File: deprecated_point4.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 45,124 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 29
file content (405 lines) | stat: -rw-r--r-- 11,931 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
/****************************************************************************
  History

$Log: not supported by cvs2svn $
Revision 1.12  2006/06/21 11:06:16  ganovelli
changed return type of Zero() (to void)

Revision 1.11  2005/04/13 09:40:30  ponchio
Including math/bash.h

Revision 1.10  2005/03/18 16:34:42  fiorin
minor changes to comply gcc compiler

Revision 1.9  2005/01/21 18:02:11  ponchio
Removed dependence from matrix44 and changed VectProd

Revision 1.8  2005/01/12 11:25:02  ganovelli
added Dimension

Revision 1.7  2004/10/11 17:46:11  ganovelli
added definition of vector product (not implemented)

Revision 1.6  2004/05/10 11:16:19  ganovelli
include assert.h added

Revision 1.5  2004/03/31 10:09:58  cignoni
missing return value in zero()

Revision 1.4  2004/03/11 17:17:49  tarini
added commets (doxy), uniformed with new style, now using math::, ...
added HomoNormalize(), Zero()... remade StableDot() (hand made sort).

Revision 1.1  2004/02/10 01:11:28  cignoni
Edited Comments and GPL license

****************************************************************************/

#ifndef __VCGLIB_POINT4
#define __VCGLIB_POINT4
#include <assert.h>

#include <vcg/math/base.h>

namespace vcg {
/** \addtogroup space */
/*@{*/
    /**
        The templated class for representing a point in 4D space.
        The class is templated over the ScalarType class that is used to represent coordinates.
                All the usual operator (* + - ...) are defined.
     */

template <class T> class Point4
{
public:
  /// The only data member. Hidden to user.
    T _v[4];

public:
	typedef T ScalarType;
	enum {Dimension = 4};

//@{

  /** @name Standard Constructors and Initializers
   No casting operators have been introduced to avoid automatic unattended (and costly) conversion between different point types
   **/

	inline Point4 () { }
	inline Point4 ( const T nx, const T ny, const T nz , const T nw )
	{
		_v[0] = nx; _v[1] = ny; _v[2] = nz; _v[3] = nw;
	}
	inline Point4 ( const T  p[4] )
	{
		_v[0] = p[0]; _v[1]= p[1]; _v[2] = p[2]; _v[3]= p[3];
	}
	inline Point4 ( const Point4 & p )
	{
		_v[0]= p._v[0]; _v[1]= p._v[1]; _v[2]= p._v[2]; _v[3]= p._v[3];
	}
	inline void SetZero()
	{
		_v[0] = _v[1] = _v[2] = _v[3]= 0;
	}
	template <class Q>
	/// importer from different Point4 types
	inline void Import( const Point4<Q> & b )
	{
		_v[0] = T(b[0]);		_v[1] = T(b[1]);
		_v[2] = T(b[2]);
		_v[3] = T(b[3]);
	}
	template <class EigenVector>
	inline void FromEigenVector( const EigenVector & b )
	{
		_v[0] = T(b[0]);
		_v[1] = T(b[1]);
		_v[2] = T(b[2]);
		_v[3] = T(b[3]);
	}
	/// constructor that imports from different Point4 types
  template <class Q>
  static inline Point4 Construct( const Point4<Q> & b )
  {
    return Point4(T(b[0]),T(b[1]),T(b[2]),T(b[3]));
  }

  static inline Point4 Zero(void)
  {
    return Point4(0,0,0,0);
  }

  static inline Point4 One(void)
  {
    return Point4(1,1,1,1);
  }

//@}

//@{

  /** @name Data Access.
   access to data is done by overloading of [] or explicit naming of coords (x,y,z,w)
    **/
    inline const T & operator [] ( const int i ) const
    {
        assert(i>=0 && i<4);
        return _v[i];
    }
    inline T & operator [] ( const int i )
    {
        assert(i>=0 && i<4);
        return _v[i];
    }
    inline T &X() {return _v[0];}
    inline T &Y() {return _v[1];}
    inline T &Z() {return _v[2];}
    inline T &W() {return _v[3];}
    inline T const * V() const
    {
        return _v;
    }
    inline T * V()
    {
        return _v;
    }
    inline const T & V ( const int i ) const
    {
        assert(i>=0 && i<4);
        return _v[i];
    }
    inline T & V ( const int i )
    {
        assert(i>=0 && i<4);
        return _v[i];
    }
        /// Padding function: give a default 0 value to all the elements that are not in the [0..2] range.
        /// Useful for managing in a consistent way object that could have point2 / point3 / point4
    inline T Ext( const int i ) const
    {
        if(i>=0 && i<=3) return _v[i];
        else             return 0;
    }
//@}

//@{
  /** @name Linear operators and the likes
  **/
    inline Point4 operator + ( const Point4 & p) const
    {
        return Point4( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2], _v[3]+p._v[3] );
    }
    inline Point4 operator - ( const Point4 & p) const
    {
        return Point4( _v[0]-p._v[0], _v[1]-p._v[1], _v[2]-p._v[2], _v[3]-p._v[3] );
    }
    inline Point4 operator * ( const T s ) const
    {
        return Point4( _v[0]*s, _v[1]*s, _v[2]*s, _v[3]*s );
    }
    inline Point4 operator / ( const T s ) const
    {
        return Point4( _v[0]/s, _v[1]/s, _v[2]/s, _v[3]/s );
    }
    inline Point4 & operator += ( const Point4 & p)
    {
        _v[0] += p._v[0]; _v[1] += p._v[1]; _v[2] += p._v[2]; _v[3] += p._v[3];
        return *this;
    }
    inline Point4 & operator -= ( const Point4 & p )
    {
        _v[0] -= p._v[0]; _v[1] -= p._v[1]; _v[2] -= p._v[2]; _v[3] -= p._v[3];
        return *this;
    }
    inline Point4 & operator *= ( const T s )
    {
        _v[0] *= s; _v[1] *= s; _v[2] *= s; _v[3] *= s;
        return *this;
    }
    inline Point4 & operator /= ( const T s )
    {
        _v[0] /= s; _v[1] /= s; _v[2] /= s; _v[3] /= s;
        return *this;
    }
    inline Point4 operator - () const
    {
        return Point4( -_v[0], -_v[1], -_v[2], -_v[3] );
    }
    inline Point4 VectProd ( const Point4 &x, const Point4 &z ) const
    {
        Point4 res;
        const Point4 &y = *this;

		res[0] = y[1]*x[2]*z[3]-y[1]*x[3]*z[2]-x[1]*y[2]*z[3]+
				 x[1]*y[3]*z[2]+z[1]*y[2]*x[3]-z[1]*y[3]*x[2];
		res[1] = y[0]*x[3]*z[2]-z[0]*y[2]*x[3]-y[0]*x[2]*
				 z[3]+z[0]*y[3]*x[2]+x[0]*y[2]*z[3]-x[0]*y[3]*z[2];
		res[2] = -y[0]*z[1]*x[3]+x[0]*z[1]*y[3]+y[0]*x[1]*
				 z[3]-x[0]*y[1]*z[3]-z[0]*x[1]*y[3]+z[0]*y[1]*x[3];
		res[3] = -z[0]*y[1]*x[2]-y[0]*x[1]*z[2]+x[0]*y[1]*
				 z[2]+y[0]*z[1]*x[2]-x[0]*z[1]*y[2]+z[0]*x[1]*y[2];
		return res;
	}
//@}

//@{
  /** @name Norms and normalizations
  **/
    /// Euclidian normal
    inline T Norm() const
    {
        return math::Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3] );
    }
    /// Squared euclidian normal
    inline T SquaredNorm() const
    {
        return _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3];
    }
    /// Euclidian normalization
  inline Point4 & Normalize()
    {
        T n = sqrt(_v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3] );
        if(n>0.0) {	_v[0] /= n;	_v[1] /= n;	_v[2] /= n; _v[3] /= n; }
        return *this;
    }
    /// Homogeneous normalization (division by W)
    inline Point4 & HomoNormalize(){
        if (_v[3]!=0.0) {	_v[0] /= _v[3];	_v[1] /= _v[3];	_v[2] /= _v[3]; _v[3]=1.0; }
        return *this;
    };

//@}

//@{
  /** @name Comparison operators (lexicographical order)
  **/
    inline bool operator == (  const Point4& p ) const
    {
        return _v[0]==p._v[0] && _v[1]==p._v[1] && _v[2]==p._v[2] && _v[3]==p._v[3];
    }
    inline bool operator != ( const Point4 & p ) const
    {
        return _v[0]!=p._v[0] || _v[1]!=p._v[1] || _v[2]!=p._v[2] || _v[3]!=p._v[3];
    }
    inline bool operator <  ( Point4 const & p ) const
    {
        return	(_v[3]!=p._v[3])?(_v[3]<p._v[3]):
                (_v[2]!=p._v[2])?(_v[2]<p._v[2]):
                (_v[1]!=p._v[1])?(_v[1]<p._v[1]):
                (_v[0]<p._v[0]);
    }
    inline bool operator >  ( const Point4 & p ) const
    {
        return	(_v[3]!=p._v[3])?(_v[3]>p._v[3]):
                (_v[2]!=p._v[2])?(_v[2]>p._v[2]):
                (_v[1]!=p._v[1])?(_v[1]>p._v[1]):
                (_v[0]>p._v[0]);
    }
    inline bool operator <= ( const Point4 & p ) const
    {
        return	(_v[3]!=p._v[3])?(_v[3]< p._v[3]):
                (_v[2]!=p._v[2])?(_v[2]< p._v[2]):
                (_v[1]!=p._v[1])?(_v[1]< p._v[1]):
                (_v[0]<=p._v[0]);
    }
    inline bool operator >= ( const Point4 & p ) const
    {
        return	(_v[3]!=p._v[3])?(_v[3]> p._v[3]):
                (_v[2]!=p._v[2])?(_v[2]> p._v[2]):
                (_v[1]!=p._v[1])?(_v[1]> p._v[1]):
                (_v[0]>=p._v[0]);
    }
//@}

//@{
  /** @name Dot products
  **/

	// dot product
	inline T operator * ( const Point4 & p ) const
	{
		return _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2] + _v[3]*p._v[3];
	}
	inline T dot( const Point4 & p ) const { return (*this) * p; }
  inline Point4 operator ^ (  const Point4& /*p*/ ) const
    {
        assert(0);// not defined by two vectors (only put for metaprogramming)
        return Point4();
    }

	/// slower version, more stable (double precision only)
	T StableDot ( const Point4<T> & p ) const
	{

		T k0=_v[0]*p._v[0],	k1=_v[1]*p._v[1], k2=_v[2]*p._v[2], k3=_v[3]*p._v[3];
		int exp0,exp1,exp2,exp3;

		frexp( double(k0), &exp0 );frexp( double(k1), &exp1 );
		frexp( double(k2), &exp2 );frexp( double(k3), &exp3 );

		if (exp0>exp1) { std::swap(k0,k1); std::swap(exp0,exp1); }
		if (exp2>exp3) { std::swap(k2,k3); std::swap(exp2,exp3); }
		if (exp0>exp2) { std::swap(k0,k2); std::swap(exp0,exp2); }
		if (exp1>exp3) { std::swap(k1,k3); std::swap(exp1,exp3); }
		if (exp2>exp3) { std::swap(k2,k3); std::swap(exp2,exp3); }

		return ( (k0 + k1) + k2 ) +k3;
	}
//@}


}; // end class definition

template <class T>
T Angle( const Point4<T>& p1, const Point4<T>  & p2 )
{
	T w = p1.Norm()*p2.Norm();
	if(w==0) return -1;
	T t = (p1*p2)/w;
	if(t>1) t=1;
	return T( math::Acos(t) );
}

template <class T>
inline T Norm( const Point4<T> & p )
{
	return p.Norm();
}

template <class T>
inline T SquaredNorm( const Point4<T> & p )
{
	return p.SquaredNorm();
}

template <class T>
inline T Distance( const Point4<T> & p1, const Point4<T> & p2 )
{
	return Norm(p1-p2);
}

template <class T>
inline T SquaredDistance( const Point4<T> & p1, const Point4<T> & p2 )
{
	return SquaredNorm(p1-p2);
}

	/// slower version of dot product, more stable (double precision only)
template<class T>
double StableDot ( Point4<T> const & p0, Point4<T> const & p1 )
{
	return p0.StableDot(p1);
}

typedef Point4<short>  Point4s;
typedef Point4<int>	   Point4i;
typedef Point4<float>  Point4f;
typedef Point4<double> Point4d;

/*@}*/
} // end namespace
#endif