File: intersection3.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 45,124 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 29
file content (745 lines) | stat: -rw-r--r-- 27,374 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/

#ifndef __VCGLIB_INTERSECTION_3
#define __VCGLIB_INTERSECTION_3

#include <vcg/math/base.h>
#include <vcg/space/point3.h>
#include <vcg/space/line3.h>
#include <vcg/space/ray3.h>
#include <vcg/space/plane3.h>
#include <vcg/space/segment3.h>
#include <vcg/space/sphere3.h>
#include <vcg/space/triangle3.h>
#include <vcg/space/intersection/triangle_triangle3.h>




namespace vcg {
/** \addtogroup space */
/*@{*/
/**
    Function computing the intersection between couple of geometric primitives in
    3 dimension
*/
  /// interseciton between sphere and line
  template<class T>
    inline bool IntersectionLineSphere( const Sphere3<T> & sp, const Line3<T> & li, Point3<T> & p0,Point3<T> & p1 ){

    // Per prima cosa si sposta il sistema di riferimento
    // fino a portare il centro della sfera nell'origine
    Point3<T> neworig=li.Origin()-sp.Center();
    // poi si risolve il sistema di secondo grado (con maple...)
    T t1 = li.Direction().X()*li.Direction().X();
    T t2 = li.Direction().Y()*li.Direction().Y();
    T t3 = li.Direction().Z()*li.Direction().Z();
    T t6 = neworig.Y()*li.Direction().Y();
    T t7 = neworig.X()*li.Direction().X();
    T t8 = neworig.Z()*li.Direction().Z();
    T t15 = sp.Radius()*sp.Radius();
    T t17 = neworig.Z()*neworig.Z();
    T t19 = neworig.Y()*neworig.Y();
    T t21 = neworig.X()*neworig.X();
    T t28 = T(2.0*t7*t6+2.0*t6*t8+2.0*t7*t8+t1*t15-t1*t17-t1*t19-t2*t21+t2*t15-t2*t17-t3*t21+t3*t15-t3*t19);
    if(t28<0) return false;
    T t29 = sqrt(t28);
    T val0 = 1/(t1+t2+t3)*(-t6-t7-t8+t29);
    T val1 = 1/(t1+t2+t3)*(-t6-t7-t8-t29);

    p0=li.P(val0);
    p1=li.P(val1);
    return true;
  }

    /*
    * Function computing the intersection between a sphere and a segment.
    * @param[in]	sphere				the sphere
    * @param[in]	segment				the segment
    * @param[out]	intersection  the intersection point, meaningful only if the segment intersects the sphere
    * \return			(0, 1 or 2)		the number of intersections between the segment and the sphere.
    *														t1 is a valid intersection only if the returned value is at least 1;
    *														similarly t2 is valid iff the returned value is 2.
    */
    template < class SCALAR_TYPE >
    inline int IntersectionSegmentSphere(const Sphere3<SCALAR_TYPE>& sphere, const Segment3<SCALAR_TYPE>& segment, Point3<SCALAR_TYPE> & t0, Point3<SCALAR_TYPE> & t1)
    {
        typedef SCALAR_TYPE													ScalarType;
        typedef typename vcg::Point3< ScalarType >	Point3t;

        Point3t s = segment.P0() - sphere.Center();
        Point3t r = segment.P1() - segment.P0();

        ScalarType rho2 = sphere.Radius()*sphere.Radius();

        ScalarType sr = s*r;
        ScalarType r_squared_norm = r.SquaredNorm();
        ScalarType s_squared_norm = s.SquaredNorm();
        ScalarType sigma = sr*sr - r_squared_norm*(s_squared_norm-rho2);

        if (sigma<ScalarType(0.0)) // the line containing the edge doesn't intersect the sphere
            return 0;

        ScalarType sqrt_sigma = ScalarType(sqrt( ScalarType(sigma) ));
        ScalarType lambda1 = (-sr - sqrt_sigma)/r_squared_norm;
        ScalarType lambda2 = (-sr + sqrt_sigma)/r_squared_norm;

        int solution_count = 0;
        if (ScalarType(0.0)<=lambda1 && lambda1<=ScalarType(1.0))
        {
      ScalarType t_enter = std::max< ScalarType >(lambda1, ScalarType(0.0));
            t0 = segment.P0() + r*t_enter;
            solution_count++;
        }

        if (ScalarType(0.0)<=lambda2 && lambda2<=ScalarType(1.0))
        {
            Point3t *pt = (solution_count>0) ? &t1 : &t0;
      ScalarType t_exit  = std::min< ScalarType >(lambda2, ScalarType(1.0));
            *pt = segment.P0() + r*t_exit;
            solution_count++;
        }
        return solution_count;
    }; // end of IntersectionSegmentSphere


    /*!
    * Compute the intersection between a sphere and a triangle.
    * \param[in]	sphere		the input sphere
    * \param[in]	triangle	the input triangle
    * \param[out]	witness		it is the point on the triangle nearest to the center of the sphere (even when there isn't intersection)
    * \param[out] res				if not null, in the first item is stored the minimum distance between the triangle and the sphere,
    *                       while in the second item is stored the penetration depth
    * \return			true			iff there is an intersection between the sphere and the triangle
    */
    template < class SCALAR_TYPE, class TRIANGLETYPE >
    bool IntersectionSphereTriangle(const vcg::Sphere3	< SCALAR_TYPE >		& sphere  ,
                                                                    TRIANGLETYPE														triangle,
                                                                    vcg::Point3					< SCALAR_TYPE >		& witness ,
                                                                    std::pair< SCALAR_TYPE, SCALAR_TYPE > * res=NULL)
    {
        typedef SCALAR_TYPE														ScalarType;
        typedef typename vcg::Point3< ScalarType >		Point3t;

        bool penetration_detected = false;

        ScalarType radius = sphere.Radius();
        Point3t	center = sphere.Center();
        Point3t p0 = triangle.P(0)-center;
        Point3t p1 = triangle.P(1)-center;
        Point3t p2 = triangle.P(2)-center;

        Point3t p10 = p1-p0;
        Point3t p21 = p2-p1;
        Point3t p20 = p2-p0;

        ScalarType delta0_p01 =  p10.dot(p1);
        ScalarType delta1_p01 = -p10.dot(p0);
        ScalarType delta0_p02 =  p20.dot(p2);
        ScalarType delta2_p02 = -p20.dot(p0);
        ScalarType delta1_p12 =  p21.dot(p2);
        ScalarType delta2_p12 = -p21.dot(p1);

        // the closest point can be one of the vertices of the triangle
        if			(delta1_p01<=ScalarType(0.0) && delta2_p02<=ScalarType(0.0)) { witness = p0; }
        else if (delta0_p01<=ScalarType(0.0) && delta2_p12<=ScalarType(0.0)) { witness = p1; }
        else if (delta0_p02<=ScalarType(0.0) && delta1_p12<=ScalarType(0.0)) { witness = p2; }
        else
        {
            ScalarType temp = p10.dot(p2);
            ScalarType delta0_p012 = delta0_p01*delta1_p12 + delta2_p12*temp;
            ScalarType delta1_p012 = delta1_p01*delta0_p02 - delta2_p02*temp;
            ScalarType delta2_p012 = delta2_p02*delta0_p01 - delta1_p01*(p20.dot(p1));

            // otherwise, can be a point lying on same edge of the triangle
            if (delta0_p012<=ScalarType(0.0))
            {
                ScalarType denominator = delta1_p12+delta2_p12;
                ScalarType mu1 = delta1_p12/denominator;
                ScalarType mu2 = delta2_p12/denominator;
                witness = (p1*mu1 + p2*mu2);
            }
            else if (delta1_p012<=ScalarType(0.0))
            {
                ScalarType denominator = delta0_p02+delta2_p02;
                ScalarType mu0 = delta0_p02/denominator;
                ScalarType mu2 = delta2_p02/denominator;
                witness = (p0*mu0 + p2*mu2);
            }
            else if (delta2_p012<=ScalarType(0.0))
            {
                ScalarType denominator = delta0_p01+delta1_p01;
                ScalarType mu0 = delta0_p01/denominator;
                ScalarType mu1 = delta1_p01/denominator;
                witness = (p0*mu0 + p1*mu1);
            }
            else
            {
                // or else can be an point internal to the triangle
                ScalarType denominator =  delta0_p012 + delta1_p012 + delta2_p012;
                ScalarType lambda0 = delta0_p012/denominator;
                ScalarType lambda1 = delta1_p012/denominator;
                ScalarType lambda2 = delta2_p012/denominator;
                witness = p0*lambda0 + p1*lambda1 + p2*lambda2;
            }
        }

        if (res!=NULL)
        {
            ScalarType witness_norm = witness.Norm();
      res->first  = std::max< ScalarType >( witness_norm-radius, ScalarType(0.0) );
      res->second = std::max< ScalarType >( radius-witness_norm, ScalarType(0.0) );
        }
        penetration_detected = (witness.SquaredNorm() <= (radius*radius));
        witness += center;
        return penetration_detected;
    }; //end of IntersectionSphereTriangle

  /// intersection between line and plane
  template<class T>
    inline bool IntersectionPlaneLine( const Plane3<T> & pl, const Line3<T> & li, Point3<T> & po){
    const T epsilon = T(1e-8);

    T k = pl.Direction().dot(li.Direction());						// Compute 'k' factor
    if( (k > -epsilon) && (k < epsilon))
      return false;
    T r = (pl.Offset() - pl.Direction().dot(li.Origin()))/k;	// Compute ray distance
    po = li.Origin() + li.Direction()*r;
    return true;
  }
    /// intersection between line and plane
    template<class T>
    inline bool IntersectionLinePlane(const Line3<T> & li, const Plane3<T> & pl, Point3<T> & po){

      return IntersectionPlaneLine(pl,li,po);
    }

   /// intersection between segment and plane
  template<class T>
    inline bool IntersectionPlaneSegment( const Plane3<T> & pl, const Segment3<T> & s, Point3<T> & p0){
        T p1_proj = s.P1()*pl.Direction()-pl.Offset();
        T p0_proj = s.P0()*pl.Direction()-pl.Offset();
    if ( (p1_proj>0)-(p0_proj<0)) return false;

    if(p0_proj == p1_proj) return false;

    // check that we perform the computation in a way that is independent with v0 v1 swaps
    if(p0_proj < p1_proj)
           p0 =  s.P0() + (s.P1()-s.P0()) * fabs(p0_proj/(p1_proj-p0_proj));
    if(p0_proj > p1_proj)
           p0 =  s.P1() + (s.P0()-s.P1()) * fabs(p1_proj/(p0_proj-p1_proj));

        return true;
  }

  /// intersection between segment and plane
  template<class ScalarType>
    inline bool IntersectionPlaneSegmentEpsilon(const Plane3<ScalarType> & pl,
                                                const Segment3<ScalarType> & sg,
                                                Point3<ScalarType> & po,
                                                const ScalarType epsilon = ScalarType(1e-8)){

    typedef ScalarType T;
    T k = pl.Direction().dot((sg.P1()-sg.P0()));
    if( (k > -epsilon) && (k < epsilon))
      return false;
    T r = (pl.Offset() - pl.Direction().dot(sg.P0()))/k;	// Compute ray distance
    if( (r<0) || (r > 1.0))
      return false;
    po = sg.P0()*(1-r)+sg.P1() * r;
    return true;
  }

  /// intersection between plane and triangle
  // not optimal: uses plane-segment intersection (and the fact the two or none edges can be intersected)
  // its use is rather dangerous because it can return inconsistent stuff on degenerate cases.
  // added assert to underline this danger.
  template<typename TRIANGLETYPE>
    inline bool IntersectionPlaneTriangle( const Plane3<typename TRIANGLETYPE::ScalarType> & pl,
                  const  TRIANGLETYPE & tr,
            Segment3<typename TRIANGLETYPE::ScalarType> & sg)
    {
      typedef typename TRIANGLETYPE::ScalarType T;
      if(IntersectionPlaneSegment(pl,Segment3<T>(tr.cP(0),tr.cP(1)),sg.P0()))
      {
        if(IntersectionPlaneSegment(pl,Segment3<T>(tr.cP(0),tr.cP(2)),sg.P1()))
          return true;
        else
        {
          if(IntersectionPlaneSegment(pl,Segment3<T>(tr.cP(1),tr.cP(2)),sg.P1()))
            return true;
          else assert(0);
              return true;
        }
      }
      else
      {
        if(IntersectionPlaneSegment(pl,Segment3<T>(tr.cP(1),tr.cP(2)),sg.P0()))
        {
          if(IntersectionPlaneSegment(pl,Segment3<T>(tr.cP(0),tr.cP(2)),sg.P1()))return true;
          assert(0);
          return true;
        }
      }
      return false;
    }

    /// intersection between two triangles
    template<typename TRIANGLETYPE>
    inline bool IntersectionTriangleTriangle(const TRIANGLETYPE & t0,const TRIANGLETYPE & t1){
      return NoDivTriTriIsect(t0.cP(0),t0.cP(1),t0.cP(2),
                              t1.cP(0),t1.cP(1),t1.cP(2));
    }

  template<class T>
    inline bool IntersectionTriangleTriangle(Point3<T> V0,Point3<T> V1,Point3<T> V2,
                 Point3<T> U0,Point3<T> U1,Point3<T> U2){
    return NoDivTriTriIsect(V0,V1,V2,U0,U1,U2);
  }
#if 0
  template<class T>
    inline bool Intersection(Point3<T> V0,Point3<T> V1,Point3<T> V2,
                 Point3<T> U0,Point3<T> U1,Point3<T> U2,int *coplanar,
                 Point3<T> &isectpt1,Point3<T> &isectpt2){

    return tri_tri_intersect_with_isectline(V0,V1,V2,U0,U1,U2,
                        coplanar,isectpt1,isectpt2);
  }

  template<typename TRIANGLETYPE,typename SEGMENTTYPE >
    inline bool Intersection(const TRIANGLETYPE & t0,const TRIANGLETYPE & t1,bool &coplanar,
                 SEGMENTTYPE  & sg){
    Point3<typename SEGMENTTYPE::PointType> ip0,ip1;
    return  tri_tri_intersect_with_isectline(t0.P0(0),t0.P0(1),t0.P0(2),
                         t1.P0(0),t1.P0(1),t1.P0(2),
                         coplanar,sg.P0(),sg.P1()
                         );
  }

#endif

    /*
    * Function computing the intersection between a line and a triangle.
    * from:
    * Tomas Moller and Ben Trumbore,
    * ``Fast, Minimum Storage Ray-Triangle Intersection'',
    * journal of graphics tools, vol. 2, no. 1, pp. 21-28, 1997
    * @param[in]	line
    * @param[in]	triangle vertices
    * @param[out]=(t,u,v)	the intersection point, meaningful only if the line intersects the triangle
    *            t is the line parameter and
    *            (u,v) are the baricentric coords of the intersection point
    *
    *                 Line.Orig + t * Line.Dir = (1-u-v) * Vert0 + u * Vert1 +v * Vert2
    *
    */

template<class T>
bool IntersectionLineTriangle( const Line3<T> & line, const Point3<T> & vert0,
                  const Point3<T> & vert1, const Point3<T> & vert2,
                  T & t ,T & u, T & v)
{
    #define EPSIL 0.000001

    vcg::Point3<T> edge1, edge2, tvec, pvec, qvec;
    T det,inv_det;

   /* find vectors for two edges sharing vert0 */
   edge1 = vert1 - vert0;
   edge2 = vert2 - vert0;

   /* begin calculating determinant - also used to calculate U parameter */
   pvec =  line.Direction() ^ edge2;

   /* if determinant is near zero, line lies in plane of triangle */
   det =  edge1 *  pvec;

   /* calculate distance from vert0 to line origin */
   tvec = line.Origin() - vert0;
   inv_det = 1.0 / det;

   qvec = tvec ^ edge1;

   if (det > EPSIL)
   {
      u =  tvec * pvec ;
      if ( u < 0.0 ||  u > det)
     return 0;

      /* calculate V parameter and test bounds */
       v =  line.Direction() * qvec;
      if ( v < 0.0 ||  u +  v > det)
     return 0;

   }
   else if(det < -EPSIL)
   {
      /* calculate U parameter and test bounds */
       u =  tvec * pvec ;
      if ( u > 0.0 ||  u < det)
     return 0;

      /* calculate V parameter and test bounds */
       v =  line.Direction() * qvec  ;
      if ( v > 0.0 ||  u +  v < det)
     return 0;
   }
   else return 0;  /* line is parallell to the plane of the triangle */

    t = edge2 *  qvec  * inv_det;
   ( u) *= inv_det;
   ( v) *= inv_det;

   return 1;
}

template<class T>
bool IntersectionRayTriangle( const Ray3<T> & ray, const Point3<T> & vert0,
                  const Point3<T> & vert1, const Point3<T> & vert2,
                  T & t ,T & u, T & v)
{
    Line3<T> line(ray.Origin(), ray.Direction());
    if (IntersectionLineTriangle(line, vert0, vert1, vert2, t, u, v))
    {
        if (t < 0) return 0;
        else return 1;
    }else return 0;
}

// line-box
template<class T>
bool IntersectionLineBox( const Box3<T> & box, const Line3<T> & r, Point3<T> & coord )
{
    const int NUMDIM = 3;
    const int RIGHT  = 0;
    const int LEFT	 = 1;
    const int MIDDLE = 2;

    int inside = 1;
    char quadrant[NUMDIM];
    int i;
    int whichPlane;
    Point3<T> maxT,candidatePlane;

    // Find candidate planes; this loop can be avoided if
    // rays cast all from the eye(assume perpsective view)
    for (i=0; i<NUMDIM; i++)
    {
        if(r.Origin()[i] < box.min[i])
        {
            quadrant[i] = LEFT;
            candidatePlane[i] = box.min[i];
            inside = 0;
        }
        else if (r.Origin()[i] > box.max[i])
        {
            quadrant[i] = RIGHT;
            candidatePlane[i] = box.max[i];
            inside = 0;
        }
        else
        {
            quadrant[i] = MIDDLE;
        }
    }

        // Ray origin inside bounding box
    if(inside){
        coord = r.Origin();
        return true;
    }

    // Calculate T distances to candidate planes
    for (i = 0; i < NUMDIM; i++)
    {
        if (quadrant[i] != MIDDLE && r.Direction()[i] !=0.)
            maxT[i] = (candidatePlane[i]-r.Origin()[i]) / r.Direction()[i];
        else
            maxT[i] = -1.;
    }

    // Get largest of the maxT's for final choice of intersection
    whichPlane = 0;
    for (i = 1; i < NUMDIM; i++)
        if (maxT[whichPlane] < maxT[i])
            whichPlane = i;

    // Check final candidate actually inside box
    if (maxT[whichPlane] < 0.) return false;
    for (i = 0; i < NUMDIM; i++)
        if (whichPlane != i)
        {
            coord[i] = r.Origin()[i] + maxT[whichPlane] *r.Direction()[i];
            if (coord[i] < box.min[i] || coord[i] > box.max[i])
                return false;
        }
        else
        {
            coord[i] = candidatePlane[i];
        }
    return true;			// ray hits box
}

// ray-box
template<class T>
bool IntersectionRayBox( const Box3<T> & box, const Ray3<T> & r, Point3<T> & coord )
{
    Line3<T> l;
    l.SetOrigin(r.Origin());
    l.SetDirection(r.Direction());
  return(IntersectionLineBox<T>(box,l,coord));
}

// segment-box return fist intersection found  from p0 to p1
template<class ScalarType>
bool IntersectionSegmentBox( const Box3<ScalarType> & box,
                              const Segment3<ScalarType> & s,
                              Point3<ScalarType> & coord )
{
    //as first perform box-box intersection
    Box3<ScalarType> test;
    test.Add(s.P0());
    test.Add(s.P1());
    if (!test.Collide(box))
        return false;
    else
    {
        Line3<ScalarType> l;
        Point3<ScalarType> dir=s.P1()-s.P0();
        dir.Normalize();
        l.SetOrigin(s.P0());
        l.SetDirection(dir);
    if(IntersectionLineBox<ScalarType>(box,l,coord))
            return (test.IsIn(coord));
        return false;
    }
}

// segment-box intersection , return number of intersections and intersection points
template<class ScalarType>
int IntersectionSegmentBox( const Box3<ScalarType> & box,
                             const Segment3<ScalarType> & s,
                             Point3<ScalarType> & coord0,
                             Point3<ScalarType> & coord1 )
{
    int num=0;
    Segment3<ScalarType> test= s;
  if (IntersectionSegmentBox(box,test,coord0 ))
    {
        num++;
        Point3<ScalarType> swap=test.P0();
        test.P0()=test.P1();
        test.P1()=swap;
    if (IntersectionSegmentBox(box,test,coord1 ))
            num++;
    }
    return num;
}

/**
* Compute the intersection between a segment and a triangle.
* It relies on the lineTriangle Intersection
* @param[in]	segment
* @param[in]	triangle vertices
* @param[out]=(t,u,v)	the intersection point, meaningful only if the line of segment intersects the triangle
*            t     is the baricentric coord of the point on the segment
*            (u,v) are the baricentric coords of the intersection point in the segment
*
*/
template<class ScalarType>
bool IntersectionSegmentTriangle( const vcg::Segment3<ScalarType> & seg,
                                   const Point3<ScalarType> & vert0,
                                    const Point3<ScalarType> & vert1, const
                                    Point3<ScalarType> & vert2,
                                    ScalarType & a ,ScalarType & b)
{
    //control intersection of bounding boxes
    vcg::Box3<ScalarType> bb0,bb1;
    bb0.Add(seg.P0());
    bb0.Add(seg.P1());
    bb1.Add(vert0);
    bb1.Add(vert1);
    bb1.Add(vert2);
    Point3<ScalarType> inter;
    if (!bb0.Collide(bb1))
        return false;
  if (!vcg::IntersectionSegmentBox(bb1,seg,inter))
        return false;

    //first set both directions of ray
  vcg::Line3<ScalarType> line;
    vcg::Point3<ScalarType> dir;
    ScalarType length=seg.Length();
    dir=(seg.P1()-seg.P0());
    dir.Normalize();
  line.Set(seg.P0(),dir);
    ScalarType orig_dist;
  if(IntersectionLineTriangle<ScalarType>(line,vert0,vert1,vert2,orig_dist,a,b))
    return (orig_dist>=0 && orig_dist<=length);
  return false;
}
/**
* Compute the intersection between a segment and a triangle.
* Wrapper of the above function
*/
template<class TriangleType>
bool IntersectionSegmentTriangle( const vcg::Segment3<typename TriangleType::ScalarType> & seg,
                  const TriangleType &t,
                  typename TriangleType::ScalarType & a ,typename TriangleType::ScalarType & b)
{
  return IntersectionSegmentTriangle(seg,t.cP(0),t.cP(1),t.cP(2),a,b);
}

template<class ScalarType>
bool IntersectionPlaneBox(const vcg::Plane3<ScalarType> &pl,
                            vcg::Box3<ScalarType> &bbox)
{
    ScalarType dist,dist1;
    if(bbox.IsNull()) return false; // intersection with a  null bbox is empty
    dist = SignedDistancePlanePoint(pl,bbox.P(0)) ;
    for (int i=1;i<8;i++)  if(  SignedDistancePlanePoint(pl,bbox.P(i))*dist<0) return true;
    return true;
}

template<class ScalarType>
bool IntersectionTriangleBox(const vcg::Box3<ScalarType>   &bbox,
                               const vcg::Point3<ScalarType> &p0,
                               const vcg::Point3<ScalarType> &p1,
                               const vcg::Point3<ScalarType> &p2)
{
    typedef typename vcg::Point3<ScalarType> CoordType;
    CoordType intersection;
    /// control bounding box collision
    vcg::Box3<ScalarType> test;
    test.SetNull();
    test.Add(p0);
    test.Add(p1);
    test.Add(p2);
    if (!test.Collide(bbox))
        return false;
    /// control if each point is inside the bouding box
    if ((bbox.IsIn(p0))||(bbox.IsIn(p1))||(bbox.IsIn(p2)))
        return true;

    /////control plane of the triangle with bbox
    //vcg::Plane3<ScalarType> plTri=vcg::Plane3<ScalarType>();
    //plTri.Init(p0,p1,p2);
  //if (!IntersectionPlaneBox<ScalarType>(plTri,bbox))
    //	return false;

    ///then control intersection of segments with box
  if (IntersectionSegmentBox<ScalarType>(bbox,vcg::Segment3<ScalarType>(p0,p1),intersection)||
    IntersectionSegmentBox<ScalarType>(bbox,vcg::Segment3<ScalarType>(p1,p2),intersection)||
    IntersectionSegmentBox<ScalarType>(bbox,vcg::Segment3<ScalarType>(p2,p0),intersection))
        return true;
    ///control intersection of diagonal of the cube with triangle

    Segment3<ScalarType> diag[4];

    diag[0]=Segment3<ScalarType>(bbox.P(0),bbox.P(7));
    diag[1]=Segment3<ScalarType>(bbox.P(1),bbox.P(6));
    diag[2]=Segment3<ScalarType>(bbox.P(2),bbox.P(5));
    diag[3]=Segment3<ScalarType>(bbox.P(3),bbox.P(4));
    ScalarType a,b;
    for (int i=0;i<3;i++)
    if (IntersectionSegmentTriangle<ScalarType>(diag[i],p0,p1,p2,a,b))
            return true;

    return false;
}

template <class SphereType>
bool IntersectionSphereSphere( const SphereType & s0,const SphereType & s1){
    return (s0.Center()-s1.Center()).SquaredNorm() < (s0.Radius()+s1.Radius())*(s0.Radius()+s1.Radius());
}

template<class T>
bool IntersectionPlanePlane (const Plane3<T> & plane0, const Plane3<T> & plane1,
                             Line3<T> & line)
{
    // If Cross(N0,N1) is zero, then either planes are parallel and separated
    // or the same plane.  In both cases, 'false' is returned.  Otherwise,
    // the intersection line is
    //
    //   L(t) = t*Cross(N0,N1) + c0*N0 + c1*N1
    //
    // for some coefficients c0 and c1 and for t any real number (the line
    // parameter).  Taking dot products with the normals,
    //
    //   d0 = Dot(N0,L) = c0*Dot(N0,N0) + c1*Dot(N0,N1)
    //   d1 = Dot(N1,L) = c0*Dot(N0,N1) + c1*Dot(N1,N1)
    //
    // which are two equations in two unknowns.  The solution is
    //
    //   c0 = (Dot(N1,N1)*d0 - Dot(N0,N1)*d1)/det
    //   c1 = (Dot(N0,N0)*d1 - Dot(N0,N1)*d0)/det
    //
    // where det = Dot(N0,N0)*Dot(N1,N1)-Dot(N0,N1)^2.

    T n00 = plane0.Direction()*plane0.Direction();
    T n01 = plane0.Direction()*plane1.Direction();
    T n11 = plane1.Direction()*plane1.Direction();
    T det = n00*n11-n01*n01;

    const T tolerance = (T)(1e-06f);
        if ( math::Abs(det) < tolerance )
        return false;

    T invDet = 1.0f/det;
    T c0 = (n11*plane0.Offset() - n01*plane1.Offset())*invDet;
    T c1 = (n00*plane1.Offset() - n01*plane0.Offset())*invDet;

    line.SetDirection(plane0.Direction()^plane1.Direction());
    line.SetOrigin(plane0.Direction()*c0+ plane1.Direction()*c1);

    return true;
}


// Ray-Triangle Functor
template <bool BACKFACETEST = true>
class RayTriangleIntersectionFunctor {
public:
    template <class TRIANGLETYPE, class SCALARTYPE>
    inline bool operator () (const TRIANGLETYPE & f, const Ray3<SCALARTYPE> & ray, SCALARTYPE & t) {
        typedef SCALARTYPE ScalarType;
        ScalarType u;
        ScalarType v;

        bool bret = IntersectionRayTriangle(ray, Point3<SCALARTYPE>::Construct(f.cP(0)), Point3<SCALARTYPE>::Construct(f.cP(1)), Point3<SCALARTYPE>::Construct(f.cP(2)), t, u, v);
        if (BACKFACETEST) {
            if (!bret) {
                bret = IntersectionRayTriangle(ray, Point3<SCALARTYPE>::Construct(f.cP(0)), Point3<SCALARTYPE>::Construct(f.cP(2)), Point3<SCALARTYPE>::Construct(f.cP(1)), t, u, v);
            }
        }
        return (bret);
    }
};


/*@}*/


} // end namespace
#endif