File: point_matching.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 45,124 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 29
file content (245 lines) | stat: -rw-r--r-- 7,631 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/

#ifndef _VCG_MATH_POINTMATCHING_H
#define _VCG_MATH_POINTMATCHING_H

#include <vcg/math/quaternion.h>
#include <vcg/math/matrix44.h>

#include <Eigen/Dense>
#include <Eigen/Eigenvalues>
#include  <iostream>

namespace vcg
{

/*! \brief Compute cross covariance

It computes the cross covariance matrix of two set of 3D points P and X;
it returns also the barycenters of P and X.
Ref:

Besl, McKay
A method for registration of 3d Shapes
IEEE TPAMI Vol 14, No 2 1992

*/
template <class S >
void ComputeCrossCovarianceMatrix(const std::vector<Point3<S> > &spVec, Point3<S> &spBarycenter,
                                  const std::vector<Point3<S> > &tpVec, Point3<S> &tpBarycenter,
                                  Eigen::Matrix3d &m)
{
	assert(spVec.size() == tpVec.size());
	m.setZero();
	spBarycenter.SetZero();
	tpBarycenter.SetZero();
	Eigen::Vector3d spe;
	Eigen::Vector3d tpe;
	typename std::vector <Point3<S> >::const_iterator si, ti;
	for (si = spVec.begin(), ti = tpVec.begin(); si != spVec.end(); ++si, ++ti){
		spBarycenter += *si;
		tpBarycenter += *ti;
		si->ToEigenVector(spe);
		ti->ToEigenVector(tpe);
		m += spe*tpe.transpose();
	}
	spBarycenter /= double(spVec.size());
	tpBarycenter /= double(tpVec.size());
	spBarycenter.ToEigenVector(spe);
	tpBarycenter.ToEigenVector(tpe);
	m /= double(spVec.size());
	m -= spe*tpe.transpose();
}

/*! \brief Compute the roto-translation that applied to PMov bring them onto Pfix
 * Rotation is computed as a quaternion.
 *
 * E.g. it find a matrix such that:
 *
 *       Pfix[i] = res * Pmov[i]
 *
 * Ref:
 * Besl, McKay
 * A method for registration of 3d Shapes
 * IEEE TPAMI Vol 14, No 2 1992
 */

template < class  S >
void ComputeRigidMatchMatrix(std::vector<Point3<S> > &Pfix,
                             std::vector<Point3<S> > &Pmov,
                             Quaternion<S>  &q,
                             Point3<S>  &tr)
{
  Eigen::Matrix3d ccm;
  Point3<S> bfix,bmov; // baricenter of src e trg

  ComputeCrossCovarianceMatrix(Pmov,bmov,Pfix,bfix,ccm);

  Eigen::Matrix3d cyc; // the cyclic components of the cross covariance matrix.
  cyc=ccm-ccm.transpose();

  Eigen::Matrix4d  QQ;
  QQ.setZero();
  Eigen::Vector3d D(cyc(1,2),cyc(2,0),cyc(0,1));

  Eigen::Matrix3d RM;
  RM.setZero();
  RM(0,0)=-ccm.trace();
  RM(1,1)=-ccm.trace();
  RM(2,2)=-ccm.trace();
  RM += ccm + ccm.transpose();

  QQ(0,0) = ccm.trace();
  QQ.block<1,3> (0,1) = D.transpose();
  QQ.block<3,1> (1,0) = D;
  QQ.block<3,3> (1,1) = RM;

  Eigen::SelfAdjointEigenSolver<Eigen::Matrix4d> eig(QQ);
  Eigen::Vector4d eval = eig.eigenvalues();
  Eigen::Matrix4d evec = eig.eigenvectors();
//  std::cout << "EigenVectors:" << std::endl << evec << std::endl;
//  std::cout << "Eigenvalues:" << std::endl << eval << std::endl;
  int ind;
  eval.cwiseAbs().maxCoeff(&ind);

  q=Quaternion<S>(evec.col(ind)[0],evec.col(ind)[1],evec.col(ind)[2],evec.col(ind)[3]);
  Matrix44<S> Rot;
  q.ToMatrix(Rot);
  tr= (bfix - Rot*bmov);
}


/*! \brief Compute the roto-translation that applied to PMov bring them onto Pfix
 * Rotation is computed as a quaternion.
 *
 * E.g. it find a matrix such that:
 *
 *       Pfix[i] = res * Pmov[i]
 *
 * Ref:
 * Besl, McKay
 * A method for registration of 3d Shapes
 * IEEE TPAMI Vol 14, No 2 1992
 */

template < class  S >
void ComputeRigidMatchMatrix(std::vector<Point3<S> > &Pfix,
                             std::vector<Point3<S> > &Pmov,
                             Matrix44<S> &res)
{
    Quaternion<S>  q;
    Point3<S>  tr;
    ComputeRigidMatchMatrix(Pfix,Pmov,q,tr);

    Matrix44<S> Rot;
    q.ToMatrix(Rot);

    Matrix44<S> Trn;
    Trn.SetTranslate(tr);

    res=Trn*Rot;
}

/*! \brief Computes the best fitting rigid transformations to align two sets of corresponding points
 *
 * Ref:
 * Olga Sorkine-Hornung and Michael Rabinovich
 * Least-Squares Rigid Motion Using SVD
 */
template <class S>
Matrix44<S> ComputeLeastSquaresRigidMotion(std::vector<Point3<S> > &pFix,
                                           std::vector<Point3<S> > &pMov)
{
	if (pFix.size() != pMov.size() || pFix.size() < 3)
		return Matrix44<S>::Identity();

	Eigen::Matrix3Xd p(3, pMov.size()); // moving
	Eigen::MatrixX3d q(pFix.size(), 3); // fixed

	for (size_t i=0; i<pMov.size(); i++)
	{
		Eigen::Vector3d v;
		pMov[i].ToEigenVector(v);
		p.col(i) = v;
	}
	Eigen::Vector3d avgP = p.rowwise().mean();
	p.colwise() -= avgP;

	for (size_t i=0; i<pFix.size(); i++)
	{
		Eigen::Vector3d v;
		pFix[i].ToEigenVector(v);
		q.row(i) = v;
	}
	Eigen::Vector3d avgQ = q.colwise().mean();
	q.rowwise() -= avgQ.transpose();

	Eigen::Matrix3d cov = p * q;
	Eigen::JacobiSVD<Eigen::Matrix3d> svd;
	svd.compute(cov, Eigen::ComputeFullU | Eigen::ComputeFullV);

	Eigen::Matrix3d d = Eigen::Matrix3d::Identity();
	d(2,2) = (svd.matrixV() * svd.matrixU().transpose()).determinant() > 0 ? 1 : -1;

	Eigen::Matrix3d R = (svd.matrixV() * d * svd.matrixU().transpose());
	Eigen::Vector3d t = avgQ - R * avgP;

	Eigen::Matrix4d res = Eigen::Matrix4d::Identity();
	res.block<3,3>(0,0) = R;
	res.block<3,1>(0,3) = t;
	Matrix44<S> ret;
	ret.FromEigenMatrix(res);
	return ret;
}


/*
Compute a similarity matching (rigid + uniform scaling)
simply create a temporary point set with the correct scaling factor
*/ 
template <class S>
void ComputeSimilarityMatchMatrix(std::vector<Point3<S> > &Pfix,
                                  std::vector<Point3<S> > &Pmov,
                                  Matrix44<S> &res)
{
  S scalingFactor=0;
  for(size_t i=0;i<( Pmov.size()-1);++i)
  {
    scalingFactor += Distance(Pmov[i],Pmov[i+1])/ Distance(Pfix[i],Pfix[i+1]);
  }
  scalingFactor/=(Pmov.size()-1);

  std::vector<Point3<S> > Pnew(Pmov.size());
  for(size_t i=0;i<Pmov.size();++i)
    Pnew[i]=Pmov[i]/scalingFactor;

  ComputeRigidMatchMatrix(Pfix,Pnew,res);

  Matrix44<S> scaleM; scaleM.SetDiagonal(1.0/scalingFactor);
  res = res * scaleM;
}

} // end namespace

#endif