File: component.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 45,124 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 29
file content (694 lines) | stat: -rw-r--r-- 31,285 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
#ifndef __VCG_MESH
#error "This file should not be included alone. It is automatically included by complex.h"
#endif
#ifndef __VCG_FACE_PLUS_COMPONENT
#define __VCG_FACE_PLUS_COMPONENT


namespace vcg {
namespace face {
/** \addtogroup FaceComponentGroup
  @{
*/
/*------------------------- EMPTY CORE COMPONENTS -----------------------------------------*/

template <class T> class EmptyCore: public T {
public:
  inline typename T::VertexType * &V( const int )       { assert(0);		static typename T::VertexType *vp=0; return vp; }
  inline typename T::VertexType * cV( const int ) const { assert(0);		static typename T::VertexType *vp=0; return vp;	}
  inline typename T::VertexType * &FVp( const int i )       {	return this->V(i); }
  inline typename T::VertexType * cFVp( const int i ) const {	return this->cV(i); }
  inline typename T::CoordType &P( const int ) 	     { assert(0);		static typename T::CoordType coord(0, 0, 0); return coord;	}
  inline typename T::CoordType cP( const int ) const { assert(0);		static typename T::CoordType coord(0, 0, 0); return coord;	}

  static bool HasVertexRef()   { return false; }
  static bool HasFVAdjacency()   { return false; }

  typedef typename T::VertexType::NormalType NormalType;
  typedef NormalType WedgeNormalType;
  NormalType &N() { static NormalType dummy_normal(0, 0, 0);  assert(0); return dummy_normal; }
  NormalType cN() const { static NormalType dummy_normal(0, 0, 0); return dummy_normal; }
  WedgeNormalType &WN(int) { static NormalType dummy_normal(0, 0, 0);  assert(0); return dummy_normal; }
  WedgeNormalType cWN(int) const { static NormalType dummy_normal(0, 0, 0); return dummy_normal; }


  typedef int WedgeTexCoordType;
  typedef vcg::TexCoord2<float,1> TexCoordType;
  TexCoordType &WT(const int) { static TexCoordType dummy_texture;  assert(0); return dummy_texture;}
  TexCoordType const &cWT(const int) const { static TexCoordType dummy_texture; return dummy_texture;}

  typedef int FlagType;
  int &Flags() { static int dummyflags(0);  assert(0); return dummyflags; }
  int cFlags() const { return 0; }
  static bool HasFlags()   { return false; }

  inline void InitIMark()    {  }
  inline int &IMark()       { assert(0); static int tmp=-1; return tmp;}
  inline int cIMark() const { return 0;}

  typedef int MarkType;
  typedef float QualityType;
  typedef Point3f Quality3Type;
  typedef vcg::Color4b ColorType;
  typedef ColorType WedgeColorType;
  ColorType &C()       { static ColorType dumcolor(vcg::Color4b::White);  assert(0); return dumcolor; }
  ColorType cC() const { static ColorType dumcolor(vcg::Color4b::White);  assert(0); return dumcolor; }
  WedgeColorType &WC(const int)       { static ColorType dumcolor(vcg::Color4b::White);  assert(0); return dumcolor; }
  WedgeColorType cWC(const int) const { static ColorType dumcolor(vcg::Color4b::White);  assert(0); return dumcolor; }
  QualityType &Q()       { static QualityType dummyQuality(0);  assert(0); return dummyQuality; }
  QualityType cQ() const { static QualityType dummyQuality(0);  assert(0); return dummyQuality; }
  Quality3Type &Q3()       { static Quality3Type dummyQuality3(0,0,0);  assert(0); return dummyQuality3; }
  Quality3Type cQ3() const { static Quality3Type dummyQuality3(0,0,0);  assert(0); return dummyQuality3; }

  static bool HasColor()   { return false; }
  static bool HasQuality()   { return false; }
  static bool HasQuality3()   { return false; }
  static bool HasMark()   { return false; }
  static bool HasNormal()    { return false; }

  static bool HasWedgeColor()   { return false; }
  static bool HasWedgeNormal()   { return false; }
  static bool HasWedgeTexCoord()   { return false; }

  // Interfaces for dynamic types
  inline bool IsColorEnabled( )        const { return T::FaceType::HasColor(); }
  inline bool IsCurvatureDirEnabled( ) const { return T::FaceType::HasCurvatureDir(); }
  inline bool IsMarkEnabled( )         const { return T::FaceType::HasMark(); }
  inline bool IsNormalEnabled( )       const { return T::FaceType::HasNormal(); }
  inline bool IsQualityEnabled( )      const { return T::FaceType::HasQuality(); }
  inline bool IsQuality3Enabled( )     const { return T::FaceType::HasQuality3(); }

  inline bool IsWedgeColorEnabled( )    const { return T::FaceType::HasWedgeColor(); }
  inline bool IsWedgeNormalEnabled( )   const { return T::FaceType::HasWedgeNormal(); }
  inline bool IsWedgeTexCoordEnabled( ) const { return T::FaceType::HasWedgeTexCoord(); }

  typedef int VFAdjType;
  typename T::FacePointer &VFp(int)       { static typename T::FacePointer fp=0; assert(0); return fp; }
  typename T::FacePointer cVFp(int) const { static typename T::FacePointer fp=0; assert(0); return fp; }
  typename T::FacePointer &FFp(int)       { static typename T::FacePointer fp=0; assert(0); return fp; }
  typename T::FacePointer cFFp(int) const { static typename T::FacePointer fp=0; assert(0); return fp; }
  typename T::EdgePointer &FEp(int)       { static typename T::EdgePointer fp=0; assert(0); return fp; }
  typename T::EdgePointer cFEp(int) const { static typename T::EdgePointer fp=0; assert(0); return fp; }
  typename T::HEdgePointer &FHp()       { static typename T::HEdgePointer fp=0; assert(0); return fp; }
  typename T::HEdgePointer cFHp() const { static typename T::HEdgePointer fp=0; assert(0); return fp; }
  char &VFi(int)       { static char z=0; assert(0); return z;}
  char &FFi(int)       { static char z=0; assert(0); return z;}
  char cVFi(int) const { static char z=0; assert(0); return z;}
  char cFFi(int) const { static char z=0; assert(0); return z;}
  bool IsVFInitialized(const int j) const {return  static_cast<const typename T::FaceType *>(this)->cVFi(j)!=-1;}
  void VFClear(int j) {
    if(IsVFInitialized(j)) {
      static_cast<typename T::FacePointer>(this)->VFp(j)=0;
      static_cast<typename T::FacePointer>(this)->VFi(j)=-1;
    }
  }
  static bool HasVFAdjacency()   {   return false; }
  static bool HasFFAdjacency()   {   return false; }
  static bool HasFEAdjacency()   {   return false; }
  static bool HasFHAdjacency()   {   return false; }

  typedef typename T::VertexType::CurvatureDirType CurvatureDirType;
  typedef typename T::CoordType CurVecType;
  typedef typename T::ScalarType CurScalarType;
  CurVecType &PD1()       { static typename T::CoordType dummy(0, 0, 0); assert(0); return dummy; }
  CurVecType &PD2()       { static typename T::CoordType dummy(0, 0, 0); assert(0); return dummy; }
  CurVecType cPD1() const { static typename T::CoordType dummy(0, 0, 0); assert(0); return dummy; }
  CurVecType cPD2() const { static typename T::CoordType dummy(0, 0, 0); assert(0); return dummy; }

  CurScalarType &K1()      { static typename T::ScalarType dummy(0); assert(0); return dummy; }
  CurScalarType &K2()      { static typename T::ScalarType dummy(0); assert(0); return dummy; }
  CurScalarType cK1() const { static typename T::ScalarType dummy(0); assert(0); return dummy; }
  CurScalarType cK2() const { static typename T::ScalarType dummy(0); assert(0); return dummy; }

  static bool HasCurvatureDir()   { return false; }


  static bool HasPolyInfo()   { return false; }

   template <class RightValueType>
  void ImportData(const RightValueType & rightF) {T::ImportData(rightF);}
  inline void Alloc(const int & ns) {T::Alloc(ns);}
  inline void Dealloc(){T::Dealloc();}
  static void Name(std::vector<std::string> & name){T::Name(name);}
  };

/*-------------------------- VertexRef ----------------------------------------*/
/*! \brief The references to the vertexes of a triangular face
 *
 * Stored as three pointers to the VertexType
 */


template <class T> class VertexRef: public T {
public:
    VertexRef(){
        v[0]=0;
        v[1]=0;
        v[2]=0;
    }

  typedef typename T::VertexType::CoordType CoordType;
  typedef typename T::VertexType::ScalarType ScalarType;

  inline typename T::VertexType * &V( const int j )       { assert(j>=0 && j<3); return v[j]; } /// \brief The pointer to the i-th vertex
  inline typename T::VertexType * cV( const int j ) const { assert(j>=0 && j<3);	return v[j]; }

  inline CoordType &P( const int j ) 	    {	assert(j>=0 && j<3);		return v[j]->P();	} /// \brief Shortcut: the position of the  i-th vertex (equivalent to \c V(i)->P() )
  inline CoordType cP( const int j ) const	{	assert(j>=0 && j<3);		return v[j]->cP(); }

  inline typename T::VertexType * & V0( const int j )       { return V(j);}        /** \brief Return the pointer to the j-th vertex of the face. */
  inline typename T::VertexType * & V1( const int j )       { return V((j+1)%3);}  /** \brief Return the pointer to the ((j+1)%3)-th vertex of the face. */
  inline typename T::VertexType * & V2( const int j )       { return V((j+2)%3);}  /** \brief Return the pointer to the ((j+2)%3)-th vertex of the face. */
  inline typename T::VertexType *  cV0( const int j ) const { return cV(j);}
  inline typename T::VertexType *  cV1( const int j ) const { return cV((j+1)%3);}
  inline typename T::VertexType *  cV2( const int j ) const { return cV((j+2)%3);}

  inline       CoordType &  P0( const int j )       { return V(j)->P();}
  inline       CoordType &  P1( const int j )       { return V((j+1)%3)->P();}
  inline       CoordType &  P2( const int j )       { return V((j+2)%3)->P();}
  inline const CoordType & cP0( const int j ) const { return cV(j)->P();}
  inline const CoordType & cP1( const int j ) const { return cV((j+1)%3)->P();}
  inline const CoordType & cP2( const int j ) const { return cV((j+2)%3)->P();}

  // Small comment about the fact that the pointers are zero filled.
  // The importLocal is meant for copyng stuff between very different meshes, so copying the pointers would be meaningless.
  // if you are using ImportData for copying internally simplex you have to set up all the pointers by hand.
  template <class RightValueType>
  void ImportData(const RightValueType & rightF){  T::ImportData(rightF);}
  inline void Alloc(const int & ns){T::Alloc(ns);}
  inline void Dealloc(){T::Dealloc();}

  static bool HasVertexRef()   { return true; }
  static bool HasFVAdjacency()   { return true; }

  static void Name(std::vector<std::string> & name){name.push_back(std::string("VertexRef"));T::Name(name);}

private:
  typename T::VertexType *v[3];
};

template <class A, class T> class NormalAbs: public T {
public:
  typedef A NormalType;
  inline NormalType &N() { return _norm; }
  inline NormalType cN() const { return _norm; }
  template <class RightValueType>
  void ImportData(const RightValueType & rightF)
  {
    if(rightF.IsNormalEnabled()) N().Import(rightF.cN());
    T::ImportData(rightF);
  }

  inline void Alloc(const int & ns){T::Alloc(ns);}
  inline void Dealloc(){T::Dealloc();}
  static bool HasNormal()   { return true; }
  static void Name(std::vector<std::string> & name){name.push_back(std::string("NormalAbs"));T::Name(name);}

private:
  NormalType _norm;
};

template <class T> class WedgeNormal: public T {
public:
  typedef typename T::VertexType::NormalType WedgeNormalType;
  inline WedgeNormalType &WN(int j)       { return _wnorm[j]; }
  inline WedgeNormalType cWN(int j) const { return _wnorm[j]; }
  template <class RightValueType>
  void ImportData(const RightValueType & rightF){ if(rightF.IsWedgeNormalEnabled()) for (int i=0; i<3; ++i) { WN(i) = rightF.cWN(i); } T::ImportData(rightF);}
  inline void Alloc(const int & ns){T::Alloc(ns);}
  inline void Dealloc(){T::Dealloc();}
  static bool HasWedgeNormal()   { return true; }
  static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeNormal"));T::Name(name);}

private:
  WedgeNormalType _wnorm[3];
};

template <class A, class T> class WedgeRealNormal: public T {
public:
  typedef A WedgeNormalType;
  inline WedgeNormalType &WN(int i)       { return _wn[i]; }
  inline WedgeNormalType cWN(int i) const { return _wn[i]; }
  template <class RightValueType>
  void ImportData(const RightValueType & rightF){ if(RightValueType::HasWedgeNormal()) for (int i=0; i<3; ++i) { WN(i) = rightF.cWN(i); } T::ImportData(rightF);}
  inline void Alloc(const int & ns){T::Alloc(ns);}
  inline void Dealloc(){T::Dealloc();}
  static bool HasWedgeNormal()   { return true; }
  static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeRealNormal"));T::Name(name);}

private:
  WedgeNormalType _wn[3];
};

template <class TT> class WedgeRealNormal3s: public WedgeRealNormal<vcg::Point3s, TT> {
public:  static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeRealNormal2s"));TT::Name(name);}};
template <class TT> class WedgeRealNormal3f: public WedgeRealNormal<vcg::Point3f, TT> {
public:  static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeRealNormal2f"));TT::Name(name);}};
template <class TT> class WedgeRealNormal3d: public WedgeRealNormal<vcg::Point3d, TT> {
public:  static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeRealNormal2d"));TT::Name(name);}};

template <class T> class Normal3s: public NormalAbs<vcg::Point3s, T> {
public:static void Name(std::vector<std::string> & name){name.push_back(std::string("Normal3s"));T::Name(name);}
};
template <class T> class Normal3f: public NormalAbs<vcg::Point3f, T> {
public:  static void Name(std::vector<std::string> & name){name.push_back(std::string("Normal3f"));T::Name(name);}
};
template <class T> class Normal3d: public NormalAbs<vcg::Point3d, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Normal3d"));T::Name(name);}
};


/*-------------------------- TexCoord ----------------------------------------*/

template <class A, class T> class WedgeTexCoord: public T {
public:
  typedef int WedgeTexCoordType;
  typedef A TexCoordType;
  TexCoordType &WT(const int i)       { return _wt[i]; }
  TexCoordType cWT(const int i) const { return _wt[i]; }
  template <class RightValueType>
  void ImportData(const RightValueType & rightF){
    if(rightF.IsWedgeTexCoordEnabled())
      for (int i=0; i<3; ++i) { WT(i) = rightF.cWT(i); }
    T::ImportData(rightF);
  }
  inline void Alloc(const int & ns){T::Alloc(ns);}
  inline void Dealloc(){T::Dealloc();}
  static bool HasWedgeTexCoord()   { return true; }
  static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeTexCoord"));T::Name(name);}

private:
  TexCoordType _wt[3];
};

template <class TT> class WedgeTexCoord2s: public WedgeTexCoord<TexCoord2<short,1>, TT> {
public:  static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeTexCoord2s"));TT::Name(name);}
};
template <class TT> class WedgeTexCoord2f: public WedgeTexCoord<TexCoord2<float,1>, TT> {
public:  static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeTexCoord2f"));TT::Name(name);}
};
template <class TT> class WedgeTexCoord2d: public WedgeTexCoord<TexCoord2<double,1>, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeTexCoord2d"));TT::Name(name);}
};

/*------------------------- BitFlags -----------------------------------------*/
/*! \brief \em Component: Per face \b Flags

This component stores a 32 bit array of bit flags. These bit flags are used for keeping track of selection, deletion, visiting etc. \sa \ref flags for more details on common uses of flags.
*/
template <class T> class BitFlags:  public T {
public:
  BitFlags():_flags(0) {}
  typedef int FlagType;
  int &Flags()       {return _flags; }
  int cFlags() const {return _flags; }
  template <class RightValueType>
  void ImportData(const RightValueType & rightF){
    if(RightValueType::HasFlags())
      Flags() = rightF.cFlags();
    T::ImportData(rightF);
  }
  inline void Alloc(const int & ns){T::Alloc(ns);}
  inline void Dealloc(){T::Dealloc();}
  static bool HasFlags()   { return true; }
  static void Name(std::vector<std::string> & name){name.push_back(std::string("BitFlags"));T::Name(name);}

private:
  int  _flags;
};

/*-------------------------- Color ----------------------------------*/
template <class A, class T> class Color: public T {
public:
  typedef A ColorType;
  Color():_color(vcg::Color4b::White) {}
  ColorType &C()       { return _color; }
  ColorType cC() const { return _color; }
  template <class RightValueType>
  void ImportData(const RightValueType & rightF){
    if(rightF.IsColorEnabled()) C() = rightF.cC();
    T::ImportData(rightF);
  }
  inline void Alloc(const int & ns){T::Alloc(ns);}
  inline void Dealloc(){T::Dealloc();}
  static bool HasColor()   { return true; }
  static void Name(std::vector<std::string> & name){name.push_back(std::string("Color"));T::Name(name);}

private:
  ColorType _color;
};

template <class A, class T> class WedgeColor: public T {
public:
  typedef A WedgeColorType;
  WedgeColorType &WC(int i) { return _color[i]; }
  WedgeColorType cWC(int i) const { return _color[i]; }

  template <class RightValueType>
  void ImportData(const RightValueType & rightF){
    if (rightF.IsWedgeColorEnabled())
    {
      for (int i=0; i<3; ++i) { WC(i) = rightF.cWC(i); }
    }
    T::ImportData(rightF);

  }
  static bool HasWedgeColor()   { return true; }
  static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeColor"));T::Name(name);}

private:
  WedgeColorType _color[3];
};

template <class T> class WedgeColor4b: public WedgeColor<vcg::Color4b, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeColor4b"));T::Name(name);}
};
template <class T> class WedgeColor4f: public WedgeColor<vcg::Color4f, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeColor4f"));T::Name(name);}
};
template <class T> class Color4b: public Color<vcg::Color4b, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Color4b"));T::Name(name);}
};

/*-------------------------- Quality  ----------------------------------*/
template <class A, class T> class Quality: public T {
public:
  typedef A QualityType;
  Quality():_quality(0) {}
  QualityType &Q()       { return _quality; }
  QualityType cQ() const { return _quality; }
    template <class RightValueType>
    void ImportData(const RightValueType & rightF){
      if(rightF.IsQualityEnabled())
        Q() = rightF.cQ();
      T::ImportData(rightF);
    }
    inline void Alloc(const int & ns){T::Alloc(ns);}
    inline void Dealloc(){T::Dealloc();}
  static bool HasQuality()   { return true; }
  static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality"));T::Name(name);}
private:
  QualityType _quality;
};

template <class T> class Qualitys: public Quality<short, T> {
public:  static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualitys"));T::Name(name);}
};
template <class T> class Qualityf: public Quality<float, T> {
public:  static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualityf"));T::Name(name);}
};
template <class T> class Qualityd: public Quality<double, T> {
public:  static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualityd"));T::Name(name);}
};

/*-------------------------- Quality3  ----------------------------------*/
template <class A, class T> class Quality3: public T {
public:
  typedef vcg::Point3<A> Quality3Type;
  Quality3Type &Q3()       { return _quality; }
  Quality3Type cQ3() const { return _quality; }
  template <class RightValueType>
  void ImportData(const RightValueType & rightF){
    if(rightF.IsQuality3Enabled()) Q3() = rightF.cQ3();
    T::ImportData(rightF);
  }
  inline void Alloc(const int & ns){T::Alloc(ns);}
  inline void Dealloc(){T::Dealloc();}
  static bool HasQuality3()   { return true; }
  static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality3"));T::Name(name);}
private:
  Quality3Type _quality;
};

template <class T> class Quality3s: public Quality3<short, T> {
public:  static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality3s"));T::Name(name);}
};
template <class T> class Quality3f: public Quality3<float, T> {
public:  static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality3f"));T::Name(name);}
};
template <class T> class Quality3d: public Quality3<double, T> {
public:  static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality3d"));T::Name(name);}
};

/*-------------------------- INCREMENTAL MARK  ----------------------------------------*/
/*! \brief Per vertex \b Incremental \b Mark

    It is just an \c int that allows to efficently (in constant time) un-mark the whole mesh. \sa UnmarkAll
    */

template <class T> class Mark: public T {
public:
  Mark():_imark(0){}
  inline int &IMark()       { return _imark;}
  inline int cIMark() const { return _imark;}
  inline void InitIMark()    { _imark = 0; }
  static bool HasMark()      { return true; }
  template <class RightValueType>
  void ImportData(const RightValueType & rightF){
    if(rightF.IsMarkEnabled())
      IMark() = rightF.cIMark();
    T::ImportData(rightF);
  }
  static void Name(std::vector<std::string> & name){name.push_back(std::string("Mark"));T::Name(name);}

private:
  int _imark;
};

/*-------------------------- Curvature Direction ----------------------------------*/
template <class S>
struct CurvatureDirBaseType{
        typedef Point3<S> CurVecType;
        typedef  S   CurScalarType;
        CurvatureDirBaseType () {}
        Point3<S>max_dir,min_dir; // max and min curvature direction
        S k1,k2;// max and min curvature values
};

template <class A, class TT> class CurvatureDir: public TT {
public:
  typedef A CurvatureDirType;
  typedef typename CurvatureDirType::CurVecType CurVecType;
  typedef typename CurvatureDirType::CurScalarType CurScalarType;

  CurVecType &PD1()       { return _curv.max_dir;}
  CurVecType &PD2()       { return _curv.min_dir;}
  CurVecType cPD1() const { return _curv.max_dir;}
  CurVecType cPD2() const { return _curv.min_dir;}

  CurScalarType &K1()       { return _curv.k1;}
  CurScalarType &K2()       { return _curv.k2;}
  CurScalarType cK1() const {return _curv.k1;}
  CurScalarType cK2() const {return _curv.k2;}
  template < class RightValueType>
  void ImportData(const RightValueType  & rightF ) {
    if(rightF.IsCurvatureDirEnabled()) {
      PD1() = rightF.cPD1(); PD2() = rightF.cPD2();
      K1()  = rightF.cK1();  K2()  = rightF.cK2();
    }
    TT::ImportData(rightF);
  }

  static bool HasCurvatureDir()   { return true; }
  static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDir"));TT::Name(name);}

private:
  CurvatureDirType _curv;
};


template <class T> class CurvatureDirf: public CurvatureDir<CurvatureDirBaseType<float>, T> {
public:	static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDirf"));T::Name(name);}
};
template <class T> class CurvatureDird: public CurvatureDir<CurvatureDirBaseType<double>, T> {
public:	static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDird"));T::Name(name);}
};

/*----------------------------- VFADJ ------------------------------*/
/*! \brief \em Component: Per Face \b Vertex-Face adjacency relation

It stores a pointer to the next face of the list of faces incident on a vertex that is stored in a distributed way on the faces themselves.
Note that if you use this component it is expected that on the Vertex you use also the corresponding vcg::vertex::VFAdj component.
Note that for this component we have three class of values:
- \b valid: a valid pointer in the range of the vector of faces
- \b null: a null pointer, used to indicate the end of the list
- \b uninitialized: a special value that you can test/set with the IsVFInitialized()/VFClear() functions;
     it is used to indicate when the VF Topology is not computed.

\sa vcg::tri::UpdateTopology for functions that compute this relation
\sa vcg::vertex::VFAdj
\sa iterators
*/


template <class T> class VFAdj: public T {
public:
    VFAdj(){
        _vfp[0]=0;
        _vfp[1]=0;
        _vfp[2]=0;
        _vfi[0]=-1;
        _vfi[1]=-1;
        _vfi[2]=-1;
    }
  typename T::FacePointer &VFp(const int j)        { assert(j>=0 && j<3);  return _vfp[j]; }
  typename T::FacePointer cVFp(const int j) const  { assert(j>=0 && j<3);  return _vfp[j]; }
  char &VFi(const int j) {return _vfi[j]; }
  char cVFi(const int j)const {return _vfi[j]; }
    template <class RightValueType>
    void ImportData(const RightValueType & rightF){T::ImportData(rightF);}
    inline void Alloc(const int & ns){T::Alloc(ns);}
    inline void Dealloc(){T::Dealloc();}
  static bool HasVFAdjacency()      {   return true; }
  static void Name(std::vector<std::string> & name){name.push_back(std::string("VFAdj"));T::Name(name);}

private:
  typename T::FacePointer _vfp[3] ;
  char _vfi[3] ;
};

/*----------------------------- EFADJ ------------------------------*/
template <class T> class EFAdj: public T {
public:
    EFAdj(){
        _efp[0]=0;
        _efp[1]=0;
        _efp[2]=0;
        _efi[0]=-1;
        _efi[1]=-1;
        _efi[2]=-1;
    }
  typename T::FacePointer &EFp(const int j)       { assert(j>=0 && j<3);  return _efp[j]; }
  typename T::FacePointer cEFp(const int j) const { assert(j>=0 && j<3);  return _efp[j]; }
  char &VFi(const int j) {return _efi[j]; }
  template <class RightValueType>
  void ImportData(const RightValueType & rightF){T::ImportData(rightF);}
  inline void Alloc(const int & ns){T::Alloc(ns);}
  inline void Dealloc(){T::Dealloc();}
  static bool HasEFAdjacency()      {   return true; }
  static void Name(std::vector<std::string> & name){name.push_back(std::string("EFAdj"));T::Name(name);}

private:
  typename T::FacePointer _efp[3] ;
  char _efi[3] ;
};


/*----------------------------- FFADJ ------------------------------*/
/*! \brief \em Component: Per Face \b Face-Face adjacency relation

It encodes the adjacency of faces through edges; for 2-manifold edges it just point to the other face,
and for non manifold edges (where more than 2 faces share the same edge) it stores a pointer to the next
face of the ring of faces incident on a edge.
 Note that border faces points to themselves.
 NULL pointer is used as a special value to indicate when the FF Topology is not computed.

\sa vcg::tri::UpdateTopology for functions that compute this relation
\sa vcg::vertex::VFAdj
\sa iterators
*/

template <class T> class FFAdj: public T {
public:
  FFAdj(){
    _ffp[0]=nullptr; // null == not initialized
    _ffp[1]=nullptr;
    _ffp[2]=nullptr;
  }
  typename T::FacePointer &FFp(const int j)        { assert(j>=0 && j<3);  return _ffp[j]; }
  typename T::FacePointer cFFp(const int j) const  { assert(j>=0 && j<3);  return _ffp[j]; }
  char &FFi(const int j)       { return _ffi[j]; }
  char cFFi(const int j) const { return _ffi[j]; }

  typename T::FacePointer &FFp1( const int j )       { return FFp((j+1)%3);}
  typename T::FacePointer &FFp2( const int j )       { return FFp((j+2)%3);}
  typename T::FacePointer cFFp1( const int j ) const { return FFp((j+1)%3);}
  typename T::FacePointer cFFp2( const int j ) const { return FFp((j+2)%3);}

  template <class RightValueType>
  void ImportData(const RightValueType & rightF){T::ImportData(rightF);}
  inline void Alloc(const int & ns){T::Alloc(ns);}
  inline void Dealloc(){T::Dealloc();}
  static bool HasFFAdjacency()      {   return true; }
  static void Name(std::vector<std::string> & name){name.push_back(std::string("FFAdj"));T::Name(name);}

private:
  typename T::FacePointer _ffp[3] ;
  char _ffi[3] ;
};


/*----------------------------- FEADJ ------------------------------*/

template <class T> class FEAdj: public T {
public:
  FEAdj(){
    _fep[0]=0;
    _fep[1]=0;
    _fep[2]=0;
  }

  typename T::EdgePointer &FEp( int j)        { assert(j>=0 && j<3);  return _fep[j]; }
  typename T::EdgePointer cFEp( int j) const  { assert(j>=0 && j<3);  return _fep[j]; }

  typename T::EdgePointer &FEp1( int j )       { return FEp((j+1)%3);}
  typename T::EdgePointer &FEp2( int j )       { return FEp((j+2)%3);}
  typename T::EdgePointer  FEp1( int j ) const { return FEp((j+1)%3);}
  typename T::EdgePointer  FEp2( int j ) const { return FEp((j+2)%3);}

  template <class RightValueType>
  void ImportData(const RightValueType & rightF){T::ImportData(rightF);}
  inline void Alloc(const int & ns){T::Alloc(ns);}
  inline void Dealloc(){T::Dealloc();}
  static bool HasFEAdjacency()      {   return true; }
  static void Name(std::vector<std::string> & name){name.push_back(std::string("FEAdj"));T::Name(name);}

private:
  typename T::EdgePointer _fep[3] ;
  char _fei[3] ;
};


/*----------------------------- FHADJ ------------------------------*/
template <class T> class FHAdj: public T {
public:
  FHAdj(){_fh=0;}
  typename T::HEdgePointer &FHp( )       { return _fh; }
  typename T::HEdgePointer cFHp( ) const { return _fh; }

  template <class RightValueType>
  void ImportData(const RightValueType & rightF){T::ImportData(rightF);}
  inline void Alloc(const int & ns){T::Alloc(ns);}
  inline void Dealloc(){T::Dealloc();}
  static bool HasFHAdjacency()      {   return true; }
  static void Name(std::vector<std::string> & name){name.push_back(std::string("FHAdj"));T::Name(name);}

private:
  typename T::HEdgePointer _fh ;
};
/** @} */   // End Doxygen FaceComponentGroup
  } // end namespace face
}// end namespace vcg
#endif