File: append.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 45,124 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 29
file content (509 lines) | stat: -rw-r--r-- 19,688 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
#ifndef __VCGLIB_APPEND
#define __VCGLIB_APPEND

#ifndef __VCG_MESH
#error "This file should not be included alone. It is automatically included by complex.h"
#endif

namespace vcg {
namespace tri {
/** \ingroup trimesh */
/*! \brief  Class to safely duplicate and append (portion of) meshes.

Adding elements to a mesh, like faces and vertices can involve the reallocation of the vectors of the involved elements.
This class provide the only safe methods to add elements of a mesh to another one.
\sa \ref allocation
*/
template<class MeshLeft, class ConstMeshRight>
class Append
{
public:
 typedef typename MeshLeft::ScalarType			ScalarLeft;
 typedef typename MeshLeft::CoordType				CoordLeft;
 typedef typename MeshLeft::VertexType			VertexLeft;
 typedef typename MeshLeft::EdgeType				EdgeLeft;
 typedef typename MeshLeft::FaceType				FaceLeft;
 typedef typename MeshLeft::HEdgeType				HEdgeLeft;
 typedef typename MeshLeft::TetraType       TetraLeft;
 typedef typename MeshLeft::VertexPointer		VertexPointerLeft;
 typedef typename MeshLeft::VertexIterator	VertexIteratorLeft;
 typedef typename MeshLeft::EdgeIterator		EdgeIteratorLeft;
 typedef typename MeshLeft::HEdgeIterator		HEdgeIteratorLeft;
 typedef typename MeshLeft::FaceIterator		FaceIteratorLeft;
 typedef typename MeshLeft::TetraIterator   TetraIteratorLeft;


 typedef typename ConstMeshRight::ScalarType     ScalarRight;
 typedef typename ConstMeshRight::CoordType      CoordRight;
 typedef typename ConstMeshRight::VertexType     VertexRight;
 typedef typename ConstMeshRight::EdgeType       EdgeRight;
 typedef typename ConstMeshRight::HEdgeType      HEdgeRight;
 typedef typename ConstMeshRight::FaceType       FaceRight;
 typedef typename ConstMeshRight::TetraType      TetraRight;
 typedef typename ConstMeshRight::TetraPointer   TetraPointerRight;
 typedef typename ConstMeshRight::TetraIterator  TetraIteratorRight;
 typedef typename ConstMeshRight::VertexPointer  VertexPointerRight;
 typedef typename ConstMeshRight::VertexIterator VertexIteratorRight;
 typedef typename ConstMeshRight::EdgeIterator   EdgeIteratorRight;
 typedef typename ConstMeshRight::HEdgeIterator  HEdgeIteratorRight;
 typedef typename ConstMeshRight::FaceIterator   FaceIteratorRight;
 typedef typename ConstMeshRight::FacePointer    FacePointerRight;

 struct Remap{
   static size_t InvalidIndex() { return std::numeric_limits<size_t>::max(); }
        std::vector<size_t> vert, face, edge, hedge, tetra;
 };

 static void ImportVertexAdj(MeshLeft &ml, ConstMeshRight &mr, VertexLeft &vl,   VertexRight &vr, Remap &remap ){
   // Vertex to Edge Adj
   if(HasVEAdjacency(ml) && HasVEAdjacency(mr) && vr.cVEp() != 0){
     size_t i = Index(mr,vr.cVEp());
     vl.VEp() = (i>ml.edge.size())? 0 : &ml.edge[remap.edge[i]];
     vl.VEi() = vr.VEi();
   }

   // Vertex to Face Adj
   if(HasPerVertexVFAdjacency(ml) && HasPerVertexVFAdjacency(mr) && vr.cVFp() != 0 ){
     size_t i = Index(mr,vr.cVFp());
     vl.VFp() = (i>ml.face.size())? 0 :&ml.face[remap.face[i]];
     vl.VFi() = vr.VFi();
   }

   // Vertex to HEdge Adj
   if(HasVHAdjacency(ml) && HasVHAdjacency(mr) && vr.cVHp() != 0){
     vl.VHp() = &ml.hedge[remap.hedge[Index(mr,vr.cVHp())]];
     vl.VHi() = vr.VHi();
   }

   // Vertex to Tetra Adj
   if(HasVTAdjacency(ml) && HasVTAdjacency(mr) && vr.cVTp() != 0){
     size_t i = Index(mr, vr.cVTp());
     vl.VTp() = (i > ml.edge.size()) ? 0 : &ml.tetra[remap.tetra[i]];
     vl.VTi() = vr.VTi();
   }
 }

 static void ImportEdgeAdj(MeshLeft &ml, ConstMeshRight &mr, EdgeLeft &el, const EdgeRight &er, Remap &remap)
 {
     // Edge to Edge  Adj
     if(HasEEAdjacency(ml) && HasEEAdjacency(mr))
       for(unsigned int vi = 0; vi < 2; ++vi)
       {
         size_t idx = Index(mr,er.cEEp(vi));
         el.EEp(vi) = (idx>ml.edge.size())? 0 : &ml.edge[remap.edge[idx]];
         el.EEi(vi) = er.cEEi(vi);
       }

     // Edge to Face  Adj
     if(HasEFAdjacency(ml) && HasEFAdjacency(mr)){
       size_t idx = Index(mr,er.cEFp());
       el.EFp() = (idx>ml.face.size())? 0 :&ml.face[remap.face[idx]];
       el.EFi() = er.cEFi();
     }

     // Edge to HEdge   Adj
     if(HasEHAdjacency(ml) && HasEHAdjacency(mr))
       el.EHp() = &ml.hedge[remap.hedge[Index(mr,er.cEHp())]];
 }


 static void ImportFaceAdj(MeshLeft &ml, ConstMeshRight &mr, FaceLeft &fl, const FaceRight &fr, Remap &remap )
 {
   // Face to Edge  Adj
   if(HasFEAdjacency(ml) && HasFEAdjacency(mr)){
     assert(fl.VN() == fr.VN());
     for( int vi = 0; vi < fl.VN(); ++vi ){
       size_t idx = remap.edge[Index(mr,fr.cFEp(vi))];
       if(idx!=Remap::InvalidIndex())
         fl.FEp(vi) = &ml.edge[idx];
     }
   }

   // Face to Face  Adj
   if(HasFFAdjacency(ml) && HasFFAdjacency(mr)){
     assert(fl.VN() == fr.VN());
     for( int vi = 0; vi < fl.VN(); ++vi ){
       size_t idx = remap.face[Index(mr,fr.cFFp(vi))];
       if(idx!=Remap::InvalidIndex()){
		 assert(idx >= 0 && idx < ml.face.size());
         fl.FFp(vi) = &ml.face[idx];
         fl.FFi(vi) = fr.cFFi(vi);
       }
     }
   }

	// Vertex to Face Adj
	if(HasPerFaceVFAdjacency(ml) && HasPerFaceVFAdjacency(mr))
	{
		assert(fl.VN() == fr.VN());
		for (int vi = 0; vi < fl.VN(); ++vi)
		{
			const auto * fp     = fr.cVFp(vi);
			const auto   vfindex = fr.cVFi(vi);
			size_t fidx = (fp == nullptr) ? Remap::InvalidIndex() : remap.face[Index(mr,fp)];

			if (fidx == Remap::InvalidIndex()) // end of VF chain (or not initialized)
			{
				fl.VFClear(vi);
				assert(fl.cVFi(vi) == -1);
			}
			else
			{
				assert(fidx >= 0 && fidx < ml.face.size());
				fl.VFp(vi) = &ml.face[fidx];
				fl.VFi(vi) = vfindex;
			}
		}
	}

   // Face to HEedge  Adj
   if(HasFHAdjacency(ml) && HasFHAdjacency(mr))
     fl.FHp() = &ml.hedge[remap.hedge[Index(mr,fr.cFHp())]];
 }

 static void ImportHEdgeAdj(MeshLeft &ml, ConstMeshRight &mr, HEdgeLeft &hl, const HEdgeRight &hr, Remap &remap, bool /*sel*/ ){
   // HEdge to Vertex  Adj
   if(HasHVAdjacency(ml) && HasHVAdjacency(mr))
     hl.HVp() = &ml.vert[remap.vert[Index(mr,hr.cHVp())]];

   // HEdge to Edge  Adj
   if(HasHEAdjacency(ml) && HasHEAdjacency(mr)){
     size_t idx = Index(mr,hr.cHEp()) ;
     hl.HEp() = (idx>ml.edge.size())? 0 : &ml.edge[remap.edge[idx]];
   }

   // HEdge to Face  Adj
   if(HasHFAdjacency(ml) && HasHFAdjacency(mr)){
     size_t idx = Index(mr,hr.cHFp());
     hl.HFp() = (idx>ml.face.size())? 0 :&ml.face[remap.face[idx]];
   }


   // HEdge to Opposite HEdge  Adj
   if(HasHOppAdjacency(ml) && HasHOppAdjacency(mr))
     hl.HOp() = &ml.hedge[remap.hedge[Index(mr,hr.cHOp())]];

   // HEdge to Next  HEdge  Adj
   if(HasHNextAdjacency(ml) && HasHNextAdjacency(mr))
     hl.HNp() = &ml.hedge[remap.hedge[Index(mr,hr.cHNp())]];

   // HEdge to Next  HEdge  Adj
   if(HasHPrevAdjacency(ml) && HasHPrevAdjacency(mr))
     hl.HPp() = &ml.hedge[remap.hedge[Index(mr,hr.cHPp())]];
 }

  static void ImportTetraAdj(MeshLeft &ml, ConstMeshRight &mr, TetraLeft &tl, const TetraRight &tr, Remap &remap )
 {
   // Tetra to Tetra  Adj
   if(HasTTAdjacency(ml) && HasTTAdjacency(mr)){
     for( int vi = 0; vi < 4; ++vi ){
       size_t idx = remap.tetra[Index(mr,tr.cTTp(vi))];
       if(idx != Remap::InvalidIndex()){
         tl.TTp(vi) = &ml.tetra[idx];
         tl.TTi(vi) = tr.cTTi(vi);
       }
     }
   }
}

// Append Right Mesh to the Left Mesh
// Append::Mesh(ml, mr) is equivalent to ml += mr.
// Note MeshRigth could be costant...
 /*! \brief %Append the second mesh to the first one.

   The first mesh is not destroyed and no attempt of avoid duplication of already present elements is done.
   If requested only the selected elements are appended to the first one.
   The second mesh is not changed at all (it could be constant) with the exception of the selection (see below note).

   \note  If the the selection of the vertexes is not consistent with the face selection
   the append could build faces referencing non existent vertices
   so it is mandatory that the selection of the vertices reflects the loose selection
   from edges and faces (e.g. if a face is selected then all its vertices must be selected).

   \note Attributes. This function will copy only those attributes that are present in both meshes.
   Two attributes in different meshes are considered the same iff they have the same
   name and the same type. This may be deceiving because they could in fact have
   different semantic, but this is up to the developer.
   If the left mesh has attributes that are not in the right mesh, their values for the elements
   of the right mesh will be uninitialized

 */

static void Mesh(MeshLeft& ml, ConstMeshRight& mr, const bool selected = false, const bool adjFlag = false)
{
  // Note that if the the selection of the vertexes is not consistent with the face selection
  // the append could build faces referencing non existent vertices
  // so it is mandatory that the selection of the vertices reflects the loose selection
  // from edges and faces (e.g. if a face is selected all its vertices must be selected).
  // note the use of the parameter for preserving existing vertex selection.
  if(selected)
  {
    assert(adjFlag == false || ml.IsEmpty()); // It is rather meaningless to partially copy adj relations.
    tri::UpdateSelection<ConstMeshRight>::VertexFromEdgeLoose(mr,true);
    tri::UpdateSelection<ConstMeshRight>::VertexFromFaceLoose(mr,true);
  }

  // phase 1. allocate on ml vert,edge,face, hedge to accomodat those of mr
  // and build the remapping for all

  Remap remap;

  // vertex
  remap.vert.resize(mr.vert.size(), Remap::InvalidIndex());
  VertexIteratorLeft vp;
  size_t svn = UpdateSelection<ConstMeshRight>::VertexCount(mr);
  if(selected)
      vp=Allocator<MeshLeft>::AddVertices(ml,int(svn));
  else
      vp=Allocator<MeshLeft>::AddVertices(ml,mr.vn);

  for(VertexIteratorRight vi=mr.vert.begin(); vi!=mr.vert.end(); ++vi)
  {
    if(!(*vi).IsD() && (!selected || (*vi).IsS()))
    {
      size_t ind=Index(mr,*vi);
      remap.vert[ind]=int(Index(ml,*vp));
      ++vp;
    }
  }
  // edge
  remap.edge.resize(mr.edge.size(), Remap::InvalidIndex());
  EdgeIteratorLeft ep;
  size_t sen = UpdateSelection<ConstMeshRight>::EdgeCount(mr);
  if(selected) ep=Allocator<MeshLeft>::AddEdges(ml,sen);
          else ep=Allocator<MeshLeft>::AddEdges(ml,mr.en);

  for(EdgeIteratorRight ei=mr.edge.begin(); ei!=mr.edge.end(); ++ei)
    if(!(*ei).IsD() && (!selected || (*ei).IsS())){
      size_t ind=Index(mr,*ei);
      remap.edge[ind]=int(Index(ml,*ep));
      ++ep;
    }

  // face
  remap.face.resize(mr.face.size(), Remap::InvalidIndex());
  FaceIteratorLeft fp;
  size_t sfn = UpdateSelection<ConstMeshRight>::FaceCount(mr);
  if(selected) fp=Allocator<MeshLeft>::AddFaces(ml,sfn);
          else fp=Allocator<MeshLeft>::AddFaces(ml,mr.fn);

  for(FaceIteratorRight fi=mr.face.begin(); fi!=mr.face.end(); ++fi)
    if(!(*fi).IsD() && (!selected || (*fi).IsS())){
      size_t ind=Index(mr,*fi);
      remap.face[ind]=int(Index(ml,*fp));
      ++fp;
    }

  // hedge
  remap.hedge.resize(mr.hedge.size(),Remap::InvalidIndex());
  for(HEdgeIteratorRight hi=mr.hedge.begin(); hi!=mr.hedge.end(); ++hi)
    if(!(*hi).IsD() && (!selected || (*hi).IsS())){
      size_t ind=Index(mr,*hi);
      assert(remap.hedge[ind]==Remap::InvalidIndex());
      HEdgeIteratorLeft hp = Allocator<MeshLeft>::AddHEdges(ml,1);
      (*hp).ImportData(*(hi));
      remap.hedge[ind]=Index(ml,*hp);
    }
  
  remap.tetra.resize(mr.tetra.size(), Remap::InvalidIndex());
  for (TetraIteratorRight ti = mr.tetra.begin(); ti != mr.tetra.end(); ++ti)
    if (!(*ti).IsD() && (!selected || (*ti).IsS())) {
      size_t idx = Index(mr, *ti);
      assert (remap.tetra[idx] == Remap::InvalidIndex());
      TetraIteratorLeft tp = Allocator<MeshLeft>::AddTetras(ml, 1);
      (*tp).ImportData(*ti);
      remap.tetra[idx] = Index(ml, *tp);
    }

  // phase 2.
  // copy data from mr to its corresponding elements in ml and adjacencies

  // vertex
  for(VertexIteratorRight vi=mr.vert.begin();vi!=mr.vert.end();++vi)
    if( !(*vi).IsD() && (!selected || (*vi).IsS())){
      ml.vert[remap.vert[Index(mr,*vi)]].ImportData(*vi);
      if(adjFlag) ImportVertexAdj(ml,mr,ml.vert[remap.vert[Index(mr,*vi)]],*vi,remap);
    }

  // edge
  for(EdgeIteratorRight ei=mr.edge.begin();ei!=mr.edge.end();++ei)
    if(!(*ei).IsD() && (!selected || (*ei).IsS())){
      ml.edge[remap.edge[Index(mr,*ei)]].ImportData(*ei);
      // Edge to Vertex  Adj
      EdgeLeft &el = ml.edge[remap.edge[Index(mr,*ei)]];
      if(HasEVAdjacency(ml) && HasEVAdjacency(mr)){
        el.V(0) = &ml.vert[remap.vert[Index(mr,ei->cV(0))]];
        el.V(1) = &ml.vert[remap.vert[Index(mr,ei->cV(1))]];
      }
      if(adjFlag) ImportEdgeAdj(ml,mr,el,*ei,remap);
    }

  // face
  const size_t textureOffset =  ml.textures.size();
  bool WTFlag = HasPerWedgeTexCoord(mr) && (textureOffset>0);
  for(FaceIteratorRight fi=mr.face.begin();fi!=mr.face.end();++fi)
    if(!(*fi).IsD() && (!selected || (*fi).IsS()))
    {
      FaceLeft &fl = ml.face[remap.face[Index(mr,*fi)]];
      fl.Alloc(fi->VN());
      if(HasFVAdjacency(ml) && HasFVAdjacency(mr)){
        for(int i = 0; i < fl.VN(); ++i)
          fl.V(i) = &ml.vert[remap.vert[Index(mr,fi->cV(i))]];
      }
	  fl.ImportData(*fi);
      if(WTFlag)
        for(int i = 0; i < fl.VN(); ++i)
          fl.WT(i).n() += short(textureOffset);
      if(adjFlag)  ImportFaceAdj(ml,mr,ml.face[remap.face[Index(mr,*fi)]],*fi,remap);

    }

  // hedge
  for(HEdgeIteratorRight hi=mr.hedge.begin();hi!=mr.hedge.end();++hi)
    if(!(*hi).IsD() && (!selected || (*hi).IsS())){
      ml.hedge[remap.hedge[Index(mr,*hi)]].ImportData(*hi);
      ImportHEdgeAdj(ml,mr,ml.hedge[remap.hedge[Index(mr,*hi)]],*hi,remap,selected);
    }
  
  //tetra
  for(TetraIteratorRight ti = mr.tetra.begin(); ti != mr.tetra.end(); ++ti)
    if(!(*ti).IsD() && (!selected || (*ti).IsS()))
    {
      TetraLeft &tl = ml.tetra[remap.tetra[Index(mr,*ti)]];
      
      if(HasFVAdjacency(ml) && HasFVAdjacency(mr)){
        for(int i = 0; i < 4; ++i)
          tl.V(i) = &ml.vert[remap.vert[Index(mr,ti->cV(i))]];
      }
	    tl.ImportData(*ti);
      if(adjFlag)  ImportTetraAdj(ml, mr, ml.tetra[remap.tetra[Index(mr,*ti)]], *ti, remap);

    }

        // phase 3.
        // take care of other per mesh data: textures,   attributes

        // At the end concatenate the vector with texture names.
        ml.textures.insert(ml.textures.end(),mr.textures.begin(),mr.textures.end());

        // Attributes. Copy only those attributes that are present in both meshes
        // Two attributes in different meshes are considered the same if they have the same
        // name and the same type. This may be deceiving because they could in fact have
        // different semantic, but this is up to the developer.
        // If the left mesh has attributes that are not in the right mesh, their values for the elements
        // of the right mesh will be uninitialized

		unsigned int id_r;
		typename std::set< PointerToAttribute >::iterator al, ar;

		// per vertex attributes
		for(al = ml.vert_attr.begin(); al != ml.vert_attr.end(); ++al)
			if(!(*al)._name.empty()){
				ar =    mr.vert_attr.find(*al);
				if(ar!= mr.vert_attr.end()){
					id_r = 0;
					for(VertexIteratorRight vi=mr.vert.begin();vi!=mr.vert.end();++vi,++id_r)
						if( !(*vi).IsD() && (!selected || (*vi).IsS()))
							(*al)._handle->CopyValue(remap.vert[Index(mr,*vi)], id_r, (*ar)._handle);
				}
			}

		// per edge attributes
		for(al = ml.edge_attr.begin(); al != ml.edge_attr.end(); ++al)
			if(!(*al)._name.empty()){
				ar =    mr.edge_attr.find(*al);
				if(ar!= mr.edge_attr.end()){
					id_r = 0;
					for(EdgeIteratorRight ei=mr.edge.begin();ei!=mr.edge.end();++ei,++id_r)
						if( !(*ei).IsD() && (!selected || (*ei).IsS()))
							(*al)._handle->CopyValue(remap.edge[Index(mr,*ei)], id_r, (*ar)._handle);
				}
			}

		// per face attributes
		for(al = ml.face_attr.begin(); al != ml.face_attr.end(); ++al)
			if(!(*al)._name.empty()){
				ar =    mr.face_attr.find(*al);
				if(ar!= mr.face_attr.end()){
					id_r = 0;
					for(FaceIteratorRight fi=mr.face.begin();fi!=mr.face.end();++fi,++id_r)
						if( !(*fi).IsD() && (!selected || (*fi).IsS()))
							(*al)._handle->CopyValue(remap.face[Index(mr,*fi)], id_r, (*ar)._handle);
				}
			}

		// per tetra attributes
		for(al = ml.tetra_attr.begin(); al != ml.tetra_attr.end(); ++al)
			if(!(*al)._name.empty()){
				ar =    mr.tetra_attr.find(*al);
				if(ar!= mr.tetra_attr.end()){
					id_r = 0;
					for(TetraIteratorRight ti = mr.tetra.begin(); ti != mr.tetra.end(); ++ti, ++id_r)
						if( !(*ti).IsD() && (!selected || (*ti).IsS()))
							(*al)._handle->CopyValue(remap.tetra[Index(mr, *ti)], id_r, (*ar)._handle);
				}
			}
                // per mesh attributes
                // if both ml and mr have an attribute with the same name, no action is done
                // if mr has an attribute that is NOT present in ml, the attribute is added to ml
                //for(ar = mr.mesh_attr.begin(); ar != mr.mesh_attr.end(); ++ar)
                //        if(!(*ar)._name.empty()){
                //                al =    ml.mesh_attr.find(*ar);
                //                if(al== ml.mesh_attr.end())
                //                        //...
                //        }
}

/*! \brief Copy the second mesh over the first one.
  The first mesh is destroyed. If requested only the selected elements are copied.
*/
static void MeshCopy(MeshLeft& ml, ConstMeshRight& mr, bool selected=false, const bool adjFlag = false)
{
  ml.Clear();
  Mesh(ml,mr,selected,adjFlag);
  ml.bbox.Import(mr.bbox);
}
/*! \brief %Append only the selected elements of second mesh to the first one.

  It is just a wrap of the main Append::Mesh()
  */
static void Selected(MeshLeft& ml, ConstMeshRight& mr)
{
  Mesh(ml,mr,true);
}

}; // end of class Append





} // End Namespace tri
} // End Namespace vcg


#endif