1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef VCG_USE_EIGEN
#include "deprecated_point3.h"
#else
#ifndef __VCGLIB_POINT3
#define __VCGLIB_POINT3
#include "../math/eigen.h"
namespace vcg{
template<typename Scalar> class Point3;
}
namespace Eigen{
template<typename Scalar> struct ei_traits<vcg::Point3<Scalar> > : ei_traits<Eigen::Matrix<Scalar,3,1> > {};
template<typename XprType> struct ei_to_vcgtype<XprType,3,1,0,3,1>
{ typedef vcg::Point3<typename XprType::Scalar> type; };
template<typename Scalar>
struct NumTraits<vcg::Point3<Scalar> > : NumTraits<Scalar>
{
enum {
ReadCost = 3,
AddCost = 3,
MulCost = 3
};
};
}
namespace vcg {
template<typename Scalar> class Box3;
/** \addtogroup space */
/*@{*/
/**
The templated class for representing a point in 3D space.
The class is templated over the ScalarType class that is used to represent coordinates. All the usual
operator overloading (* + - ...) is present.
*/
template <class _Scalar> class Point3 : public Eigen::Matrix<_Scalar,3,1>
{
//----------------------------------------
// template typedef part
// use it as follow: typename Point3<S>::Type instead of simply Point3<S>
//----------------------------------------
public:
typedef Eigen::Matrix<_Scalar,3,1> Type;
//----------------------------------------
// inheritence part
//----------------------------------------
private:
typedef Eigen::Matrix<_Scalar,3,1> _Base;
public:
using _Base::Construct;
_EIGEN_GENERIC_PUBLIC_INTERFACE(Point3,_Base);
VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Point3)
/** @name Standard Constructors and Initializers
No casting operators have been introduced to avoid automatic unattended (and costly) conversion between different point types
**/
inline Point3 () {}
inline Point3 ( const Scalar nx, const Scalar ny, const Scalar nz ) : Base(nx,ny,nz) {}
inline Point3 ( Point3 const & p ) : Base(p) {}
inline Point3 ( const Scalar nv[3] ) : Base(nv) {}
template<typename OtherDerived>
inline Point3(const Eigen::MatrixBase<OtherDerived>& other) : Base(other) {}
// this one is very useless
template <class Q>
static inline Point3 Construct( const Q & P0, const Q & P1, const Q & P2)
{
return Point3(Scalar(P0),Scalar(P1),Scalar(P2));
}
vcg::Box3<_Scalar> GetBBox(vcg::Box3<_Scalar> &bb) const;
}; // end class definition (Point3)
// Dot product preciso numericamente (solo double!!)
// Implementazione: si sommano i prodotti per ordine di esponente
// (prima le piu' grandi)
template<class Scalar>
double stable_dot ( Point3<Scalar> const & p0, Point3<Scalar> const & p1 )
{
Scalar k0 = p0.data()[0]*p1.data()[0];
Scalar k1 = p0.data()[1]*p1.data()[1];
Scalar k2 = p0.data()[2]*p1.data()[2];
int exp0,exp1,exp2;
frexp( double(k0), &exp0 );
frexp( double(k1), &exp1 );
frexp( double(k2), &exp2 );
if( exp0<exp1 )
{
if(exp0<exp2)
return (k1+k2)+k0;
else
return (k0+k1)+k2;
}
else
{
if(exp1<exp2)
return(k0+k2)+k1;
else
return (k0+k1)+k2;
}
}
/// Point(p) Edge(v1-v2) dist, q is the point in v1-v2 with min dist
template<class Scalar>
Scalar PSDist( const Point3<Scalar> & p,
const Point3<Scalar> & v1,
const Point3<Scalar> & v2,
Point3<Scalar> & q )
{
Point3<Scalar> e = v2-v1;
Scalar t = ((p-v1).dot(e))/e.SquaredNorm();
if(t<0) t = 0;
else if(t>1) t = 1;
q = v1+e*t;
return Distance(p,q);
}
template <class Scalar>
void GetUV( Point3<Scalar> &n,Point3<Scalar> &u, Point3<Scalar> &v, Point3<Scalar> up=(Point3<Scalar>(0,1,0)) )
{
n.Normalize();
const double LocEps=double(1e-7);
u=n^up;
double len = u.Norm();
if(len < LocEps)
{
if(fabs(n[0])<fabs(n[1])){
if(fabs(n[0])<fabs(n[2])) up=Point3<Scalar>(1,0,0); // x is the min
else up=Point3<Scalar>(0,0,1); // z is the min
}else {
if(fabs(n[1])<fabs(n[2])) up=Point3<Scalar>(0,1,0); // y is the min
else up=Point3<Scalar>(0,0,1); // z is the min
}
u=n^up;
}
u.Normalize();
v=n^u;
v.Normalize();
Point3<Scalar> uv=u^v;
}
/*@}*/
typedef Point3<short> Point3s;
typedef Point3<int> Point3i;
typedef Point3<float> Point3f;
typedef Point3<double> Point3d;
// typedef Eigen::Matrix<short ,3,1> Point3s;
// typedef Eigen::Matrix<int ,3,1> Point3i;
// typedef Eigen::Matrix<float ,3,1> Point3f;
// typedef Eigen::Matrix<double,3,1> Point3d;
// typedef Eigen::Matrix<short ,3,1> Vector3s;
// typedef Eigen::Matrix<int ,3,1> Vector3i;
// typedef Eigen::Matrix<float ,3,1> Vector3f;
// typedef Eigen::Matrix<double,3,1> Vector3d;
} // end namespace
#endif
#endif
|