 0; i < 4; ++i)
{
size_t oldIndex = (*ti).V(i) - pu.oldBase;
assert(pu.oldBase <= (*ti).V(i) && oldIndex < pu.remap.size());
(*ti).V(i) = pu.newBase+pu.remap[oldIndex];
}
// Loop on the edges to update the pointers EV relation (vertex refs)
// if(HasEVAdjacency(m))
for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
if(!(*ei).IsD())
{
pu.Update((*ei).V(0));
pu.Update((*ei).V(1));
}
}
static void CompactEveryVector(MeshType &m)
{
CompactVertexVector(m);
CompactEdgeVector(m);
CompactFaceVector(m);
CompactTetraVector(m);
}
/*!
\brief Compact vector of vertices removing deleted elements.
Deleted elements are put to the end of the vector and the vector is resized. Order between elements is preserved but not their position (hence the PointerUpdater)
After calling this function the \c IsD() test in the scanning a vector, is no more necessary.
\warning It should not be called when TemporaryData is active (but works correctly if attributes are present)
*/
static void CompactVertexVector( MeshType &m, PointerUpdater<VertexPointer> &pu )
{
// If already compacted fast return please!
if(m.vn==(int)m.vert.size()) return;
// newVertIndex [ <old_vert_position> ] gives you the new position of the vertex in the vector;
pu.remap.resize( m.vert.size(),std::numeric_limits<size_t>::max() );
size_t pos=0;
size_t i=0;
for(i=0;i<m.vert.size();++i)
{
if(!m.vert[i].IsD())
{
pu.remap[i]=pos;
++pos;
}
}
assert((int)pos==m.vn);
PermutateVertexVector(m, pu);
}
/*! \brief Wrapper without the PointerUpdater. */
static void CompactVertexVector( MeshType &m ) {
PointerUpdater<VertexPointer> pu;
CompactVertexVector(m,pu);
}
/*!
\brief Compact vector of edges removing deleted elements.
Deleted elements are put to the end of the vector and the vector is resized. Order between elements is preserved but not their position (hence the PointerUpdater)
After calling this function the \c IsD() test in the scanning a vector, is no more necessary.
\warning It should not be called when TemporaryData is active (but works correctly if attributes are present)
*/
static void CompactEdgeVector( MeshType &m, PointerUpdater<EdgePointer> &pu )
{
// If already compacted fast return please!
if(m.en==(int)m.edge.size()) return;
// remap [ <old_edge_position> ] gives you the new position of the edge in the vector;
pu.remap.resize( m.edge.size(),std::numeric_limits<size_t>::max() );
size_t pos=0;
size_t i=0;
for(i=0;i<m.edge.size();++i)
{
if(!m.edge[i].IsD())
{
pu.remap[i]=pos;
++pos;
}
}
assert((int)pos==m.en);
// the actual copying of the data.
for(size_t i=0;i<m.edge.size();++i)
{
if(pu.remap[i]<size_t(m.en)) // uninitialized entries in the remap vector has max_int value;
{
assert(!m.edge[i].IsD());
m.edge[ pu.remap [i] ].ImportData(m.edge[i]);
// copy the vertex reference (they are not data!)
m.edge[ pu.remap[i] ].V(0) = m.edge[i].cV(0);
m.edge[ pu.remap[i] ].V(1) = m.edge[i].cV(1);
// Now just copy the adjacency pointers (without changing them, to be done later)
if(HasVEAdjacency(m))
//if (m.edge[i].cVEp(0)!=0)
{
m.edge[ pu.remap[i] ].VEp(0) = m.edge[i].cVEp(0);
m.edge[ pu.remap[i] ].VEi(0) = m.edge[i].cVEi(0);
m.edge[ pu.remap[i] ].VEp(1) = m.edge[i].cVEp(1);
m.edge[ pu.remap[i] ].VEi(1) = m.edge[i].cVEi(1);
}
if(HasEEAdjacency(m))
// if (m.edge[i].cEEp(0)!=0)
{
m.edge[ pu.remap[i] ].EEp(0) = m.edge[i].cEEp(0);
m.edge[ pu.remap[i] ].EEi(0) = m.edge[i].cEEi(0);
m.edge[ pu.remap[i] ].EEp(1) = m.edge[i].cEEp(1);
m.edge[ pu.remap[i] ].EEi(1) = m.edge[i].cEEi(1);
}
if(HasEFAdjacency(m))
// if (m.edge[i].cEEp(0)!=0)
{
m.edge[ pu.remap[i] ].EFp() = m.edge[i].cEFp();
m.edge[ pu.remap[i] ].EFi() = m.edge[i].cEFi();
m.edge[ pu.remap[i] ].EFp() = m.edge[i].cEFp();
m.edge[ pu.remap[i] ].EFi() = m.edge[i].cEFi();
}
}
}
// reorder the optional attributes in m.vert_attr to reflect the changes
ReorderAttribute(m.edge_attr, pu.remap,m);
// setup the pointer updater
pu.oldBase = &m.edge[0];
pu.oldEnd = &m.edge.back()+1;
// THE resize
m.edge.resize(m.en);
// setup the pointer updater
pu.newBase = (m.edge.empty())?0:&m.edge[0];
pu.newEnd = (m.edge.empty())?0:&m.edge.back()+1;
// resize the optional atttributes in m.vert_attr to reflect the changes
ResizeAttribute(m.edge_attr,m.en,m);
// Loop on the vertices to update the pointers of VE relation
if(HasVEAdjacency(m))
for (VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi)
if(!(*vi).IsD()) pu.Update((*vi).VEp());
// Loop on the edges to update the pointers EE VE relation
for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
for(unsigned int i=0;i<2;++i)
{
if(HasVEAdjacency(m))
pu.Update((*ei).VEp(i));
if(HasEEAdjacency(m))
pu.Update((*ei).EEp(i));
// if(HasEFAdjacency(m))
// pu.Update((*ei).EFp());
}
}
/*! \brief Wrapper without the PointerUpdater. */
static void CompactEdgeVector( MeshType &m ) {
PointerUpdater<EdgePointer> pu;
CompactEdgeVector(m,pu);
}
/*!
\brief Compact face vector by removing deleted elements.
Deleted elements are put to the end of the vector and the vector is resized.
Order between elements is preserved, but not their position (hence the PointerUpdater)
Immediately after calling this function the \c IsD() test during the scanning a vector, is no more necessary.
\warning It should not be called when some TemporaryData is active (but works correctly if attributes are present)
*/
static void CompactFaceVector( MeshType &m, PointerUpdater<FacePointer> &pu )
{
// If already compacted fast return please!
if(m.fn==(int)m.face.size()) return;
// newFaceIndex [ <old_face_position> ] gives you the new position of the face in the vector;
pu.remap.resize( m.face.size(),std::numeric_limits<size_t>::max() );
size_t pos=0;
for(size_t i=0;i<m.face.size();++i)
{
if(!m.face[i].IsD())
{
if(pos!=i)
{
m.face[pos].ImportData(m.face[i]);
if(FaceType::HasPolyInfo())
{
m.face[pos].Dealloc();
m.face[pos].Alloc(m.face[i].VN());
}
for(int j=0;j<m.face[i].VN();++j)
m.face[pos].V(j) = m.face[i].V(j);
if(HasVFAdjacency(m))
for(int j=0;j<m.face[i].VN();++j)
{
if (m.face[i].IsVFInitialized(j)) {
m.face[pos].VFp(j) = m.face[i].cVFp(j);
m.face[pos].VFi(j) = m.face[i].cVFi(j);
}
else m.face[pos].VFClear(j);
}
if(HasFFAdjacency(m))
for(int j=0;j<m.face[i].VN();++j)
{
m.face[pos].FFp(j) = m.face[i].cFFp(j);
m.face[pos].FFi(j) = m.face[i].cFFi(j);
}
}
pu.remap[i]=pos;
++pos;
}
}
assert((int)pos==m.fn);
// reorder the optional atttributes in m.face_attr to reflect the changes
ReorderAttribute(m.face_attr,pu.remap,m);
FacePointer fbase=&m.face[0];
// Loop on the vertices to correct VF relation
if(HasVFAdjacency(m))
{
for (VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi)
if(!(*vi).IsD())
{
if ((*vi).IsVFInitialized() && (*vi).VFp()!=0 )
{
size_t oldIndex = (*vi).cVFp() - fbase;
assert(fbase <= (*vi).cVFp() && oldIndex < pu.remap.size());
(*vi).VFp() = fbase+pu.remap[oldIndex];
}
}
}
// Loop on the faces to correct VF and FF relations
pu.oldBase = &m.face[0];
pu.oldEnd = &m.face.back()+1;
for(size_t i=m.fn;i<m.face.size();++i)
m.face[i].Dealloc();
m.face.resize(m.fn);
pu.newBase = (m.face.empty())?0:&m.face[0];
pu.newEnd = (m.face.empty())?0:&m.face.back()+1;
// resize the optional atttributes in m.face_attr to reflect the changes
ResizeAttribute(m.face_attr,m.fn,m);
// now we update the various (not null) face pointers (inside VF and FF relations)
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
if(HasVFAdjacency(m))
for(int i=0;i<(*fi).VN();++i)
if ((*fi).IsVFInitialized(i) && (*fi).VFp(i)!=0 )
{
size_t oldIndex = (*fi).VFp(i) - fbase;
assert(fbase <= (*fi).VFp(i) && oldIndex < pu.remap.size());
(*fi).VFp(i) = fbase+pu.remap[oldIndex];
}
if(HasFFAdjacency(m))
for(int i=0;i<(*fi).VN();++i)
if ((*fi).cFFp(i)!=0)
{
size_t oldIndex = (*fi).FFp(i) - fbase;
assert(fbase <= (*fi).FFp(i) && oldIndex < pu.remap.size());
(*fi).FFp(i) = fbase+pu.remap[oldIndex];
}
}
}
/*! \brief Wrapper without the PointerUpdater. */
static void CompactFaceVector( MeshType &m ) {
PointerUpdater<FacePointer> pu;
CompactFaceVector(m,pu);
}
/*!
\brief Compact tetra vector by removing deleted elements.
Deleted elements are put to the end of the vector and the vector is resized.
Order between elements is preserved, but not their position (hence the PointerUpdater)
Immediately after calling this function the \c IsD() test during the scanning a vector, is no more necessary.
\warning It should not be called when some TemporaryData is active (but works correctly if attributes are present)
*/
static void CompactTetraVector(MeshType & m, PointerUpdater<TetraPointer> & pu)
{
//nothing to do
if (size_t(m.tn) == m.tetra.size())
return;
//init the remap
pu.remap.resize(m.tetra.size(), std::numeric_limits<size_t>::max());
//cycle over all the tetras, pos is the last not D() position, I is the index
//when pos != i and !tetra[i].IsD() => we need to compact and update adj
size_t pos = 0;
for (size_t i = 0; i < m.tetra.size(); ++i)
{
if (!m.tetra[i].IsD())
{
if (pos != i)
{
//import data
m.tetra[pos].ImportData(m.tetra[i]);
//import vertex refs
for (int j = 0; j < 4; ++j)
m.tetra[pos].V(j) = m.tetra[i].V(j);
//import VT adj
if (HasVTAdjacency(m))
for (int j = 0; j < 4; ++j)
{
if (m.tetra[i].IsVTInitialized(j))
{
m.tetra[pos].VTp(j) = m.tetra[i].VTp(j);
m.tetra[pos].VTi(j) = m.tetra[i].VTi(j);
}
else
m.tetra[pos].VTClear(j);
}
//import TT adj
if (HasTTAdjacency(m))
for (int j = 0; j < 4; ++j)
{
m.tetra[pos].TTp(j) = m.tetra[i].cTTp(j);
m.tetra[pos].TTi(j) = m.tetra[i].cTTi(j);
}
}
//update remapping and advance pos
pu.remap[i] = pos;
++pos;
}
}
assert(size_t(m.tn) == pos);
//reorder the optional attributes in m.tetra_attr
ReorderAttribute(m.tetra_attr, pu.remap, m);
// resize the optional atttributes in m.tetra_attr to reflect the changes
ResizeAttribute(m.tetra_attr, m.tn, m);
// Loop on the tetras to correct VT and TT relations
pu.oldBase = &m.tetra[0];
pu.oldEnd = &m.tetra.back() + 1;
m.tetra.resize(m.tn);
pu.newBase = (m.tetra.empty()) ? 0 : &m.tetra[0];
pu.newEnd = (m.tetra.empty()) ? 0 : &m.tetra.back() + 1;
TetraPointer tbase = &m.tetra[0];
//Loop on the vertices to correct VT relation (since we moved things around)
if (HasVTAdjacency(m))
{
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if (!(*vi).IsD())
{
if ((*vi).IsVTInitialized() && (*vi).VTp() != 0)
{
size_t oldIndex = (*vi).cVTp() - tbase;
assert(tbase <= (*vi).cVTp() && oldIndex < pu.remap.size());
(*vi).VTp() = tbase + pu.remap[oldIndex];
}
}
}
// Loop on the tetras to correct the VT and TT relations
for (TetraIterator ti = m.tetra.begin(); ti != m.tetra.end(); ++ti)
if (!(*ti).IsD())
{
//VT
if (HasVTAdjacency(m))
for (int i = 0; i < 4; ++i)
if ((*ti).IsVTInitialized(i) && (*ti).VTp(i) != 0)
{
size_t oldIndex = (*ti).VTp(i) - tbase;
assert(tbase <= (*ti).VTp(i) && oldIndex < pu.remap.size());
(*ti).VTp(i) = tbase + pu.remap[oldIndex];
}
//TT
if (HasTTAdjacency(m))
for (int i = 0; i < 4; ++i)
if ((*ti).cTTp(i) != 0)
{
size_t oldIndex = (*ti).TTp(i) - tbase;
assert(tbase <= (*ti).TTp(i) && oldIndex < pu.remap.size());
(*ti).TTp(i) = tbase + pu.remap[oldIndex];
}
}
}
/*! \brief Wrapper without the PointerUpdater. */
static void CompactTetraVector(MeshType &m)
{
PointerUpdater<TetraPointer> pu;
CompactTetraVector(m, pu);
}
public:
/*! \brief Check if an handle to a Per-Vertex Attribute is valid
*/
template <class ATTR_TYPE>
static
bool IsValidHandle( MeshType & m, const typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE> & a){
if(a._handle == NULL) return false;
for(AttrIterator i = m.vert_attr.begin(); i!=m.vert_attr.end();++i)
if ( (*i).n_attr == a.n_attr ) return true;
return false;
}
/*! \brief Add a Per-Vertex Attribute of the given ATTR_TYPE with the given name.
No attribute with that name must exists (even of different type)
*/
template <class ATTR_TYPE>
static
typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE>
AddPerVertexAttribute( MeshType & m, std::string name){
PAIte i;
PointerToAttribute h;
h._name = name;
if(!name.empty()){
i = m.vert_attr.find(h);
assert(i ==m.vert_attr.end() );// an attribute with this name exists
}
h._sizeof = sizeof(ATTR_TYPE);
h._padding = 0;
h._handle = new SimpleTempData<VertContainer,ATTR_TYPE>(m.vert);
h._type = typeid(ATTR_TYPE);
m.attrn++;
h.n_attr = m.attrn;
std::pair < AttrIterator , bool> res = m.vert_attr.insert(h);
return typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE>(res.first->_handle,res.first->n_attr );
}
template <class ATTR_TYPE>
static typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE>
AddPerVertexAttribute( MeshType & m){
return AddPerVertexAttribute<ATTR_TYPE>(m,std::string(""));
}
/*! \brief gives a handle to a per-vertex attribute with a given name and ATTR_TYPE
\returns a valid handle. If the name is not empty and an attribute with that name and type exists returns a handle to it.
Otherwise return a hanlde to a newly created.
*/
template <class ATTR_TYPE>
static
typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE>
GetPerVertexAttribute( MeshType & m, std::string name = std::string("")){
typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE> h;
if(!name.empty()){
h = FindPerVertexAttribute<ATTR_TYPE>(m,name);
if(IsValidHandle(m,h))
return h;
}
return AddPerVertexAttribute<ATTR_TYPE>(m,name);
}
/*! \brief Try to retrieve an handle to an attribute with a given name and ATTR_TYPE
\returns a invalid handle if no attribute with that name and type exists.
*/
template <class ATTR_TYPE>
static typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE>
FindPerVertexAttribute( MeshType & m, const std::string & name)
{
assert(!name.empty());
PointerToAttribute h1; h1._name = name;
typename std::set<PointerToAttribute > :: iterator i;
i =m.vert_attr.find(h1);
if(i!=m.vert_attr.end())
if((*i)._sizeof == sizeof(ATTR_TYPE) ){
if( (*i)._padding != 0 ){
PointerToAttribute attr = (*i); // copy the PointerToAttribute
m.vert_attr.erase(i); // remove it from the set
FixPaddedPerVertexAttribute<ATTR_TYPE>(m,attr);
std::pair<AttrIterator,bool> new_i = m.vert_attr.insert(attr); // insert the modified PointerToAttribute
assert(new_i.second);
i = new_i.first;
}
return typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE>((*i)._handle,(*i).n_attr);
}
return typename MeshType:: template PerVertexAttributeHandle<ATTR_TYPE>(NULL,0);
}
/*! \brief query the mesh for all the attributes per vertex
\returns the name of all attributes with a non-empy name.
*/
template <class ATTR_TYPE>
static void GetAllPerVertexAttribute(MeshType & m, std::vector<std::string> &all){
all.clear();
typename std::set<PointerToAttribute > ::const_iterator i;
for(i = m.vert_attr.begin(); i != m.vert_attr.end(); ++i )
if(!(*i)._name.empty())
{
typename MeshType:: template PerVertexAttributeHandle<ATTR_TYPE> hh;
hh = Allocator<MeshType>:: template FindPerVertexAttribute <ATTR_TYPE>(m,(*i)._name);
if(IsValidHandle<ATTR_TYPE>(m,hh))
all.push_back((*i)._name);
}
}
template <class ATTR_TYPE>
static
void
ClearPerVertexAttribute( MeshType & m,typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE> & h, const ATTR_TYPE & initVal = ATTR_TYPE()){
typename std::set<PointerToAttribute > ::iterator i;
for( i = m.vert_attr.begin(); i != m.vert_attr.end(); ++i)
if( (*i)._handle == h._handle ){
for(typename MeshType::VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
h[vi] = initVal;
return;}
assert(0);
}
/*! \brief If the per-vertex attribute exists, delete it.
*/
template <class ATTR_TYPE>
static
void
DeletePerVertexAttribute( MeshType & m,typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE> & h){
typename std::set<PointerToAttribute > ::iterator i;
for( i = m.vert_attr.begin(); i != m.vert_attr.end(); ++i)
if( (*i)._handle == h._handle ){
delete ((SimpleTempData<VertContainer,ATTR_TYPE>*)(*i)._handle);
m.vert_attr.erase(i);
return;}
}
// Generic DeleteAttribute.
// It must not crash if you try to delete a non existing attribute,
// because you do not have a way of asking for a handle of an attribute for which you do not know the type.
static
bool DeletePerVertexAttribute( MeshType & m, std::string name){
AttrIterator i;
PointerToAttribute h1; h1._name = name;
i = m.vert_attr.find(h1);
if(i==m.vert_attr.end()) return false;
delete ((SimpleTempDataBase*)(*i)._handle);
m.vert_attr.erase(i);
return true;
}
/// Per Edge Attributes
template <class ATTR_TYPE>
static
bool IsValidHandle( MeshType & m, const typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE> & a){
if(a._handle == NULL) return false;
for(AttrIterator i = m.edge_attr.begin(); i!=m.edge_attr.end();++i)
if ( (*i).n_attr == a.n_attr ) return true;
return false;
}
template <class ATTR_TYPE>
static
typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE>
AddPerEdgeAttribute( MeshType & m, std::string name){
PAIte i;
PointerToAttribute h;
h._name = name;
if(!name.empty()){
i = m.edge_attr.find(h);
assert(i ==m.edge_attr.end() );// an attribute with this name exists
}
h._sizeof = sizeof(ATTR_TYPE);
h._padding = 0;
// h._typename = typeid(ATTR_TYPE).name();
h._handle = new SimpleTempData<EdgeContainer,ATTR_TYPE>(m.edge);
h._type = typeid(ATTR_TYPE);
m.attrn++;
h.n_attr = m.attrn;
std::pair < AttrIterator , bool> res = m.edge_attr.insert(h);
return typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE>(res.first->_handle,res.first->n_attr);
}
template <class ATTR_TYPE>
static
typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE>
AddPerEdgeAttribute( MeshType & m){
return AddPerEdgeAttribute<ATTR_TYPE>(m,std::string(""));
}
/*! \brief gives a handle to a per-edge attribute with a given name and ATTR_TYPE
\returns a valid handle. If the name is not empty and an attribute with that name and type exists returns a handle to it.
Otherwise return a hanlde to a newly created.
*/
template <class ATTR_TYPE>
static
typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE>
GetPerEdgeAttribute( MeshType & m, std::string name = std::string("")){
typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE> h;
if(!name.empty()){
h = FindPerEdgeAttribute<ATTR_TYPE>(m,name);
if(IsValidHandle(m,h))
return h;
}
return AddPerEdgeAttribute<ATTR_TYPE>(m,name);
}
template <class ATTR_TYPE>
static
typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE>
FindPerEdgeAttribute( MeshType & m, const std::string & name){
assert(!name.empty());
PointerToAttribute h1; h1._name = name;
typename std::set<PointerToAttribute > ::const_iterator i;
i =m.edge_attr.find(h1);
if(i!=m.edge_attr.end())
if((*i)._sizeof == sizeof(ATTR_TYPE) ){
if( (*i)._padding != 0 ){
PointerToAttribute attr = (*i); // copy the PointerToAttribute
m.edge_attr.erase(i); // remove it from the set
FixPaddedPerEdgeAttribute<ATTR_TYPE>(m,attr);
std::pair<AttrIterator,bool> new_i = m.edge_attr.insert(attr); // insert the modified PointerToAttribute
assert(new_i.second);
i = new_i.first;
}
return typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE>((*i)._handle,(*i).n_attr);
}
return typename MeshType:: template PerEdgeAttributeHandle<ATTR_TYPE>(NULL,0);
}
template <class ATTR_TYPE>
static void GetAllPerEdgeAttribute(const MeshType & m, std::vector<std::string> &all){
all.clear();
typename std::set<PointerToAttribute > :: const_iterator i;
for(i = m.edge_attr.begin(); i != m.edge_attr.end(); ++i )
if(!(*i)._name.empty())
{
typename MeshType:: template PerEdgeAttributeHandle<ATTR_TYPE> hh;
hh = Allocator<MeshType>:: template FindPerEdgeAttribute <ATTR_TYPE>(m,(*i)._name);
if(IsValidHandle<ATTR_TYPE>(m,hh))
all.push_back((*i)._name);
}
}
/*! \brief If the per-edge attribute exists, delete it.
*/
template <class ATTR_TYPE>
static
void
DeletePerEdgeAttribute( MeshType & m,typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE> & h){
typename std::set<PointerToAttribute > ::iterator i;
for( i = m.edge_attr.begin(); i != m.edge_attr.end(); ++i)
if( (*i)._handle == h._handle ){
delete ((SimpleTempData<EdgeContainer,ATTR_TYPE>*)(*i)._handle);
m.edge_attr.erase(i);
return;}
}
// Generic DeleteAttribute.
// It must not crash if you try to delete a non existing attribute,
// because you do not have a way of asking for a handle of an attribute for which you do not know the type.
static
bool DeletePerEdgeAttribute( MeshType & m, std::string name){
AttrIterator i;
PointerToAttribute h1; h1._name = name;
i = m.edge_attr.find(h1);
if(i==m.edge_attr.end()) return false;
delete ((SimpleTempDataBase*)(*i)._handle);
m.edge_attr.erase(i);
return true;
}
/// Per Face Attributes
template <class ATTR_TYPE>
static
bool IsValidHandle( MeshType & m, const typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE> & a){
if(a._handle == NULL) return false;
for(AttrIterator i = m.face_attr.begin(); i!=m.face_attr.end();++i)
if ( (*i).n_attr == a.n_attr ) return true;
return false;
}
template <class ATTR_TYPE>
static
typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE>
AddPerFaceAttribute( MeshType & m, std::string name){
PAIte i;
PointerToAttribute h;
h._name = name;
if(!name.empty()){
i = m.face_attr.find(h);
assert(i ==m.face_attr.end() );// an attribute with this name exists
}
h._sizeof = sizeof(ATTR_TYPE);
h._padding = 0;
h._handle = new SimpleTempData<FaceContainer,ATTR_TYPE>(m.face);
h._type = typeid(ATTR_TYPE);
m.attrn++;
h.n_attr = m.attrn;
std::pair < AttrIterator , bool> res = m.face_attr.insert(h);
return typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE>(res.first->_handle,res.first->n_attr);
}
template <class ATTR_TYPE>
static
typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE>
AddPerFaceAttribute( MeshType & m){
return AddPerFaceAttribute<ATTR_TYPE>(m,std::string(""));
}
/*! \brief gives a handle to a per-edge attribute with a given name and ATTR_TYPE
\returns a valid handle. If the name is not empty and an attribute with that name and type exists returns a handle to it.
Otherwise return a hanlde to a newly created.
*/
template <class ATTR_TYPE>
static
typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE>
GetPerFaceAttribute( MeshType & m, std::string name = std::string("")){
typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE> h;
if(!name.empty()){
h = FindPerFaceAttribute<ATTR_TYPE>(m,name);
if(IsValidHandle(m,h))
return h;
}
return AddPerFaceAttribute<ATTR_TYPE>(m,name);
}
template <class ATTR_TYPE>
static
typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE>
FindPerFaceAttribute( MeshType & m, const std::string & name){
assert(!name.empty());
PointerToAttribute h1; h1._name = name;
typename std::set<PointerToAttribute > ::iterator i;
i =m.face_attr.find(h1);
if(i!=m.face_attr.end())
if((*i)._sizeof == sizeof(ATTR_TYPE) ){
if( (*i)._padding != 0 ){
PointerToAttribute attr = (*i); // copy the PointerToAttribute
m.face_attr.erase(i); // remove it from the set
FixPaddedPerFaceAttribute<ATTR_TYPE>(m,attr);
std::pair<AttrIterator,bool> new_i = m.face_attr.insert(attr); // insert the modified PointerToAttribute
assert(new_i.second);
i = new_i.first;
}
return typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE>((*i)._handle,(*i).n_attr);
}
return typename MeshType:: template PerFaceAttributeHandle<ATTR_TYPE>(NULL,0);
}
template <class ATTR_TYPE>
static void GetAllPerFaceAttribute(MeshType & m, std::vector<std::string> &all){
all.clear();
typename std::set<PointerToAttribute > :: const_iterator i;
for(i = m.face_attr.begin(); i != m.face_attr.end(); ++i )
if(!(*i)._name.empty())
{
typename MeshType:: template PerFaceAttributeHandle<ATTR_TYPE> hh;
hh = Allocator<MeshType>:: template FindPerFaceAttribute <ATTR_TYPE>(m,(*i)._name);
if(IsValidHandle<ATTR_TYPE>(m,hh))
all.push_back((*i)._name);
}
}
/*! \brief If the per-face attribute exists, delete it.
*/
template <class ATTR_TYPE>
static void DeletePerFaceAttribute( MeshType & m,typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE> & h){
typename std::set<PointerToAttribute > ::iterator i;
for( i = m.face_attr.begin(); i != m.face_attr.end(); ++i)
if( (*i)._handle == h._handle ){
delete ((SimpleTempData<FaceContainer,ATTR_TYPE>*)(*i)._handle);
m.face_attr.erase(i);
return;}
}
// Generic DeleteAttribute.
// It must not crash if you try to delete a non existing attribute,
// because you do not have a way of asking for a handle of an attribute for which you do not know the type.
static bool DeletePerFaceAttribute( MeshType & m, std::string name){
AttrIterator i;
PointerToAttribute h1; h1._name = name;
i = m.face_attr.find(h1);
if(i==m.face_attr.end()) return false;
delete ((SimpleTempDataBase*)(*i)._handle);
m.face_attr.erase(i);
return true;
}
/// Per Tetra Attributes
template <class ATTR_TYPE>
static bool IsValidHandle(MeshType & m, const typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> & a)
{
if (a._handle == NULL)
return false;
for (AttrIterator i = m.tetra_attr.begin(); i != m.tetra_attr.end(); ++i)
if ((*i).n_attr == a.n_attr)
return true;
return false;
}
template <class ATTR_TYPE>
static typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> AddPerTetraAttribute(MeshType & m, std::string name)
{
PAIte i;
PointerToAttribute h;
h._name = name;
if (!name.empty())
{
i = m.tetra_attr.find(h);
assert(i == m.tetra_attr.end());
}
h._sizeof = sizeof(ATTR_TYPE);
h._padding = 0;
h._handle = new SimpleTempData<TetraContainer, ATTR_TYPE>(m.tetra);
h._type = typeid(ATTR_TYPE);
m.attrn++;
h.n_attr = m.attrn;
std::pair<AttrIterator, bool> res = m.tetra_attr.insert(h);
return typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE>(res.first->_handle, res.first->n_attr);
}
template <class ATTR_TYPE>
static typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> AddPerTetraAttribute(MeshType &m)
{
return AddPerTetraAttribute<ATTR_TYPE>(m, std::string(""));
}
/*! \brief gives a handle to a per-tetra attribute with a given name and ATTR_TYPE
\returns a valid handle. If the name is not empty and an attribute with that name and type exists returns a handle to it.
Otherwise return a hanlde to a newly created.
*/
template <class ATTR_TYPE>
static typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> GetPerTetraAttribute(MeshType &m, std::string name = std::string(""))
{
typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> h;
if (!name.empty())
{
h = FindPerTetraAttribute<ATTR_TYPE>(m, name);
if (IsValidHandle(m, h))
return h;
}
return AddPerTetraAttribute<ATTR_TYPE>(m, name);
}
template <class ATTR_TYPE>
static typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> FindPerTetraAttribute(MeshType &m, const std::string &name)
{
assert(!name.empty());
PointerToAttribute h1;
h1._name = name;
typename std::set<PointerToAttribute>::iterator i;
i = m.tetra_attr.find(h1);
if (i != m.tetra_attr.end())
if ((*i)._sizeof == sizeof(ATTR_TYPE))
{
if ((*i)._padding != 0)
{
PointerToAttribute attr = (*i); // copy the PointerToAttribute
m.tetra_attr.erase(i); // remove it from the set
FixPaddedPerTetraAttribute<ATTR_TYPE>(m, attr);
std::pair<AttrIterator, bool> new_i = m.tetra_attr.insert(attr); // insert the modified PointerToAttribute
assert(new_i.second);
i = new_i.first;
}
return typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE>((*i)._handle, (*i).n_attr);
}
return typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE>(NULL, 0);
}
template <class ATTR_TYPE>
static void GetAllPerTetraAttribute(MeshType &m, std::vector<std::string> &all)
{
all.clear();
typename std::set<PointerToAttribute>::const_iterator i;
for (i = m.tetra_attr.begin(); i != m.tetra_attr.end(); ++i)
if (!(*i)._name.empty())
{
typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> hh;
hh = Allocator<MeshType>::template FindPerTetraAttribute<ATTR_TYPE>(m, (*i)._name);
if (IsValidHandle<ATTR_TYPE>(m, hh))
all.push_back((*i)._name);
}
}
/*! \brief If the per-face attribute exists, delete it.
*/
template <class ATTR_TYPE>
static void DeletePerTetraAttribute(MeshType &m, typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> &h)
{
typename std::set<PointerToAttribute>::iterator i;
for (i = m.tetra_attr.begin(); i != m.tetra_attr.end(); ++i)
if ((*i)._handle == h._handle)
{
delete ((SimpleTempData<TetraContainer, ATTR_TYPE> *)(*i)._handle);
m.tetra_attr.erase(i);
return;
}
}
// Generic DeleteAttribute.
// It must not crash if you try to delete a non existing attribute,
// because you do not have a way of asking for a handle of an attribute for which you do not know the type.
static bool DeletePerTetraAttribute(MeshType &m, std::string name)
{
AttrIterator i;
PointerToAttribute h1;
h1._name = name;
i = m.tetra_attr.find(h1);
if (i == m.tetra_attr.end())
return false;
delete ((SimpleTempDataBase *)(*i)._handle);
m.tetra_attr.erase(i);
return true;
}
/// Per Mesh Attributes
template <class ATTR_TYPE>
static
bool IsValidHandle( MeshType & m, const typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE> & a){
if(a._handle == NULL) return false;
for(AttrIterator i = m.mesh_attr.begin(); i!=m.mesh_attr.end();++i)
if ( (*i).n_attr == a.n_attr ) return true;
return false;
}
template <class ATTR_TYPE>
static
typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE>
AddPerMeshAttribute( MeshType & m, std::string name){
PAIte i;
PointerToAttribute h;
h._name = name;
if(!name.empty()){
i = m.mesh_attr.find(h);
assert(i ==m.mesh_attr.end() );// an attribute with this name exists
}
h._sizeof = sizeof(ATTR_TYPE);
h._padding = 0;
h._handle = new Attribute<ATTR_TYPE>();
h._type = typeid(ATTR_TYPE);
m.attrn++;
h.n_attr = m.attrn;
std::pair < AttrIterator , bool> res = m.mesh_attr.insert(h);
return typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE>(res.first->_handle,res.first->n_attr);
}
/*! \brief gives a handle to a per-edge attribute with a given name and ATTR_TYPE
\returns a valid handle. If the name is not empty and an attribute with that name and type exists returns a handle to it.
Otherwise return a hanlde to a newly created.
*/
template <class ATTR_TYPE>
static
typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE>
GetPerMeshAttribute( MeshType & m, std::string name = std::string("")){
typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE> h;
if(!name.empty()){
h = FindPerMeshAttribute<ATTR_TYPE>(m,name);
if(IsValidHandle(m,h))
return h;
}
return AddPerMeshAttribute<ATTR_TYPE>(m,name);
}
template <class ATTR_TYPE>
static
typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE>
FindPerMeshAttribute( MeshType & m, const std::string & name){
assert(!name.empty());
PointerToAttribute h1; h1._name = name;
typename std::set<PointerToAttribute > ::iterator i;
i =m.mesh_attr.find(h1);
if(i!=m.mesh_attr.end())
if((*i)._sizeof == sizeof(ATTR_TYPE) ){
if( (*i)._padding != 0 ){
PointerToAttribute attr = (*i); // copy the PointerToAttribute
m.mesh_attr.erase(i); // remove it from the set
FixPaddedPerMeshAttribute<ATTR_TYPE>(m,attr);
std::pair<AttrIterator,bool> new_i = m.mesh_attr.insert(attr); // insert the modified PointerToAttribute
assert(new_i.second);
i = new_i.first;
}
return typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE>((*i)._handle,(*i).n_attr);
}
return typename MeshType:: template PerMeshAttributeHandle<ATTR_TYPE>(NULL,0);
}
template <class ATTR_TYPE>
static void GetAllPerMeshAttribute(const MeshType & m, std::vector<std::string> &all){
typename std::set<PointerToAttribute > :: iterator i;
for(i = m.mesh_attr.begin(); i != m.mesh_attr.end(); ++i )
if((*i)._sizeof == sizeof(ATTR_TYPE))
all.push_back((*i)._name);
}
/*! \brief If the per-mesh attribute exists, delete it.
*/
template <class ATTR_TYPE>
static void DeletePerMeshAttribute( MeshType & m,typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE> & h){
typename std::set<PointerToAttribute > ::iterator i;
for( i = m.mesh_attr.begin(); i != m.mesh_attr.end(); ++i)
if( (*i)._handle == h._handle ){
delete (( Attribute<ATTR_TYPE> *)(*i)._handle);
m.mesh_attr.erase(i);
return;}
}
// Generic DeleteAttribute.
// It must not crash if you try to delete a non existing attribute,
// because you do not have a way of asking for a handle of an attribute for which you do not know the type.
static bool DeletePerMeshAttribute( MeshType & m, std::string name){
AttrIterator i;
PointerToAttribute h1; h1._name = name;
i = m.mesh_attr.find(h1);
if (i==m.mesh_attr.end())
return false;
delete ((SimpleTempDataBase *)(*i)._handle);
m.mesh_attr.erase(i);
return true;
}
template <class ATTR_TYPE>
static void FixPaddedPerVertexAttribute (MeshType & m, PointerToAttribute & pa){
// create the container of the right type
SimpleTempData<VertContainer,ATTR_TYPE>* _handle = new SimpleTempData<VertContainer,ATTR_TYPE>(m.vert);
// copy the padded container in the new one
_handle->Resize(m.vert.size());
for(size_t i = 0; i < m.vert.size(); ++i){
ATTR_TYPE * dest = &(*_handle)[i];
char * ptr = (char*)( ((SimpleTempDataBase *)pa._handle)->DataBegin());
memcpy((void*)dest ,
(void*) &(ptr[i * pa._sizeof ]) ,sizeof(ATTR_TYPE));
}
// remove the padded container
delete ((SimpleTempDataBase*) pa._handle);
// update the pointer to data
pa._sizeof = sizeof(ATTR_TYPE);
// update the pointer to data
pa._handle = _handle;
// zero the padding
pa._padding = 0;
}
template <class ATTR_TYPE>
static void FixPaddedPerEdgeAttribute (MeshType & m, PointerToAttribute & pa){
// create the container of the right type
SimpleTempData<EdgeContainer,ATTR_TYPE>* _handle = new SimpleTempData<EdgeContainer,ATTR_TYPE>(m.edge);
// copy the padded container in the new one
_handle->Resize(m.edge.size());
for(size_t i = 0; i < m.edge.size(); ++i){
ATTR_TYPE * dest = &(*_handle)[i];
char * ptr = (char*)( ((SimpleTempDataBase *)pa._handle)->DataBegin());
memcpy((void*)dest ,
(void*) &(ptr[i * pa._sizeof ]) ,sizeof(ATTR_TYPE));
}
// remove the padded container
delete ((SimpleTempDataBase*) pa._handle);
// update the pointer to data
pa._sizeof = sizeof(ATTR_TYPE);
// update the pointer to data
pa._handle = _handle;
// zero the padding
pa._padding = 0;
}
template <class ATTR_TYPE>
static void FixPaddedPerFaceAttribute ( MeshType & m,PointerToAttribute & pa){
// create the container of the right type
SimpleTempData<FaceContainer,ATTR_TYPE>* _handle = new SimpleTempData<FaceContainer,ATTR_TYPE>(m.face);
// copy the padded container in the new one
_handle->Resize(m.face.size());
for(size_t i = 0; i < m.face.size(); ++i){
ATTR_TYPE * dest = &(*_handle)[i];
char * ptr = (char*)( ((SimpleTempDataBase *)pa._handle)->DataBegin());
memcpy((void*)dest ,
(void*) &(ptr[i * pa._sizeof ]) ,sizeof(ATTR_TYPE));
}
// remove the padded container
delete ((SimpleTempDataBase*) pa._handle);
// update the pointer to data
pa._sizeof = sizeof(ATTR_TYPE);
// update the pointer to data
pa._handle = _handle;
// zero the padding
pa._padding = 0;
}
template <class ATTR_TYPE>
static void FixPaddedPerTetraAttribute(MeshType &m, PointerToAttribute &pa)
{
// create the container of the right type
SimpleTempData<TetraContainer, ATTR_TYPE> *_handle = new SimpleTempData<TetraContainer, ATTR_TYPE>(m.tetra);
// copy the padded container in the new one
_handle->Resize(m.tetra.size());
for (size_t i = 0; i < m.tetra.size(); ++i)
{
ATTR_TYPE *dest = &(*_handle)[i];
char *ptr = (char *)(((SimpleTempDataBase *)pa._handle)->DataBegin());
memcpy((void *)dest,
(void *)&(ptr[i * pa._sizeof]), sizeof(ATTR_TYPE));
}
// remove the padded container
delete ((SimpleTempDataBase *)pa._handle);
// update the pointer to data
pa._sizeof = sizeof(ATTR_TYPE);
// update the pointer to data
pa._handle = _handle;
// zero the padding
pa._padding = 0;
}
template <class ATTR_TYPE>
static void FixPaddedPerMeshAttribute ( MeshType & /* m */,PointerToAttribute & pa){
// create the container of the right type
Attribute<ATTR_TYPE> * _handle = new Attribute<ATTR_TYPE>();
// copy the padded container in the new one
char * ptr = (char*)( ((Attribute<ATTR_TYPE> *)pa._handle)->DataBegin());
memcpy((void*)_handle->attribute ,(void*) &(ptr[0]) ,sizeof(ATTR_TYPE));
// remove the padded container
delete ( (Attribute<ATTR_TYPE> *) pa._handle);
// update the pointer to data
pa._sizeof = sizeof(ATTR_TYPE);
// update the pointer to data
pa._handle = _handle;
// zero the padding
pa._padding = 0;
}
}; // end Allocator class
/** @} */ // end doxygen group trimesh
} // end namespace tri
} // end namespace vcg
#endif
|