File: deprecated_point3.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 45,124 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 29
file content (627 lines) | stat: -rw-r--r-- 18,448 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
/****************************************************************************
  History

$Log: not supported by cvs2svn $
Revision 1.26  2006/11/13 13:03:45  ponchio
Added GetBBox in Point3 (declaration) the body of the function is in box3.h

Revision 1.25  2006/10/13 12:59:24  cignoni
Added **explicit** constructor from three coords of a different scalartype

Revision 1.24  2006/09/28 13:37:35  m_di_benedetto
added non const * V()

Revision 1.23  2005/11/09 16:11:55  cignoni
Added Abs and LowClampToZero

Revision 1.22  2005/09/14 14:09:21  m_di_benedetto
Added specialized Convert() for the same scalar type.

Revision 1.21  2005/05/06 14:45:33  spinelli
cambiato parentesi nel costruttore di GetUV per rendere compatibile tale costruttore con MVC e borland

Revision 1.20  2005/04/27 16:05:19  callieri
line 466, added parentesis on default value creator getUV [borland]

Revision 1.19  2004/11/09 15:49:07  ganovelli
added GetUV

Revision 1.18  2004/10/13 12:45:51  cignoni
Better Doxygen documentation

Revision 1.17  2004/09/10 14:01:40  cignoni
Added polar to cartesian

Revision 1.16  2004/03/21 17:14:56  ponchio
Added a math::

Revision 1.15  2004/03/07 22:45:32  cignoni
Moved quality and normal functions to the triangle class.

Revision 1.14  2004/03/05 17:55:01  tarini
errorino: upper case in Zero()

Revision 1.13  2004/03/03 14:22:48  cignoni
Yet against cr lf mismatch

Revision 1.12  2004/02/23 23:42:26  cignoni
Translated comments, removed unusued stuff. corrected linefeed/cr

Revision 1.11  2004/02/19 16:12:28  cignoni
cr lf mismatch 2

Revision 1.10  2004/02/19 16:06:24  cignoni
cr lf mismatch

Revision 1.8  2004/02/19 15:13:40  cignoni
corrected sqrt and added doxygen groups

Revision 1.7  2004/02/17 02:08:47  cignoni
Di prova...

Revision 1.6  2004/02/15 23:35:47  cignoni
Cambiato nome type template in accordo alla styleguide

Revision 1.5  2004/02/10 01:07:15  cignoni
Edited Comments and GPL license

Revision 1.4  2004/02/09 13:48:02  cignoni
Edited doxygen comments
****************************************************************************/

#ifndef __VCGLIB_POINT3
#define __VCGLIB_POINT3

#include <assert.h>
#include <algorithm>
#include <vcg/math/base.h>

namespace vcg {

/** \addtogroup space */
/*@{*/
    /**
        The templated class for representing a point in 3D space.
        The class is templated over the ScalarType class that is used to represent coordinates. All the usual
        operator overloading (* + - ...) is present.
     */
template <class T> class Box3;

template <class P3ScalarType> class Point3
{
protected:
  /// The only data member. Hidden to user.
    P3ScalarType _v[3];

public:
    typedef P3ScalarType ScalarType;
    enum {Dimension = 3};


//@{

  /** @name Standard Constructors and Initializers
   No casting operators have been introduced to avoid automatic unattended (and costly) conversion between different point types
   **/

  inline Point3 () { }
    inline Point3 ( const P3ScalarType nx, const P3ScalarType ny, const P3ScalarType nz )
    {
        _v[0] = nx;
        _v[1] = ny;
        _v[2] = nz;
    }
    inline Point3 ( Point3 const & p )
    {
        _v[0]= p._v[0];
        _v[1]= p._v[1];
        _v[2]= p._v[2];
    }
    inline Point3 ( const P3ScalarType nv[3] )
    {
        _v[0] = nv[0];
        _v[1] = nv[1];
        _v[2] = nv[2];
    }
    inline Point3 & operator =(Point3 const & p)
    {
      _v[0] = p._v[0]; _v[1] = p._v[1]; _v[2] = p._v[2];
      return *this;
    }
    inline void SetZero()
    {
        _v[0] = 0;
        _v[1] = 0;
        _v[2] = 0;
    }

  /// Padding function: give a default 0 value to all the elements that are not in the [0..2] range.
  /// Useful for managing in a consistent way object that could have point2 / point3 / point4
    inline P3ScalarType Ext( const int i ) const
    {
        if(i>=0 && i<=2) return _v[i];
        else             return 0;
    }

    template <class Q>
    inline void Import( const Point3<Q> & b )
    {
        _v[0] = P3ScalarType(b[0]);
        _v[1] = P3ScalarType(b[1]);
        _v[2] = P3ScalarType(b[2]);
    }
    template <class EigenVector>
    inline void FromEigenVector( const EigenVector & b )
    {
        _v[0] = P3ScalarType(b[0]);
        _v[1] = P3ScalarType(b[1]);
        _v[2] = P3ScalarType(b[2]);
    }
    template <class EigenVector>
    inline void ToEigenVector( EigenVector & b ) const
    {
        b[0]=_v[0] ;
        b[1]=_v[1] ;
        b[2]=_v[2] ;
    }
    template <class EigenVector>
    inline EigenVector ToEigenVector(void) const
    {
        assert(EigenVector::RowsAtCompileTime == 3 || EigenVector::RowsAtCompileTime == 4);
        EigenVector b = EigenVector::Zero();
        b[0]=_v[0];
        b[1]=_v[1];
        b[2]=_v[2];
        return b;
    }
  template <class Q>
  static inline Point3 Construct( const Point3<Q> & b )
  {
    return Point3(P3ScalarType(b[0]),P3ScalarType(b[1]),P3ScalarType(b[2]));
  }

  template <class Q>
  static inline Point3 Construct( const Q & P0, const Q & P1, const Q & P2)
  {
    return Point3(P3ScalarType(P0),P3ScalarType(P1),P3ScalarType(P2));
  }

  static inline Point3 Construct( const Point3<ScalarType> & b )
  {
    return b;
  }

  static inline Point3 Zero(void)
  {
    return Point3(0,0,0);
  }

  static inline Point3 One(void)
  {
    return Point3(1,1,1);
  }

//@}

//@{

  /** @name Data Access.
   access to data is done by overloading of [] or explicit naming of coords (x,y,z)**/

    inline P3ScalarType & operator [] ( const int i )
    {
        assert(i>=0 && i<3);
        return _v[i];
    }
    inline const P3ScalarType & operator [] ( const int i ) const
    {
        assert(i>=0 && i<3);
        return _v[i];
    }
  inline const P3ScalarType &X() const { return _v[0]; }
    inline const P3ScalarType &Y() const { return _v[1]; }
    inline const P3ScalarType &Z() const { return _v[2]; }
    inline P3ScalarType &X() { return _v[0]; }
    inline P3ScalarType &Y() { return _v[1]; }
    inline P3ScalarType &Z() { return _v[2]; }
    inline const P3ScalarType * V() const
    {
        return _v;
    }
    inline P3ScalarType * V()
    {
        return _v;
    }
    inline P3ScalarType & V( const int i )
    {
        assert(i>=0 && i<3);
        return _v[i];
    }
    inline const P3ScalarType & V( const int i ) const
    {
        assert(i>=0 && i<3);
        return _v[i];
    }
//@}
//@{

  /** @name Classical overloading of operators
  Note
  **/

    inline Point3 operator + ( Point3 const & p) const
    {
        return Point3<P3ScalarType>( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2] );
    }
    inline Point3 operator - ( Point3 const & p) const
    {
        return Point3<P3ScalarType>( _v[0]-p._v[0], _v[1]-p._v[1], _v[2]-p._v[2] );
    }
    inline Point3 operator * ( const P3ScalarType s ) const
    {
        return Point3<P3ScalarType>( _v[0]*s, _v[1]*s, _v[2]*s );
    }
    inline Point3 operator / ( const P3ScalarType s ) const
    {
        return Point3<P3ScalarType>( _v[0]/s, _v[1]/s, _v[2]/s );
    }
        /// Dot product
    inline P3ScalarType operator * ( Point3 const & p ) const
    {
        return ( _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2] );
    }
    inline P3ScalarType dot( const Point3 & p ) const { return (*this) * p; }
        /// Cross product
    inline Point3 operator ^ ( Point3 const & p ) const
    {
        return Point3 <P3ScalarType>
        (
            _v[1]*p._v[2] - _v[2]*p._v[1],
            _v[2]*p._v[0] - _v[0]*p._v[2],
            _v[0]*p._v[1] - _v[1]*p._v[0]
        );
    }

    inline Point3 & operator += ( Point3 const & p)
    {
        _v[0] += p._v[0];
        _v[1] += p._v[1];
        _v[2] += p._v[2];
        return *this;
    }
    inline Point3 & operator -= ( Point3 const & p)
    {
        _v[0] -= p._v[0];
        _v[1] -= p._v[1];
        _v[2] -= p._v[2];
        return *this;
    }
    inline Point3 & operator *= ( const P3ScalarType s )
    {
        _v[0] *= s;
        _v[1] *= s;
        _v[2] *= s;
        return *this;
    }
    inline Point3 & operator /= ( const P3ScalarType s )
    {
        _v[0] /= s;
        _v[1] /= s;
        _v[2] /= s;
        return *this;
    }
        // Norme
    inline P3ScalarType Norm() const
    {
    return math::Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] );
    }
    inline P3ScalarType SquaredNorm() const
    {
        return ( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] );
    }
        // Scalatura differenziata
    inline Point3 & Scale( const P3ScalarType sx, const P3ScalarType sy, const P3ScalarType sz )
    {
        _v[0] *= sx;
        _v[1] *= sy;
        _v[2] *= sz;
        return *this;
    }
    inline Point3 & Scale( const Point3 & p )
    {
        _v[0] *= p._v[0];
        _v[1] *= p._v[1];
        _v[2] *= p._v[2];
        return *this;
    }

    // Normalizzazione
    inline Point3 & Normalize()
    {
        P3ScalarType n = P3ScalarType(math::Sqrt(_v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2]));
        if (n > P3ScalarType(0)) { _v[0] /= n; _v[1] /= n; _v[2] /= n; }
        return *this;
    }

    // for compatibility with eigen port
    inline Point3 & normalized() { return Normalize(); }

    /**
     * Convert to polar coordinates from cartesian coordinates.
     *
     * Theta is the azimuth angle and ranges between [0, 2PI) degrees.
     * Phi is the elevation angle (not the polar angle) and ranges between [-PI/2, PI/2] degrees.
     *
     * /note Note that instead of the classical polar angle, which ranges between
     *       0 and PI degrees we opt for the elevation angle to obtain a more
     *       intuitive spherical coordinate system.
     */
    void ToPolarRad(P3ScalarType &ro, P3ScalarType &theta, P3ScalarType &phi) const
    {
        ro = Norm();
        theta = (P3ScalarType)atan2(_v[2], _v[0]);
        phi   = (P3ScalarType)asin(_v[1]/ro);
    }

    /**
     * Convert from polar coordinates to cartesian coordinates.
     *
     * Theta is the azimuth angle and ranges between [0, 2PI) radians.
     * Phi is the elevation angle (not the polar angle) and ranges between [-PI/2, PI/2] radians.
     *
     * \note Note that instead of the classical polar angle, which ranges between
     *       0 and PI degrees, we opt for the elevation angle to obtain a more
     *       intuitive spherical coordinate system.
     */
  void FromPolarRad(const P3ScalarType &ro, const P3ScalarType &theta, const P3ScalarType &phi)
    {
    _v[0]= ro*cos(theta)*cos(phi);
    _v[1]= ro*sin(phi);
    _v[2]= ro*sin(theta)*cos(phi);
    }

  Box3<P3ScalarType> GetBBox(Box3<P3ScalarType> &bb) const;
//@}
//@{

  size_t MaxCoeffId() const
 {
     if (_v[0]>_v[1])
         return _v[0]>_v[2] ? 0 : 2;
     else
         return _v[1]>_v[2] ? 1 : 2;
 }
  /** @name Comparison Operators.
   Note that the reverse z prioritized ordering, useful in many situations.
   **/

inline bool operator == ( Point3 const & p ) const
    {
        return _v[0]==p._v[0] && _v[1]==p._v[1] && _v[2]==p._v[2];
    }
    inline bool operator != ( Point3 const & p ) const
    {
        return _v[0]!=p._v[0] || _v[1]!=p._v[1] || _v[2]!=p._v[2];
    }
    inline bool operator <  ( Point3 const & p ) const
    {
        return	(_v[2]!=p._v[2])?(_v[2]<p._v[2]):
                (_v[1]!=p._v[1])?(_v[1]<p._v[1]):
                               (_v[0]<p._v[0]);
    }
    inline bool operator >  ( Point3 const & p ) const
    {
        return	(_v[2]!=p._v[2])?(_v[2]>p._v[2]):
                (_v[1]!=p._v[1])?(_v[1]>p._v[1]):
                               (_v[0]>p._v[0]);
    }
    inline bool operator <= ( Point3 const & p ) const
    {
        return	(_v[2]!=p._v[2])?(_v[2]< p._v[2]):
                (_v[1]!=p._v[1])?(_v[1]< p._v[1]):
                               (_v[0]<=p._v[0]);
    }
    inline bool operator >= ( Point3 const & p ) const
    {
        return	(_v[2]!=p._v[2])?(_v[2]> p._v[2]):
                (_v[1]!=p._v[1])?(_v[1]> p._v[1]):
                               (_v[0]>=p._v[0]);
    }


    inline Point3 operator - () const
    {
        return Point3<P3ScalarType> ( -_v[0], -_v[1], -_v[2] );
    }
 //@}

}; // end class definition


template <class P3ScalarType>
inline P3ScalarType Angle( Point3<P3ScalarType> const & p1, Point3<P3ScalarType> const & p2 )
{
    P3ScalarType w = p1.Norm()*p2.Norm();
    if(w==0) return -1;
    P3ScalarType t = (p1*p2)/w;
    if(t>1) t = 1;
    else if(t<-1) t = -1;
    return (P3ScalarType) acos(t);
}

// versione uguale alla precedente ma che assume che i due vettori sono unitari
template <class P3ScalarType>
inline P3ScalarType AngleN( Point3<P3ScalarType> const & p1, Point3<P3ScalarType> const & p2 )
{
    P3ScalarType w = p1*p2;
    if(w>1)
        w = 1;
    else if(w<-1)
        w=-1;
  return (P3ScalarType) acos(w);
}


template <class P3ScalarType>
inline P3ScalarType Norm( Point3<P3ScalarType> const & p )
{
    return p.Norm();
}

template <class P3ScalarType>
inline P3ScalarType SquaredNorm( Point3<P3ScalarType> const & p )
{
    return p.SquaredNorm();
}

template <class P3ScalarType>
inline Point3<P3ScalarType> & Normalize( Point3<P3ScalarType> & p )
{
    p.Normalize();
    return p;
}

template <class P3ScalarType>
inline P3ScalarType Distance( Point3<P3ScalarType> const & p1,Point3<P3ScalarType> const & p2 )
{
    return (p1-p2).Norm();
}

template <class P3ScalarType>
inline P3ScalarType SquaredDistance( Point3<P3ScalarType> const & p1,Point3<P3ScalarType> const & p2 )
{
    return (p1-p2).SquaredNorm();
}

template <class P3ScalarType>
P3ScalarType ApproximateGeodesicDistance(const Point3<P3ScalarType>& p0, const Point3<P3ScalarType>& n0,
                                       const Point3<P3ScalarType>& p1, const Point3<P3ScalarType>& n1)
{
    Point3<P3ScalarType> V(p0-p1);
    V.Normalize();
    const P3ScalarType C0 = V*n0;
    const P3ScalarType C1 = V*n1;
    const P3ScalarType De = Distance(p0,p1);
    if(fabs(C0-C1)<0.0001) return De/sqrt(1-C0*C1);
    const P3ScalarType Dg = ((asin(C0) - asin(C1))/(C0-C1));
    return Dg*De;
}


    // Dot product preciso numericamente (solo double!!)
    // Implementazione: si sommano i prodotti per ordine di esponente
    // (prima le piu' grandi)
template<class P3ScalarType>
double stable_dot ( Point3<P3ScalarType> const & p0, Point3<P3ScalarType> const & p1 )
{
    P3ScalarType k0 = p0._v[0]*p1._v[0];
    P3ScalarType k1 = p0._v[1]*p1._v[1];
    P3ScalarType k2 = p0._v[2]*p1._v[2];

    int exp0,exp1,exp2;

    frexp( double(k0), &exp0 );
    frexp( double(k1), &exp1 );
    frexp( double(k2), &exp2 );

    if( exp0<exp1 )
    {
        if(exp0<exp2)
            return (k1+k2)+k0;
        else
            return (k0+k1)+k2;
    }
    else
    {
        if(exp1<exp2)
            return(k0+k2)+k1;
        else
            return (k0+k1)+k2;
    }
}



/// Point(p) Edge(v1-v2) dist, q is the point in v1-v2 with min dist
template<class P3ScalarType>
P3ScalarType PSDist( const Point3<P3ScalarType> & p,
                     const Point3<P3ScalarType> & v1,
                     const Point3<P3ScalarType> & v2,
                     Point3<P3ScalarType> & q )
{
    Point3<P3ScalarType> e = v2-v1;
    P3ScalarType  t = ((p-v1)*e)/e.SquaredNorm();
    if(t<0)      t = 0;
    else if(t>1) t = 1;
    q = v1+e*t;
    return Distance(p,q);
}


template <class P3ScalarType>
void GetUV( Point3<P3ScalarType> &n,Point3<P3ScalarType> &u, Point3<P3ScalarType> &v, Point3<P3ScalarType> up=(Point3<P3ScalarType>(0,1,0)) )
{
    n.Normalize();
    const double LocEps=double(1e-7);
    u=n^up;
  double len = u.Norm();
    if(len < LocEps)
    {
        if(fabs(n[0])<fabs(n[1])){
            if(fabs(n[0])<fabs(n[2])) up=Point3<P3ScalarType>(1,0,0); // x is the min
                                     else up=Point3<P3ScalarType>(0,0,1); // z is the min
        }else {
            if(fabs(n[1])<fabs(n[2])) up=Point3<P3ScalarType>(0,1,0); // y is the min
                                     else up=Point3<P3ScalarType>(0,0,1); // z is the min
        }
        u=n^up;
    }
    u.Normalize();
    v=n^u;
    v.Normalize();
}


template <class SCALARTYPE>
inline Point3<SCALARTYPE> Abs(const Point3<SCALARTYPE> & p) {
    return (Point3<SCALARTYPE>(math::Abs(p[0]), math::Abs(p[1]), math::Abs(p[2])));
}
// probably a more uniform naming should be defined...
template <class SCALARTYPE>
inline Point3<SCALARTYPE> LowClampToZero(const Point3<SCALARTYPE> & p) {
  return (Point3<SCALARTYPE>(std::max(p[0], (SCALARTYPE)0), std::max(p[1], (SCALARTYPE)0), std::max(p[2], (SCALARTYPE)0)));
}

typedef Point3<short>  Point3s;
typedef Point3<int>	   Point3i;
typedef Point3<float>  Point3f;
typedef Point3<double> Point3d;

/*@}*/

} // end namespace

#endif