File: deprecated_point2.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 45,124 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 29
file content (417 lines) | stat: -rw-r--r-- 11,029 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2019                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
/****************************************************************************
  History

$Log: not supported by cvs2svn $
Revision 1.9  2006/10/07 16:51:43  m_di_benedetto
Implemented Scale() method (was only declared).

Revision 1.8  2006/01/19 13:53:19  m_di_benedetto
Fixed product by scalar and SquaredNorm()

Revision 1.7  2005/10/15 19:11:49  m_di_benedetto
Corrected return type in Angle() and protected member access in unary operator -

Revision 1.6  2005/03/18 16:34:42  fiorin
minor changes to comply gcc compiler

Revision 1.5  2004/05/10 13:22:25  cignoni
small syntax error Math -> math in Angle

Revision 1.4  2004/04/05 11:57:32  cignoni
Add V() access function

Revision 1.3  2004/03/10 17:42:40  tarini
Added comments (Dox) !
Added Import(). Costruct(), ScalarType...  Corrected cross prod (sign). Added Angle. Now using Math:: stuff for trigon. etc.

Revision 1.2  2004/03/03 15:07:40  cignoni
renamed protected member v -> _v

Revision 1.1  2004/02/13 00:44:53  cignoni
First commit...


****************************************************************************/

#ifndef __VCGLIB_POINT2
#define __VCGLIB_POINT2

#include <assert.h>
#include <vcg/math/base.h>

namespace vcg {

/** \addtogroup space */
/*@{*/
/**
   The templated class for representing a point in 2D space.
   The class is templated over the ScalarType class that is used to represent coordinates.
   All the usual operator overloading (* + - ...) is present.
 */
template <class P2ScalarType>
class Point2
{
protected:
/// The only data member. Hidden to user.
	P2ScalarType _v[2];
public:
	/// the scalar type
	typedef P2ScalarType ScalarType;
	enum {Dimension = 2};

//@{

	/** @name Access to Coords.
	 access to coords is done by overloading of [] or explicit naming of coords (X,Y,)
	 ("p[0]" or "p.X()" are equivalent) **/
	inline const ScalarType &X() const {return _v[0];}
	inline const ScalarType &Y() const {return _v[1];}
	inline ScalarType &X() {return _v[0];}
	inline ScalarType &Y() {return _v[1];}
	inline const ScalarType * V() const
	{
		return _v;
	}
	inline ScalarType * V()
	{
		return _v;
	}
	inline ScalarType & V( const int i )
	{
		assert(i>=0 && i<2);
		return _v[i];
	}
	inline const ScalarType & V( const int i ) const
	{
		assert(i>=0 && i<2);
		return _v[i];
	}
	inline const ScalarType & operator [] ( const int i ) const
	{
		assert(i>=0 && i<2);
		return _v[i];
	}
	inline ScalarType & operator [] ( const int i )
	{
		assert(i>=0 && i<2);
		return _v[i];
	}
//@}
	/// empty constructor (does nothing)
	inline Point2 () { }
	/// x,y constructor
	inline Point2 ( const ScalarType nx, const ScalarType ny )
	{
		_v[0] = nx; _v[1] = ny;
	}
	/// copy constructor
	inline Point2 ( const Point2 & p)
	{
		_v[0]= p._v[0];    _v[1]= p._v[1];
	}
	/// copy
	inline Point2 & operator =( const Point2 & p)
	{
		_v[0]= p._v[0]; _v[1]= p._v[1];
		return *this;
	}
	/// sets the point to (0,0)
	inline void SetZero()
	{ _v[0] = 0;_v[1] = 0;}
	/// dot product
	inline ScalarType operator * ( const Point2 & p ) const
	{
		return ( _v[0]*p._v[0] + _v[1]*p._v[1] );
	}
	inline ScalarType dot( const Point2 & p ) const { return (*this) * p; }
	/// cross product
	inline ScalarType operator ^ ( const Point2 & p ) const
	{
		return _v[0]*p._v[1] - _v[1]*p._v[0];
	}
//@{
	 /** @name Linearity for 2d points (operators +, -, *, /, *= ...) **/
	inline Point2 operator + ( const Point2 & p) const
	{
		return Point2<ScalarType>( _v[0]+p._v[0], _v[1]+p._v[1] );
	}
	inline Point2 operator - ( const Point2 & p) const
	{
		return Point2<ScalarType>( _v[0]-p._v[0], _v[1]-p._v[1] );
	}
	inline Point2 operator * ( const ScalarType s ) const
	{
		return Point2<ScalarType>( _v[0] * s, _v[1] * s );
	}
	inline Point2 operator / ( const ScalarType s ) const
	{
		return Point2<ScalarType>( _v[0] / s, _v[1] / s );
	}
	inline Point2 & operator += ( const Point2 & p)
	{
		_v[0] += p._v[0];
		_v[1] += p._v[1];
		return *this;
	}
	inline Point2 & operator -= ( const Point2 & p)
	{
		_v[0] -= p._v[0];
		_v[1] -= p._v[1];
		return *this;
	}
	inline Point2 & operator *= ( const ScalarType s )
	{
		_v[0] *= s;
		_v[1] *= s;
		return *this;
	}
	inline Point2 & operator /= ( const ScalarType s )
	{
		_v[0] /= s;
		_v[1] /= s;
		return *this;
	}
 //@}
	/// returns the norm (Euclidian)
	inline ScalarType Norm( void ) const
	{
		return math::Sqrt( _v[0]*_v[0] + _v[1]*_v[1] );
	}
	/// returns the squared norm (Euclidian)
	inline ScalarType SquaredNorm( void ) const
	{
		return ( _v[0]*_v[0] + _v[1]*_v[1] );
	}
	inline Point2 & Scale( const ScalarType sx, const ScalarType sy )
	{
		_v[0] *= sx;
		_v[1] *= sy;
		return * this;
	}
	/// normalizes, and returns itself as result
	inline Point2 & Normalize( void )
	{
		ScalarType n = math::Sqrt(_v[0]*_v[0] + _v[1]*_v[1]);
		if(n>0.0) {
			_v[0] /= n; _v[1] /= n;
		}
		return *this;
	}
	/// points equality
	inline bool operator == ( const Point2 & p ) const
	{
		return (_v[0]==p._v[0] && _v[1]==p._v[1]);
	}
	/// disparity between points
	inline bool operator != ( const Point2 & p ) const
	{
		return ( (_v[0]!=p._v[0]) || (_v[1]!=p._v[1]) );
	}
	/// lexical ordering
	inline bool operator <  ( const Point2 & p ) const
	{
		return (_v[1]!=p._v[1])?(_v[1]<p._v[1]):
		       (_v[0]<p._v[0]);
	}
	/// lexical ordering
	inline bool operator >  ( const Point2 & p ) const
	{
		return (_v[1]!=p._v[1])?(_v[1]>p._v[1]):
		       (_v[0]>p._v[0]);
	}
	/// lexical ordering
	inline bool operator <= ( const Point2 & p ) const
	{
		return (_v[1]!=p._v[1])?(_v[1]< p._v[1]):
		       (_v[0]<=p._v[0]);
	}
	/// lexical ordering
	inline bool operator >= ( const Point2 & p ) const
	{
		return (_v[1]!=p._v[1])?(_v[1]> p._v[1]):
		       (_v[0]>=p._v[0]);
	}
	/// returns the distance to another point p
	inline ScalarType Distance( const Point2 & p ) const
	{
		return Norm(*this-p);
	}
	/// returns the suqared distance to another point p
	inline ScalarType SquaredDistance( const Point2 & p ) const
	{
		return (*this-p).SquaredNorm();
	}
	/// returns the angle with X axis (radiants, in [-PI, +PI] )
	inline ScalarType Angle() const
	{
		return math::Atan2(_v[1],_v[0]);
	}
	/// transform the point in cartesian coords into polar coords
	inline Point2 & Cartesian2Polar()
	{
		ScalarType t = Angle();
		_v[0] = Norm();
		_v[1] = t;
		return *this;
	}
	/// transform the point in polar coords into cartesian coords
	inline Point2 & Polar2Cartesian()
	{
		ScalarType l = _v[0];
		_v[0] = (ScalarType)(l*math::Cos(_v[1]));
		_v[1] = (ScalarType)(l*math::Sin(_v[1]));
		return *this;
	}
	/// rotates the point of an angle (radiants, counterclockwise)
	inline Point2 & Rotate( const ScalarType rad )
	{
		ScalarType t = _v[0];
		ScalarType s = math::Sin(rad);
		ScalarType c = math::Cos(rad);

		_v[0] = _v[0]*c - _v[1]*s;
		_v[1] =     t*s + _v[1]*c;

		return *this;
	}

	/// This function extends the vector to any arbitrary domension
	/// virtually padding missing elements with zeros
	inline ScalarType Ext( const int i ) const
	{
		if(i>=0 && i<2)
			return _v[i];
		else
			return 0;
	}
	/// imports from 2D points of different types
	template <class T>
	inline void Import( const Point2<T> & b )
	{
		_v[0] = ScalarType(b.X());
		_v[1] = ScalarType(b.Y());
	}
	template <class EigenVector>
	inline void FromEigenVector(const EigenVector & b)
	{
		_v[0] = ScalarType(b[0]);
		_v[1] = ScalarType(b[1]);
	}
	template <class EigenVector>
	inline void ToEigenVector(EigenVector & b) const
	{
		b[0]=_v[0];
		b[1]=_v[1];
	}
	template <class EigenVector>
	inline EigenVector ToEigenVector(void) const
	{
		assert(EigenVector::RowsAtCompileTime == 2);
		EigenVector b;
		b << _v[0], _v[1];
		return b;
	}
	/// constructs a 2D points from an existing one of different type
	template <class T>
	static Point2 Construct( const Point2<T> & b )
	{
		return Point2(ScalarType(b.X()), ScalarType(b.Y()));
	}
	static Point2 Construct( const Point2<ScalarType> & b )
	{
		return b;
	}
	template <class T>
	static Point2 Construct( const T & x, const T & y)
	{
		return Point2(ScalarType(x), ScalarType(y));
	}

	static inline Point2 Zero(void)
	{
		return Point2(0,0);
	}

	static inline Point2 One(void)
	{
		return Point2(1,1);
	}
}; // end class definition


template <class T>
inline T Angle( Point2<T> const & p0, Point2<T> const & p1 )
{
	return p1.Angle() - p0.Angle();
}

template <class T>
inline Point2<T> operator - ( Point2<T> const & p ){
	return Point2<T>( -p[0], -p[1] );
}

template <class T>
inline Point2<T> operator * ( const T s, Point2<T> const & p ){
	return Point2<T>( p[0] * s, p[1] * s );
}

template <class T>
inline T Norm( Point2<T> const & p ){
	return p.Norm();
}

template <class T>
inline T SquaredNorm( Point2<T> const & p ){
	return p.SquaredNorm();
}

template <class T>
inline Point2<T> & Normalize( Point2<T> & p ){
	return p.Normalize();
}

template <class T>
inline T Distance( Point2<T> const & p1,Point2<T> const & p2 ){
	return Norm(p1-p2);
}

template <class T>
inline T SquaredDistance( Point2<T> const & p1,Point2<T> const & p2 ){
	return SquaredNorm(p1-p2);
}

template <class T>
inline Point2<T> Abs(const Point2<T> & p) {
	return (Point2<T>(math::Abs(p[0]), math::Abs(p[1])));
}

typedef Point2<short>  Point2s;
typedef Point2<int>	   Point2i;
typedef Point2<float>  Point2f;
typedef Point2<double> Point2d;

/*@}*/
} // end namespace
#endif