1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCGLIB_PLANAR_POLYGON_TESSELLATOR
#define __VCGLIB_PLANAR_POLYGON_TESSELLATOR
#include <assert.h>
#include <vcg/space/segment2.h>
#include <vcg/math/random_generator.h>
namespace vcg {
/** \addtogroup space */
/*@{*/
/**
A very simple earcut tessellation of planar 2D polygon.
Input: a vector or Point2<>
Output: a vector of faces as a triple of indices to the input vector
*/
template <class ScalarType>
bool Cross( const Point2<ScalarType> & p00,
const Point2<ScalarType> & p01,
const Point2<ScalarType> & p10,
const Point2<ScalarType> & p11)
{
Point2<ScalarType> vec0 = p01-p00;
Point2<ScalarType> vec1 = p11-p10;
if ( ( vec0^ (p11-p00)) * ( vec0^ (p10 - p00)) >=0) return false;
if ( ( vec1^ (p01-p10)) * ( vec1^ (p00 - p10)) >=0) return false;
return true;
}
template <class S>
bool Intersect(size_t cur , int v2, std::vector<int> & next, std::vector<Point2<S> > & points2){
for(size_t i = 0; i < points2.size();++i)
if( (next[i]!=-1) && (i!=cur))
if( Cross(points2[cur], points2[v2],points2[i],points2[next[i]]))
return true;
return false;
}
template <class POINT_CONTAINER>
void TessellatePlanarPolygon2( POINT_CONTAINER & points2, std::vector<int> & output){
typedef typename POINT_CONTAINER::value_type Point2x;
typedef typename Point2x::ScalarType S;
// tessellate
// first very inefficient implementation
std::vector<int> next,prev;
for(size_t i = 0; i < points2.size(); ++i) next.push_back((i+1)%points2.size());
for(size_t i = 0; i < points2.size(); ++i) prev.push_back((i+points2.size()-1)%points2.size());
int v1,v2;
// check orientation
S orient = 0.0;
for(size_t i = 0 ; i < points2.size(); ++i){
v1 = next[i];
v2 = next[v1];
orient+= (points2[v1] - points2[0]) ^ (points2[v2] - points2[0]);
}
orient = (orient>0)? 1.0:-1.0;
int cur = 0;
while(output.size()<3*(points2.size()-2)){
v1 = next[cur];
v2 = next[v1];
if( ( (orient*((points2[v1] - points2[cur]) ^ (points2[v2] - points2[cur]))) >= 0.0) &&
!Intersect(cur, v2,next,points2))
{
// output the face
output.push_back(cur);
output.push_back(v1);
output.push_back(v2);
// readjust the topology
next[cur] = v2;
prev[v2] = cur;
prev[v1] = -1;//unnecessary
next[v1] = -1;//unnecessary
}
else
do{cur = (cur+1)%points2.size();} while(next[cur]==-1);
}
}
/**
A very simple earcut tessellation of planar 2D polygon.
Input: a vector or Point3<>
Output: a vector of faces as a triple of indices to the input vector
*/
template <class POINT_CONTAINER>
void TessellatePlanarPolygon3( POINT_CONTAINER & points, std::vector<int> & output){
typedef typename POINT_CONTAINER::value_type Point3x;
typedef typename Point3x::ScalarType S;
Point3x n;
math::SubtractiveRingRNG rg;
size_t i12[2];
S bestsn = -1.0;
Point3x bestn,u,v;
for(size_t i =0; i < points.size();++i){
for(size_t j = 0; j < 2; ++j){ i12[j] = i; while(i12[j]==i) i12[j] = rg.generate(points.size()-1);}
n = (points[i12[0]]-points[i])^(points[i12[1]]-points[i]);
S sn = n.SquaredNorm();
if(sn > bestsn){ bestsn = sn; bestn = n;}
}
GetUV(n,u,v);
// project the coordinates
std::vector<Point2<S> > points2;
for(size_t i = 0; i < points.size(); ++i){
Point3x & p = points[i];
points2.push_back(Point2<S>(p*u,p*v));
}
TessellatePlanarPolygon2( points2,output);
}
/*@}*/
} // end namespace
#endif
|