1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.1 2004/03/16 03:07:38 tarini
"dimensionally unified" version: first commit
Revision 1.5 2004/03/05 17:51:28 tarini
Errorino "ScalarType" -> "S"
Revision 1.4 2004/03/03 14:32:13 cignoni
Yet another cr lf mismatch
Revision 1.3 2004/02/23 23:44:21 cignoni
cr lf mismatch
Revision 1.2 2004/02/19 15:40:56 cignoni
Added doxygen groups
Revision 1.1 2004/02/13 02:16:22 cignoni
First working release.
****************************************************************************/
#ifndef __VCGLIB_BOX
#define __VCGLIB_BOX
#include <vcg/space/point.h>
#include <vcg/space/space.h>
#include <vcg/math/linear.h>
namespace vcg {
/** \addtogroup space */
/*@{*/
/**
Templated class for 3D boxes.
This is the class for definition of a axis aligned box in 2D or 3D space.
Typically used as bounding boxes.
It is stored just as two Points (at the opposite vertices).
@param S (template parameter) Specifies the type of scalar used to represent coords.
*/
template <int N, class S>
class Box : public Space<N,S> , Linear<Box>
{
public:
typedef S ScalarType;
typedef Point<N,S> ParamType;
typedef Point<N,S> PointType;
enum {Dimension=N};
/// The scalar type
protected:
/// _min coordinate point
Point3<S> _min;
/// _max coordinate point
Point3<S> _max;
public:
inline const PointType &Max() const { return _max; }
inline PointType &Max() { return _max; }
inline const PointType &Min() const { return _min; }
inline PointType &Min() { return _min; }
/// The box constructor
inline Box() {
_min.X()= 1;_max.X()= -1;
_min.Y()= 1;_max.Y()= -1;
if (N>2) {_min.Z()= 1;_max.Z()= -1;}
}
/// Min Max constructor
inline Box( const PointType & mi, const PointType & ma ) { _min = mi; _max = ma; }
/// The box distructor
inline ~Box() { }
/// Operator to compare two boxes
inline bool operator == ( Box const & p ) const
{
return _min==p._min && _max==p._max;
}
/// Operator to dispare two boxes
inline bool operator != ( Box const & p ) const
{
return _min!=p._min || _max!=p._max;
}
/** Infaltes the box of a percentage..
@param s Scalar value. E.g if s=0.1 the box enlarges of 10% in every direction
if S==0.5 box doubles (+50% in every direction)
if S < 0 box shrinks
if S==0.5 box reduces to a point
*/
void Inflate( const S s )
{
Inflate( (_max-_min)*s );
}
/** Enlarges the box dimensions by k in every direction, with k = bbox.diag*s
*/
void InflateFix( const S s )
{
S k = Diag()*s;
if (N==2) Inflate( PointType (k,k));
if (N==3) Inflate( PointType (k,k,k));
}
/** Enlarges the box dimensions by a fixed delta.
@param delta Point in D space. If delta > 0 box enlarges. If delta < 0 box reduces.
*/
void Inflate( const PointType & delta )
{
_min -= delta;
_max += delta;
}
/// Initializing the box
void Set( const PointType & p )
{
_min = _max = p;
}
/// Set the box to a null value
void SetNull()
{
_min.X()= 1; _max.X()= -1;
_min.Y()= 1; _max.Y()= -1;
_min.Z()= 1; _max.Z()= -1;
}
/** Add two boxex:
Returns minimal box that contains both operands.
@param b The box to add
*/
void Add( Box const & b )
{
if(IsNull()) *this=b;
else
Add(_min); Add(_max);
}
/** Add a point to a box.
The box is modified is the added point is aoutside it.
@param p The point to add
*/
void Add( const PointType & p )
{
if(IsNull()) Set(p);
else
{
if(_min.X() > p.X()) _min.X() = p.X();
else if(_max.X() < p.X()) _max.X() = p.X();
if(_min.Y() > p.Y()) _min.Y() = p.Y();
else if(_max.Y() < p.Y()) _max.Y() = p.Y();
if (N>2) {
if(_min.Z() > p.Z()) _min.Z() = p.Z();
else if(_max.Z() < p.Z()) _max.Z() = p.Z();
};
}
}
/** Coputes intersection of Boxes: the minimal box containing both operands.
@param b The other operand
*/
void Intersect( const Box & b )
{
if(_min.X() < b._min.X()) _min.X() = b._min.X();
if(_min.Y() < b._min.Y()) _min.Y() = b._min.Y();
if (N>2) if(_min.Z() < b._min.Z()) _min.Z() = b._min.Z();
if(_max.X() > b._max.X()) _max.X() = b._max.X();
if(_max.Y() > b._max.Y()) _max.Y() = b._max.Y();
if (N>2) if(_max.Z() > b._max.Z()) _max.Z() = b._max.Z();
if(_min.X()>_max.X() || _min.Y()>_max.Y() ) SetNull();
else if (N>2) if (_min.Z()>_max.Z()) SetNull();
}
/** Traslalate the box.
@param p: the translation vector
*/
void Translate( const PointType & p )
{
_min += p;
_max += p;
}
/** Check wheter a point is inside box.
@param p The point
@returns True if inside, false otherwise
*/
bool IsIn( PointType const & p ) const
{
if (N==2) return (
_min.X() <= p.X() && p.X() <= _max.X() &&
_min.Y() <= p.Y() && p.Y() <= _max.Y()
);
if (N==3) return (
_min.X() <= p.X() && p.X() <= _max.X() &&
_min.Y() <= p.Y() && p.Y() <= _max.Y() &&
_min.Z() <= p.Z() && p.Z() <= _max.Z()
);
}
/** Check wheter a point is inside box, open at left and closed at right [min..max)
@param p The point 3D
@returns True if inside, false otherwise
*/
bool IsInEx( PointType const & p ) const
{
if (N==2) return (
_min.X() <= p.X() && p.X() < _max.X() &&
_min.Y() <= p.Y() && p.Y() < _max.Y()
);
if (N==3) return (
_min.X() <= p.X() && p.X() < _max.X() &&
_min.Y() <= p.Y() && p.Y() < _max.Y() &&
_min.Z() <= p.Z() && p.Z() < _max.Z()
);
}
/**
TODO: Move TO COLLIDE!!!
Verifica se due box collidono cioe' se hanno una intersezione non vuota. Per esempio
due box adiacenti non collidono.
@param b A box
@return True se collidoo, false altrimenti
*/
bool Collide(Box const &b)
{
return b._min.X()<_max.X() && b._max.X()>_min.X() &&
b._min.Y()<_max.Y() && b._max.Y()>_min.Y() &&
b._min.Z()<_max.Z() && b._max.Z()>_min.Z() ;
}
/** Controlla se il box e' nullo.
@return True se il box e' nullo, false altrimenti
*/
bool IsNull() const { return _min.X()>_max.X() || _min.Y()>_max.Y() || _min.Z()>_max.Z(); }
/** Controlla se il box e' vuoto.
@return True se il box e' vuoto, false altrimenti
*/
bool IsEmpty() const { return _min==_max; }
/// Restituisce la lunghezza della diagonale del box.
S Diag() const
{
return Distance(_min,_max);
}
/// Calcola il quadrato della diagonale del box.
S SquaredDiag() const
{
return SquaredDistance(_min,_max);
}
/// Calcola il centro del box.
PointType Center() const
{
return (_min+_max)/2;
}
/// Returns global coords of a local point expressed in [0..1]^3
PointType LocalToGlobal(PointType const & p) const{
return PointType(
_min[0] + p[0]*(_max[0]-_min[0]),
_min[1] + p[1]*(_max[1]-_min[1]),
_min[2] + p[2]*(_max[2]-_min[2]));
}
/// Returns local coords expressed in [0..1]^3 of a point in 3D
PointType GlobalToLocal(PointType const & p) const{
return PointType(
(p[0]-_min[0])/(_max[0]-_min[0]),
(p[1]-_min[1])/(_max[1]-_min[1]),
(p[2]-_min[2])/(_max[2]-_min[2])
);
}
/// Computes the Volume for the box.
inline S Volume() const
{
if (N==2) return (_max.X()-_min.X())*(_max.Y()-_min.Y());
if (N==3) return (_max.X()-_min.X())*(_max.Y()-_min.Y())*(_max.Z()-_min.Z());
}
/// Area() and Volume() are sinonims (a
inline S Area() const {
return Volume();
};
/// Compute box size.
PointType Size() const
{
return (_max-_min);
}
/// Compute box size X.
inline S SizeX() const { return _max.X()-_min.X();}
/// Compute box size Y.
inline S SizeY() const { return _max.Y()-_min.Y();}
/// Compute box size Z.
inline S SizeZ() const { static_assert(N>2); return _max.Z()-_min.Z();}
/** @name Linearity for boxes
**/
/// sets a point to Zero
inline void Zero()
{
_min.SetZero();
_max.SetZero();
}
inline Box operator + ( Box const & p) const
{
return Box(_min+p._min,_max+p._max);
}
inline Box operator - ( Box const & p) const
{
return Box(_min-p._min,_max-p._max);
}
inline Box operator * ( const S s ) const
{
return Box(_min*s,_max*s);
}
inline Box operator / ( const S s ) const
{
S inv=S(1.0)/s;
return Box(_min*inv,_max*inv);
}
inline Box & operator += ( Box const & p)
{
_min+=p._min; _max+=p._max; return *this;
}
inline Box & operator -= ( Box const & p)
{
_min-=p._min; _max-=p._max; return *this;
}
inline Box & operator *= ( const S s )
{
_min*=s; _max*=s; return *this;
}
inline Box & operator /= ( const S s )
{
S inv=S(1.0)/s;
_min*=s; _max*=s; return *this;
return *this;
}
inline Box operator - () const
{
return Box(-_min,-_max);
}
//@}
//@{
/** @name Iporters (for boxes in different spaces and with different scalar types)
**/
/// imports the box
template <int N0, class S0>
inline void Import( const Box<N0,S0> & b )
{ _max.Import( b._max );_min.Import( b._min );
}
template <int N0, class S0>
/// constructs a new ray importing it from an existing one
static Box Construct( const Box<N0,S0> & b )
{
return Box(PointType::Construct(b._min),PointType::Construct(b._max));
}
}; // end class definition
typedef Box<3,short> Box3s;
typedef Box<3,int> Box3i;
typedef Box<3,float> Box3f;
typedef Box<3,double> Box3d;
typedef Box<2,short> Box2s;
typedef Box<2,int> Box2i;
typedef Box<2,float> Box2f;
typedef Box<2,double> Box2d;
/*@}*/
} // end namespace
#endif
|