File: pos.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 45,124 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 29
file content (509 lines) | stat: -rw-r--r-- 15,873 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/

/** \file face/pos.h
 * Definition of vcg:face::Pos class.
 * This file contain the definition of vcg::face::Pos class and the derived vcg::face::PosN class.
 */

#ifndef __VCG_FACE_POS
#define __VCG_FACE_POS

namespace vcg {
namespace face {

/** \addtogroup face */
/*@{*/

// Needed Prototypes (pos is include before topology)
template <class FaceType>
bool IsBorder(FaceType const & f,  const int j );
template <class FaceType>
bool IsManifold(FaceType const & f,  const int j );

/**  Templated over the class face, it stores a \em position over a face in a mesh.
    It contain a pointer to the current face,
    the index of one edge and a pointer to one of the vertices of the edge.
    See also the JumpingPos in jumping_pos.h for an iterator that loops
    around the faces of a vertex without requiring the VF topology.
 */


template <class FaceType>
class Pos
{
public:

    /// The vertex type
    typedef typename FaceType::VertexType VertexType;
    ///The Pos type
    typedef Pos<FaceType> PosType;
    /// The scalar type
    typedef typename VertexType::ScalarType ScalarType;

    /// Pointer to the face of the half-edge
    typename FaceType::FaceType *f;
    /// Index of the edge
    int z;
    /// Pointer to the vertex
    VertexType *v;

    /// Default constructor
    Pos() : f(0), z(-1), v(0) {}
    /// Constructor which associates the half-edge element with a face, its edge and its vertex
    /// \note that the input must be consistent, e.g. it should hold that \c vp==fp->V0(zp) or \c vp==fp->V1(zp)
    Pos(FaceType * const fp, int const zp, VertexType * const vp)
    {
        f=fp; z=zp; v=vp;
        assert((vp==fp->V0(zp))||(vp==fp->V1(zp)));
    }
    Pos(FaceType * const fp, int const zp){f=fp; z=zp; v=f->V(zp);}
    Pos(FaceType * const fp, VertexType * const vp)
    {
        f = fp;
        v = vp;
        for(int i = 0; i < f->VN(); ++i)
            if (f->V(i) == v) { z = f->Prev(i); break;}
    }

    // Official Access functions functions
    VertexType *& V(){ return v; }
    int         & E(){ return z; }
    FaceType   *& F(){ return f; }

    VertexType * V() const { return v; }
    int          E() const { return z; }
    FaceType   * F() const { return f; }

    // Returns the face index of the vertex inside the face.
    // Note that this is DIFFERENT from using the z member that denotes the edge index inside the face.
    // It should holds that Vind != (z+1)%3   &&   Vind == z || Vind = z+2%3
    int VInd() const
    {
        for(int i = 0; i < f->VN(); ++i) if(v==f->V(i)) return i;
        assert(0);
        return -1;
    }


    /// Operator to compare two half-edge
    inline bool operator == ( PosType const & p ) const {
        return (f==p.f && z==p.z && v==p.v);
    }

    /// Operator to compare two half-edge
    inline bool operator != ( PosType const & p ) const {
        return (f!=p.f || z!=p.z || v!=p.v);
    }
    /// Operator to order half-edge; it's compare at the first the face pointers, then the index of the edge and finally the vertex pointers
    inline bool operator <= ( PosType const & p) const {
        return	(f!=p.f)?(f<p.f):
                         (z!=p.z)?(z<p.z):
                                  (v<=p.v);
    }

    /// Operator to order half-edge; it's compare at the first the face pointers, then the index of the edge and finally the vertex pointers
    inline bool operator < ( PosType const & p) const {
        if ((*this)==p)return false;
        return ((*this)<=p);
    }

    /// Assignment operator
    //inline PosType & operator = ( const PosType & h ){
    //    f=h.f;
    //    z=h.z;
    //    v=h.v;
    //    return *this;
    //}

    /// Set to null the half-edge
    void SetNull(){
        f=0;
        v=0;
        z=-1;
    }
    /// Check if the half-edge is null
    bool IsNull() const {
        return f==0 || v==0 || z<0;
    }

    //Cambia Faccia lungo z
    // e' uguale a FlipF solo che funziona anche per non manifold.
    /// Change face via z
    void NextF()
    {
        FaceType * t = f;
        f = t->FFp(z);
        z = t->FFi(z);
    }

    // Paolo Cignoni 19/6/99
    // Si muove sulla faccia adiacente a f, lungo uno spigolo che
    // NON e' j, e che e' adiacente a v
    // in questo modo si scandiscono tutte le facce incidenti in un
    // vertice f facendo Next() finche' non si ritorna all'inizio
    // Nota che sul bordo rimbalza, cioe' se lo spigolo !=j e' di bordo
    // restituisce sempre la faccia f ma con nj che e' il nuovo spigolo di bordo
    // vecchi parametri:     	FaceType * & f, VertexType * v, int & j

    /// It moves on the adjacent face incident to v, via a different edge that j
    void NextE()
    {
        assert( f->V(z)==v || f->V(f->Next(z))==v ); // L'edge j deve contenere v
        FlipE();
        FlipF();
        assert( f->V(z)==v || f->V(f->Next(z))==v );
    }
    // Cambia edge mantenendo la stessa faccia e lo stesso vertice
    /// Changes edge maintaining the same face and the same vertex
    void FlipE()
    {
        assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V((z+0)%f->VN())==v));
        if(f->V(f->Next(z))==v) z=f->Next(z);
        else z= f->Prev(z);
        assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V((z))==v));
    }

    // Cambia Faccia mantenendo lo stesso vertice e lo stesso edge
    // Vale che he.flipf.flipf= he
    // Se l'he e' di bordo he.flipf()==he
    // Si puo' usare SOLO se l'edge e' 2manifold altrimenti
    // si deve usare nextf

    /// Changes face maintaining the same vertex and the same edge
    void FlipF()
    {
        assert( f->FFp(z)->FFp(f->FFi(z))==f );  // two manifoldness check
        // Check that pos vertex is one of the current z-th edge and it is different from the vert opposite to the edge.
        assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V((z))==v));
        FaceType *nf=f->FFp(z);
        int nz=f->FFi(z);
        assert(nf->V(nf->Prev(nz))!=v && (nf->V(nf->Next(nz))==v || nf->V(nz)==v));
        f=nf;
        z=nz;
    }

    /// Changes vertex maintaining the same face and the same edge
    void FlipV()
    {
        assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));

        if(f->V(f->Next(z))==v)
            v=f->V(z);
        else
            v=f->V(f->Next(z));

        assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
    }

    /// return the vertex that it should have if we make FlipV;
    VertexType *VFlip() const
    {
        assert(f->cV(f->Prev(z))!=v && (f->cV(f->Next(z))==v || f->cV(z)==v));
        if(f->cV(f->Next(z))==v)	return f->cV(z);
        else			return f->cV(f->Next(z));
    }

    /// return the face that it should have if we make FlipF;
    FaceType *FFlip() const
    {
        //        assert( f->FFp(z)->FFp(f->FFi(z))==f );
        //        assert(f->V(f->Prev(z))!=v);
        //        assert(f->V(f->Next(z))==v || f->V((z+0)%f->VN())==v);
        FaceType *nf=f->FFp(z);
        return nf;
    }


    // Trova il prossimo half-edge di bordo (nhe)
    // tale che
    // --nhe.f adiacente per vertice a he.f
    // --nhe.v adiacente per edge di bordo a he.v
    // l'idea e' che se he e' un half edge di bordo
    // si puo scorrere tutto un bordo facendo
    //
    //		hei=he;
    //		do
    //			hei.Nextb()
    //		while(hei!=he);

    /// Finds the next half-edge border
    void NextB( )
    {
        assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
        assert(f->FFp(z)==f); // f is border along j
        // Si deve cambiare faccia intorno allo stesso vertice v
        //finche' non si trova una faccia di bordo.
        do
            NextE();
        while(!IsBorder());

        // L'edge j e' di bordo e deve contenere v
        assert(IsBorder() &&( f->V(z)==v || f->V(f->Next(z))==v ));

        FlipV();
        assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
        assert(f->FFp(z)==f); // f is border along j
    }

    /// Finds the next half-edge border
    void NextNotFaux( )
    {
        assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
        //assert(f->FFp(z)==f); // f is border along j
        // Si deve cambiare faccia intorno allo stesso vertice v
        //finche' non si trova una faccia di bordo.
        do
        {
            FlipE();
            if (IsFaux()) FlipF();
        }
        while(IsFaux());

        // L'edge j e' di bordo e deve contenere v
        assert((!IsFaux()) &&( f->V(z)==v || f->V(f->Next(z))==v ));

        FlipV();
        assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
        //assert(f->FFp(z)==f); // f is border along j
    }

    /// Checks if the half-edge is of border
    bool IsBorder()const
    {
        return face::IsBorder(*f,z);
    }

    bool IsFaux() const
    {
        return (f->IsF(z));
    }

    bool IsManifold()
    {
        return face::IsManifold(*f,z);
    }
    
    void NextEdgeS( )
    {
        assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
        assert(IsEdgeS());
        do
        {
            FlipE();
            if (!IsEdgeS()) FlipF();
        }
        while(!IsEdgeS());

        assert(IsEdgeS() &&( f->V(z)==v || f->V(f->Next(z))==v ));

        FlipV();
        assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
    }

    bool IsFaceS() const { return f->IsS();}
    bool IsEdgeS() const { return f->IsFaceEdgeS(z);}
    bool IsVertS() const { return v->IsS();}
    
    /*!
     * Returns the angle (in radiant) between the two edges incident on V.
     */
    ScalarType AngleRad() const
    {
        return Angle(f->V(f->Prev(z))->cP()-v->cP(), f->V(f->Next(z))->cP()-v->cP());
    }
    
    /*!
     * Returns the number of vertices incident on the vertex pos is currently pointing to.
     */
    int NumberOfIncidentVertices()
    {
        int  count		 = 0;
        bool on_border = false;
        CheckIncidentFaces(count, on_border);
        if(on_border) return (count/2)+1;
        else					return count;
    }

    /*!
    * Returns the number of faces incident on the vertex pos is currently pointing to.
    */
    int NumberOfIncidentFaces()
    {
        int  count		 = 0;
        bool on_border = false;
        CheckIncidentFaces(count, on_border);
        if(on_border) return count/2;
        else					return count;
    }



    /*!
  * Returns the number of faces incident on the edge the pos is currently pointing to.
  * useful to compute the complexity of a non manifold edge
  */
    int NumberOfFacesOnEdge() const
    {
        int  count		 = 0;
        PosType ht = *this;
        do
        {
            ht.NextF();
            ++count;
        }
        while (ht!=*this);
        return count;
    }
    /** Function to inizialize an half-edge.
        @param fp Puntatore alla faccia
        @param zp Indice dell'edge
        @param vp Puntatore al vertice
    */
    void Set(FaceType  * const fp, int const zp,  VertexType  * const vp)
    {
        f=fp;z=zp;v=vp;
        assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
    }

    void Set(FaceType  * const pFace, VertexType  * const pVertex)
    {
        f = pFace;
        v = pVertex;
        for(int i  = 0; i < f->VN(); ++i) if(f->V(i) == v ) {z = f->Prev(i);break;}
    }

    void Assert()
#ifdef _DEBUG
    {
        FaceType ht=*this;
        ht.FlipF();
        ht.FlipF();
        assert(ht==*this);

        ht.FlipE();
        ht.FlipE();
        assert(ht==*this);

        ht.FlipV();
        ht.FlipV();
        assert(ht==*this);
    }
#else
    {}
#endif


protected:
    void CheckIncidentFaces(int & count, bool & on_border)
    {
        PosType ht = *this;
        do
        {
            ++count;
            ht.NextE();
            if(ht.IsBorder()) on_border=true;
        } while (ht != *this);
    }
};

/** Class VFIterator.
    This class is used as an iterator over the VF adjacency.
  It allow to easily traverse all the faces around a given vertex v;
  The faces are traversed in no particular order. No Manifoldness requirement.

  typical example:

    VertexPointer v;
    vcg::face::VFIterator<FaceType> vfi(v);
    for (;!vfi.End();++vfi)
            vfi.F()->ClearV();

        // Alternative

    vcg::face::VFIterator<FaceType> vfi(f, 1);
        while (!vfi.End()){
            vfi.F()->ClearV();
            ++vfi;
        }


    See also the JumpingPos in jumping_pos.h for an iterator that loops
    around the faces of a vertex using FF topology and without requiring the VF topology.

 */

template <typename FaceType>
class VFIterator
{
public:

    /// The vertex type
    typedef typename FaceType::VertexType VertexType;
    /// The Base face type
    typedef  FaceType  VFIFaceType;
    /// The vector type
    typedef typename VertexType::CoordType CoordType;
    /// The scalar type
    typedef typename VertexType::ScalarType ScalarType;

    /// Pointer to the face of the half-edge
    FaceType *f;
    /// Index of the vertex
    int z;

    /// Default constructor
    VFIterator() : f(0), z(-1) {}
    /// Constructor which associates the half-edge elementet with a face and its vertex
    VFIterator(FaceType * _f,  const int &  _z){f = _f; z = _z;  assert(z>=0 && "VFAdj must be initialized");}

    /// Constructor which takes a pointer to vertex
    VFIterator(VertexType * _v){f = _v->VFp(); z = _v->VFi(); assert(z>=0 && "VFAdj must be initialized");}

    VFIFaceType *&	F() { return f;}
    int	&					  I() { return z;}

    // Access to the vertex. Having a VFIterator vfi, it corresponds to
    // vfi.V() = vfi.F()->V(vfi.I())
    inline VertexType *V() const { return f->V(z);}

    inline VertexType * const & V0() const { return f->V0(z);}
    inline VertexType * const & V1() const { return f->V1(z);}
    inline VertexType * const & V2() const { return f->V2(z);}

    bool End() const {return f==0;}
    void operator++() {
        FaceType* t = f;
        f = t->VFp(z);
        z = t->VFi(z);
    }
	void operator++(int)
	{
		++(*this);
	}
};

/*@}*/
}	 // end namespace
}	 // end namespace
#endif