1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.6 2007/05/08 12:11:58 pietroni
added circle-line intersection
****************************************************************************/
#ifndef __VCGLIB_INTERSECTION_2
#define __VCGLIB_INTERSECTION_2
#include <vcg/space/line2.h>
#include <vcg/space/ray2.h>
#include <vcg/space/segment2.h>
#include <vcg/space/point2.h>
#include <vcg/space/triangle2.h>
#include <vcg/space/box2.h>
#include <vector>
namespace vcg {
/** \addtogroup space */
/*@{*/
/**
Function computing the intersection between couple of geometric primitives in
2 dimension
*/
/// return true if the algle is convex (right rotation)
template<class SCALAR_TYPE>
inline bool Convex(const Point2<SCALAR_TYPE> & p0,const Point2<SCALAR_TYPE> & p1,const Point2<SCALAR_TYPE> & p2)
{
const SCALAR_TYPE EPS= SCALAR_TYPE(1e-8);
return (((p0-p1)^(p2-p1))<=EPS);
}
///return if exist the intersection point
///between 2 lines in a 2d plane
template<class SCALAR_TYPE>
inline bool LineLineIntersection(const vcg::Line2<SCALAR_TYPE> & l0,
const vcg::Line2<SCALAR_TYPE> & l1,
Point2<SCALAR_TYPE> &p)
{
const SCALAR_TYPE Eps= SCALAR_TYPE(1e-8);
///first line
SCALAR_TYPE x1=l0.Origin().X();
SCALAR_TYPE y1=l0.Origin().Y();
SCALAR_TYPE x2=x1+l0.Direction().X();
SCALAR_TYPE y2=y1+l0.Direction().Y();
///second line
SCALAR_TYPE x3=l1.Origin().X();
SCALAR_TYPE y3=l1.Origin().Y();
SCALAR_TYPE x4=x3+l1.Direction().X();
SCALAR_TYPE y4=y3+l1.Direction().Y();
///then find intersection
///denominator
SCALAR_TYPE den=((x1-x2)*(y3-y4))-((y1-y2)*(x3-x4));
if (fabs(den)<Eps)
return false;
SCALAR_TYPE d0=(x1*y2)-(y1*x2);
SCALAR_TYPE d1=(x3*y4)-(y3*x4);
SCALAR_TYPE numx=(d0*(x3-x4))-(d1*(x1-x2));
SCALAR_TYPE numy=(d0*(y3-y4))-(d1*(y1-y2));
p.X()=numx/den;
p.Y()=numy/den;
return true;
}
///return if exist the intersection point
///between 2 lines in a 2d plane
template<class SCALAR_TYPE>
inline bool RayLineIntersection(const vcg::Line2<SCALAR_TYPE> & l,
const vcg::Ray2<SCALAR_TYPE> & r,
Point2<SCALAR_TYPE> &p)
{
///construct line from ray
vcg::Line2<SCALAR_TYPE> l_test;
l_test.Set(r.Origin(),r.Direction());
if (!LineLineIntersection(l,l_test,p))
return false;
Point2<SCALAR_TYPE> dir=p-r.Origin();
dir.Normalize();
return (dir*r.Direction()>0);
}
/// interseciton between point and triangle
template<class SCALAR_TYPE>
inline bool RaySegmentIntersection(const vcg::Ray2<SCALAR_TYPE> & r,
const vcg::Segment2<SCALAR_TYPE> &seg,
Point2<SCALAR_TYPE> &p_inters)
{
///first compute intersection between lines
vcg::Line2<SCALAR_TYPE> line2;
line2.SetOrigin(seg.P0());
vcg::Point2<SCALAR_TYPE> dir=seg.P1()-seg.P0();
dir.Normalize();
line2.SetDirection(dir);
if(!RayLineIntersection<SCALAR_TYPE>(line2,r,p_inters))
return false;
///then test if intersection point is nearest
///to both extremes then length of the segment
SCALAR_TYPE d0=(seg.P1()-p_inters).Norm();
SCALAR_TYPE d1=(seg.P0()-p_inters).Norm();
SCALAR_TYPE length=(seg.P0()-seg.P1()).Norm();
return ((d0<length)&&(d1<length));
}
/// interseciton between point and triangle
template<class SCALAR_TYPE>
inline bool RayBoxIntersection(const vcg::Ray2<SCALAR_TYPE> & r,
const vcg::Box2<SCALAR_TYPE> &bbox,
Point2<SCALAR_TYPE> &p_inters)
{
///first create the 4 segments
vcg::Segment2<SCALAR_TYPE> S[4];
for (int i=0;i<4;i++)
S[i]=vcg::Segment2<SCALAR_TYPE>(bbox.P(i),bbox.P((i+1)%4));
SCALAR_TYPE mind=std::numeric_limits<SCALAR_TYPE>::max();
bool found=false;
for (int i=0;i<4;i++)
{
Point2<SCALAR_TYPE> p_inters_test;
if (!RaySegmentIntersection(r,S[i],p_inters_test))continue;
SCALAR_TYPE Norm=(p_inters_test-r.Origin()).Norm();
if (Norm<mind)
{
mind=Norm;
p_inters=p_inters_test;
found=true;
}
}
return found;
}
/// interseciton between point and triangle
template<class SCALAR_TYPE>
inline bool LineSegmentIntersection(const vcg::Line2<SCALAR_TYPE> & line,
const vcg::Segment2<SCALAR_TYPE> &seg,
Point2<SCALAR_TYPE> &p_inters)
{
///first compute intersection between lines
vcg::Line2<SCALAR_TYPE> line2;
line2.SetOrigin(seg.P0());
vcg::Point2<SCALAR_TYPE> dir=seg.P1()-seg.P0();
dir.Normalize();
line2.SetDirection(dir);
if(!LineLineIntersection(line,line2,p_inters))
return false;
///then test if intersection point is nearest
///to both extremes then length of the segment
SCALAR_TYPE d0=(seg.P1()-p_inters).Norm();
SCALAR_TYPE d1=(seg.P0()-p_inters).Norm();
SCALAR_TYPE length=(seg.P0()-seg.P1()).Norm();
return ((d0<length)&&(d1<length));
}
/// interseciton between two segments
template<class SCALAR_TYPE>
inline bool SegmentSegmentIntersection(const vcg::Segment2<SCALAR_TYPE> &seg0,
const vcg::Segment2<SCALAR_TYPE> &seg1,
Point2<SCALAR_TYPE> &p_inters)
{
const SCALAR_TYPE Eps= SCALAR_TYPE(1e-8);
SCALAR_TYPE lambda0,lambda1;
const Point2<SCALAR_TYPE> & p0 = seg0.P0();
const Point2<SCALAR_TYPE> & p1 = seg0.P1();
const Point2<SCALAR_TYPE> & p2 = seg1.P0();
const Point2<SCALAR_TYPE> & p3 = seg1.P1();
SCALAR_TYPE a = (p1-p0)[0];
SCALAR_TYPE b = (p2-p3)[0];
SCALAR_TYPE c = (p1-p0)[1];
SCALAR_TYPE d = (p2-p3)[1];
SCALAR_TYPE e = (p2-p0)[0];
SCALAR_TYPE f = (p2-p0)[1];
SCALAR_TYPE det = a*d-b*c;
lambda0 = (d*e-b*f)/det;
lambda1 = (-c*e+a*f)/det;
if (fabs(det)<Eps)
return false;// they are parallell
if (!(lambda0 >= 0.0 && lambda0 <= 1.0 && lambda1 >= 0.0 && lambda1 <= 1.0))
return false;
p_inters = p0*(1-lambda0)+p1*lambda0;
return true;
}
/// interseciton between point and triangle
template<class SCALAR_TYPE>
inline bool IsInsideTrianglePoint( const Triangle2<SCALAR_TYPE> & t,const Point2<SCALAR_TYPE> & p)
{
Point2<SCALAR_TYPE> p0=t.P0(0);
Point2<SCALAR_TYPE> p1=t.P0(1);
Point2<SCALAR_TYPE> p2=t.P0(2);
///first test with bounding box
vcg::Box2<SCALAR_TYPE> b2d;
b2d.Add(p0);
b2d.Add(p1);
b2d.Add(p2);
if (!b2d.IsIn(p))
return false;
///then text convex
if (!Convex(p0,p1,p2))
std::swap<Point2<SCALAR_TYPE> >(p1,p2);
return((Convex(p,p0,p1))&&(Convex(p,p1,p2))&&(Convex(p,p2,p0)));
//return((Convex(p,p0,p1))&&(Convex(p,p1,p2))&&(Convex(p,p2,p0)));
}
template<class ScalarType>
bool TriangleTriangleIntersect2D(const vcg::Triangle2<ScalarType> &tr0,
const vcg::Triangle2<ScalarType> &tr1)
{
///test BBox Intersection
vcg::Box2<ScalarType> bbtr0;
bbtr0.Add(tr0.P(0));
bbtr0.Add(tr0.P(1));
bbtr0.Add(tr0.P(2));
vcg::Box2<ScalarType> bbtr1;
bbtr1.Add(tr1.P(0));
bbtr1.Add(tr1.P(1));
bbtr1.Add(tr1.P(2));
if (!bbtr0.Collide(bbtr1)) return false;
///test vertex in face
for (int i=0;i<3;i++)
{
bool inside0=vcg::IsInsideTrianglePoint(tr0,tr1.P(i));
bool inside1=vcg::IsInsideTrianglePoint(tr1,tr0.P(i));
if (inside0 || inside1) return true;
}
///test segment
///to segment intersection
for (int i=0;i<3;i++)
{
for (int j=0;j<3;j++)
{
if (i>j) continue;
vcg::Segment2<ScalarType> seg0=vcg::Segment2<ScalarType>(tr0.P(i),tr0.P((i+1)%3));
vcg::Segment2<ScalarType> seg1=vcg::Segment2<ScalarType>(tr1.P(j),tr1.P((j+1)%3));
vcg::Point2<ScalarType> p_inters;
bool intersect=SegmentSegmentIntersection(seg0,seg1,p_inters);
if (intersect) return true;
}
}
return false;
}
template <class ScalarType>
bool PointInsidePolygon(vcg::Point2<ScalarType> p,
const std::vector<vcg::Segment2<ScalarType> > &polygon)
{
int n=polygon.size();
vcg::Box2<ScalarType> BB;
for (int i=0;i<n;i++)
{
BB.Add(polygon[i].P0());
BB.Add(polygon[i].P1());
}
if (!BB.IsIn(p))return false;
//take 4 directions
int inside_test=0;
for (int dir=0;dir<4;dir++)
{
int intersection=0;
vcg::Ray2<ScalarType> r;
vcg::Point2<ScalarType> direct=vcg::Point2<ScalarType>(0,0);
switch (dir)
{
case 0 : direct.X()=1;break;
case 1 : direct.Y()=1;break;
case 2 : direct.X()=-1; break;
default :direct.Y()=-1;
}
r.SetOrigin(p);
r.SetDirection(direct);
for (int i=0;i<n;i++)
{
Point2<ScalarType> p_inters;
if (vcg::RaySegmentIntersection(r,polygon[i],p_inters))intersection++;
}
if ((intersection%2)==1)
inside_test++;
}
return(inside_test>2);
}
//intersection between a circle and a line
template<class ScalarType>
inline bool CircleLineIntersection(const vcg::Line2<ScalarType> & line,
const vcg::Point2<ScalarType> ¢er,
const ScalarType &radius,
vcg::Point2<ScalarType> &p0,
vcg::Point2<ScalarType> &p1)
{
///translate with origin on the center
ScalarType x1,x2,y1,y2;
x1=line.Origin().X()-center.X();
y1=line.Origin().Y()-center.Y();
x2=x1+line.Direction().X();
y2=y1+line.Direction().Y();
ScalarType dx,dy,dr,D,delta,sign;
dx=x2-x1;
dy=y2-y1;
dr=sqrt(dx*dx+dy*dy);
D=x1*y2-x2*y1;
delta=radius*radius*dr*dr-D*D;
if (dy>=0)
sign=1;
else
sign=-1;
if (delta<0.000001)
return false;///no intersection
else
{
p0.X()=(D*dy+sign*dx*sqrt(delta))/dr*dr;
p0.Y()=(-D*dx+fabs(dy)*sqrt(delta))/dr*dr;
p1.X()=(D*dy-sign*dx*sqrt(delta))/dr*dr;
p1.Y()=(-D*dx-fabs(dy)*sqrt(delta))/dr*dr;
p0+=center;
p1+=center;
return true;
}
}
// Ray-Segment Functor
class RaySegmentIntersectionFunctor {
public:
template <class SEGMENTTYPE, class SCALARTYPE>
inline bool operator () (const SEGMENTTYPE & S,
const Ray2<SCALARTYPE> & ray,
SCALARTYPE & t)
{
typedef SCALARTYPE ScalarType;
typedef vcg::Point2<ScalarType> CoordType;
CoordType inters_test;
bool bret = RaySegmentIntersection(ray,S, inters_test);
if (bret)
t=(inters_test-ray.Origin()).Norm();
return (bret);
}
};
/*@}*/
} // end namespace
#endif
|