1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __RASTERIZED_OUTLINE2_PACKER_H__
#define __RASTERIZED_OUTLINE2_PACKER_H__
#include <vcg/space/rect_packer.h>
#include <vcg/complex/algorithms/outline_support.h>
namespace vcg
{
class RasterizedOutline2
{
private:
//the grid is the "bounding grid" of the polygon, which is returned by the rasterization process
//this is a vector of "bounding grids", there is one for each rasterization (different rotation or whatever)
std::vector < std::vector< std::vector<int> > > grids;
//points: the points which make the polygon
std::vector<Point2f> points;
//deltaY: a vector containing the number of cells (for the i-th column starting from left) from the
//FIRST NON-EMTPY cell at the bottom to the LAST NON-EMPTY CELL at the top (there is one top vector for each rasterization)
std::vector< std::vector<int> > deltaY;
//bottom: a vector containing the number of EMPTY cells found starting from the bottom
//until the first NON-EMPTY cell is found (there is one bottom vector for each rasterization)
std::vector< std::vector<int> > bottom;
//deltaX: a vector containing the number of cells (for the i-th row starting from bottom) from the
//FIRST NON-EMTPY cell at the left to the LAST NON-EMPTY CELL at the right (there is one right vector for each rasterization)
std::vector< std::vector<int> > deltaX;
//left: a vector containing the number of EMPTY cells found starting from the left (at the i-th row starting from the bottom)
//until the first NON-EMPTY cell is found (there is one left vector for each rasterization)
std::vector< std::vector<int> > left;
//the area, measured in cells, of the discrete representations of the polygons
std::vector<int> discreteAreas;
public:
RasterizedOutline2() { }
int gridHeight(int i) { return grids.at(i).size(); }
int gridWidth( int i) { return grids.at(i).at(0).size(); }
std::vector<Point2f>& getPoints() { return points; }
const std::vector<Point2f>& getPointsConst() const{ return points; }
std::vector< std::vector<int> >& getGrids(int rast_i) { return grids[rast_i]; }
//get top/bottom/left/right vectors of the i-th rasterization
std::vector<int>& getDeltaY(int i) { return deltaY[i]; }
std::vector<int>& getBottom(int i) { return bottom[i]; }
std::vector<int>& getDeltaX(int i) { return deltaX[i]; }
std::vector<int>& getLeft(int i) { return left[i]; }
int& getDiscreteArea(int i) { return discreteAreas[i]; }
void addPoint(const Point2f& newpoint) { points.push_back(newpoint); }
void setPoints(const std::vector<Point2f>& newpoints) { points = newpoints; }
//resets the state of the poly and resizes all the states vectors
void resetState(int totalRasterizationsNum) {
discreteAreas.clear();
deltaY.clear();
bottom.clear();
deltaX.clear();
left.clear();
grids.clear();
discreteAreas.resize(totalRasterizationsNum);
deltaY.resize(totalRasterizationsNum);
bottom.resize(totalRasterizationsNum);
deltaX.resize(totalRasterizationsNum);
left.resize(totalRasterizationsNum);
grids.resize(totalRasterizationsNum);
}
void initFromGrid(int rast_i) {
std::vector< std::vector<int> >& tetrisGrid = grids[rast_i];
int gridWidth = tetrisGrid[0].size();
int gridHeight = tetrisGrid.size();
//compute bottom,
//where bottom[i] = empty cells from the bottom in the column i
for (int col = 0; col < gridWidth; col++) {
int bottom_i = 0;
for (int row = gridHeight - 1; row >= 0; row--) {
if (tetrisGrid[row][col] == 0) {
bottom_i++;
}
else {
bottom[rast_i].push_back(bottom_i);
break;
}
}
}
if (bottom[rast_i].size() == 0) assert("ERROR: EMPTY BOTTOM VECTOR"==0);
//compute top
//IT ASSUMES THAT THERE IS AT LEAST ONE NON-0 ELEMENT (which should always be the case, even if the poly is just a point)
//deltaY[i] = for the column i, it stores the number of cells which are between the bottom and the top side of the poly
for (int col = 0; col < gridWidth; col++) {
int deltay_i = gridHeight - bottom[rast_i][col];
for (int row = 0; row < gridHeight; row++) {
if (tetrisGrid[row][col] == 0) {
deltay_i--;
}
else {
break;
}
}
deltaY[rast_i].push_back(deltay_i);
}
if (deltaY[rast_i].size() == 0) assert("ERROR: EMPTY deltaY VECTOR"==0);
//same meaning as bottom, but for the left side
//we want left/right sides vector to be ordered so that index 0 is at poly's bottom
int left_i;
for (int row = gridHeight-1; row >= 0; --row) {
//for (int row = 0; row < gridHeight; ++row) {
left_i = 0;
for (int col = 0; col < gridWidth; col++) {
if (tetrisGrid[row][col] == 0) ++left_i;
else {
left[rast_i].push_back(left_i);
break;
}
}
}
if (left[rast_i].size() == 0) assert("ERROR: EMPTY leftSide VECTOR"==0);
//we want left/right sides vector to be ordered so that index 0 is at poly's bottom
int deltax_i;
for (int row = gridHeight-1; row >= 0; --row) {
//for (int row = 0; row < gridHeight; ++row) {
deltax_i = gridWidth - left[rast_i][gridHeight - 1 - row];
for (int col = gridWidth - 1; col >= 0; --col) {
if (tetrisGrid[row][col] == 0) --deltax_i;
else {
break;
}
}
deltaX[rast_i].push_back(deltax_i);
}
if (deltaX[rast_i].size() == 0) assert("ERROR: EMPTY rightSide VECTOR"==0);
//compute the discreteArea: IT IS THE AREA (measured in grid cells) BETWEEN THE TOP AND BOTTOM SIDES...
int discreteArea = 0;
for (size_t i = 0; i < deltaY[rast_i].size(); i++) {
discreteArea += deltaY[rast_i][i];
}
discreteAreas[rast_i] = discreteArea;
}
};
template <class ScalarType>
class ComparisonFunctor
{
typedef std::vector<vcg::Point2<ScalarType>> Outline2Type;
public:
const std::vector<Outline2Type> & v;
inline ComparisonFunctor(const std::vector<Outline2Type> & nv ) : v(nv) { }
inline bool operator() ( int a, int b )
{
float area1 = tri::OutlineUtil<ScalarType>::Outline2Area(v[a]);
float area2 = tri::OutlineUtil<ScalarType>::Outline2Area(v[b]);
return area1 > area2;
}
};
template <class SCALAR_TYPE, class RASTERIZER_TYPE>
class RasterizedOutline2Packer
{
typedef typename vcg::Box2<SCALAR_TYPE> Box2x;
typedef typename vcg::Point2<SCALAR_TYPE> Point2x;
typedef typename vcg::Similarity2<SCALAR_TYPE> Similarity2x;
static constexpr int INVALID_POSITION = -1;
public:
class Parameters
{
public:
// The cost function used by the greedy algorithm when evaluating the next best move
// MinWastedSpace Chooses the placement that minimizes the wasted space. The wasted
// space is defined as the area difference between the horizon after
// and and before placing the polygon, MINUS the polygon area.
// LowestHorizon Chooses the placement that minimizes the maximum horizon increase
// MixedCost Left for compatibility reasons. This should behave similarly to
// MinWastedSpace, while also penalizing placements using one horizon
// that result in too much wasted space relative to the other horizon.
enum CostFuncEnum {
MinWastedSpace,
LowestHorizon,
MixedCost
};
CostFuncEnum costFunction;
// if true, the packing algorithm evaluates polygon 'drops' from both
// principal directions
bool doubleHorizon;
// if true, the packing algorithm keeps track of a secondary horizon used
// to place polygons in between previously placed ones
bool innerHorizon;
// if true, the packing algorithms tries a small number of random
// permutations of the polygon sequence. This can result in a higher
// packing efficiency, but increases the running time of the algorithm
// proportionally to the number of permutations tested
bool permutations;
//the number of rasterizations to create for each polygon; It must be a multiple of 4.
int rotationNum;
//the width (in pixels) of the gutter added around the outline
int gutterWidth;
// if false, then do not combine the costs when doubeHorizon is used. This
// can help to keep the packing area in a rectangular region
bool minmax;
///default constructor
Parameters()
{
costFunction = LowestHorizon;
doubleHorizon=true;
innerHorizon=false;
permutations=false;
rotationNum = 16;
gutterWidth = 0;
minmax = false;
}
};
//THE CLASS WHICH HANDLES THE PACKING AND THE UPDATED STATE OF THE PACKING ALGORITHMS
class packingfield
{
private:
using CostFuncEnum = typename Parameters::CostFuncEnum;
//the bottomHorizon stores the length of the i-th row in the current solution
std::vector<int> mLeftHorizon;
//the bottomHorizon stores the height of the i-th column in the current solution
std::vector<int> mBottomHorizon;
// inner horizons base and extent (number of free cells)
std::vector<int> mInnerBottomHorizon;
std::vector<int> mInnerBottomExtent;
std::vector<int> mInnerLeftHorizon;
std::vector<int> mInnerLeftExtent;
//the size of the packing grid
vcg::Point2i mSize;
//packing parameters
Parameters params;
public:
packingfield(vcg::Point2i size, const Parameters& par)
{
mBottomHorizon.resize(size.X(), 0);
mLeftHorizon.resize(size.Y(), 0);
mInnerBottomHorizon.resize(size.X(), 0);
mInnerBottomExtent.resize(size.X(), 0);
mInnerLeftHorizon.resize(size.Y(), 0);
mInnerLeftExtent.resize(size.Y(), 0);
params = par;
mSize = Point2i(size.X(), size.Y());
}
std::vector<int>& bottomHorizon() { return mBottomHorizon; }
std::vector<int>& leftHorizon() { return mLeftHorizon; }
vcg::Point2i& size() { return mSize; }
//returns the score relative to the left horizon of that poly in that particular position, taking into account the choosen algo
int getCostX(RasterizedOutline2& poly, Point2i pos, int rast_i) {
switch (params.costFunction) {
case CostFuncEnum::MinWastedSpace: return emptyCellBetweenPolyAndLeftHorizon(poly, pos, rast_i);
case CostFuncEnum::LowestHorizon: return maxXofPoly(poly, pos, rast_i);
case CostFuncEnum::MixedCost: return costXWithPenaltyOnY(poly, pos, rast_i);
}
return 0;
}
//returns the score relative to the bottom horizon of that poly in that particular position, taking into account the choosen algo
int getCostY(RasterizedOutline2& poly, Point2i pos, int rast_i) {
switch (params.costFunction) {
case CostFuncEnum::MinWastedSpace: return emptyCellBetweenPolyAndBottomHorizon(poly, pos, rast_i);
case CostFuncEnum::LowestHorizon: return maxYofPoly(poly, pos, rast_i);
case CostFuncEnum::MixedCost: return costYWithPenaltyOnX(poly, pos, rast_i);
}
return 0;
}
//given a poly and the column at which it is placed,
//this returns the Y at which the wasted space is minimum
//i.e. the Y at which the polygon touches the horizon
int dropY(RasterizedOutline2& poly, int col, int rast_i) {
std::vector<int>& bottom = poly.getBottom(rast_i);
int y_max = -INT_MAX;
for (size_t i = 0; i < bottom.size(); ++i) {
int y = mBottomHorizon[col + i] - bottom[i];
if (y > y_max) {
if (y + poly.gridHeight(rast_i) >= mSize.Y())
return INVALID_POSITION;
y_max = y;
}
}
return y_max;
}
int dropYInner(RasterizedOutline2& poly, int col, int rast_i) {
std::vector<int>& bottom = poly.getBottom(rast_i);
std::vector<int>& deltaY = poly.getDeltaY(rast_i);
int y_max = -INT_MAX;
for (size_t i = 0; i < bottom.size(); ++i) {
int y = mInnerBottomHorizon[col + i] - bottom[i];
if (y > y_max) {
if (y + poly.gridHeight(rast_i) >= mSize.Y()) {
return INVALID_POSITION;
}
y_max = y;
}
}
// check if the placement is feasible
for (size_t i = 0; i < bottom.size(); ++i) {
if (y_max + bottom[i] < mBottomHorizon[col + i]
&& y_max + bottom[i] + deltaY[i] > mInnerBottomHorizon[col + i] + mInnerBottomExtent[col + i]) {
return INVALID_POSITION;
}
}
return y_max;
}
//given a poly and the row at which it is placed,
//this returns the X at which the wasted space is minimum
//i.e. the X at which the polygon touches the left horizon
int dropX(RasterizedOutline2& poly, int row, int rast_i) {
std::vector<int>& left = poly.getLeft(rast_i);
int x_max = -INT_MAX;
for (size_t i = 0; i < left.size(); ++i) {
int x = mLeftHorizon[row + i] - left[i];
if (x > x_max) {
if (x + poly.gridWidth(rast_i) >= mSize.X())
return INVALID_POSITION;
x_max = x;
}
}
return x_max;
}
int dropXInner(RasterizedOutline2& poly, int row, int rast_i) {
std::vector<int> left = poly.getLeft(rast_i);
std::vector<int> deltaX = poly.getDeltaX(rast_i);
int x_max = -INT_MAX;
for (size_t i = 0; i < left.size(); ++i) {
int x = mInnerLeftHorizon[row + i] - left[i];
if (x > x_max) {
if (x + poly.gridWidth(rast_i) >= mSize.X())
return INVALID_POSITION;
x_max = x;
}
}
// sanity check
for (size_t i = 0; i < left.size(); ++i) {
if (x_max + left[i] < mLeftHorizon[row + i]
&& x_max + left[i] + deltaX[i] > mInnerLeftHorizon[row + i] + mInnerLeftExtent[row + i])
return INVALID_POSITION;
}
return x_max;
}
int costYWithPenaltyOnX(RasterizedOutline2& poly, Point2i pos, int rast_i) {
std::vector<int>& left = poly.getLeft(rast_i);
std::vector<int>& deltaX = poly.getDeltaX(rast_i);
//get the standard cost on X axis
int score = emptyCellBetweenPolyAndBottomHorizon(poly, pos, rast_i);
//apply a penalty if the poly is the poly is far from the left horizon
//thus preferring poly which are closer to the left horizon
for (size_t i = 0; i < left.size(); ++i) {
//ASSUMPTION: if the poly is (partially/fully) under the left horizon,
//then we will count this as a good thing (subtracting a quantity from the cost) but since we don't have
//a grid holding the current state of the packing field, we don't know the position of the polygons at our left side,
//so we ASSUME that there isn't any polygon between the poly we're considering and the Y axis of the packing field,
//and count the number of cells between us and the RIGHT end the packing field
//(NOTE: ^^^^^^^ this implies that the closer we are to the left horizon, the lower the cost will get)
if (pos.X() + left[i] < mLeftHorizon[pos.Y() + i])
//number of cells between us and the RIGHT end the packing field
score -= mSize.X() - pos.X() - left[i];
//score -= (pos.X() + left[i] + deltaX[i]);
else //the number of cells between the bottom side of the poly at the (posY+i)-th row and the value of the horizon in that row
score += pos.X() + left[i] - mLeftHorizon[pos.Y() + i];
}
return score;
}
/* Returns the number of empty cells between the poly's bottom side and the
* bottom horizon. If the poly is below the bottom horizon, it returns the
* distance between the poly's bottom and the grid bottom inverted in sign,
* therefore leaving more space to possibly fit other polygons. */
int emptyCellBetweenPolyAndBottomHorizon(RasterizedOutline2& poly, Point2i pos, int rast_i)
{
std::vector<int>& bottom = poly.getBottom(rast_i);
int score = 0;
for (size_t i = 0; i < bottom.size(); ++i) {
if (pos.Y() + bottom[i] < mBottomHorizon[pos.X() + i])
score -= pos.Y() + bottom[i];
else
//count the number of empty cells between poly's bottom side and the bottom horizon
score += pos.Y() + bottom[i] - mBottomHorizon[pos.X() + i];
}
return score;
}
int costXWithPenaltyOnY(RasterizedOutline2& poly, Point2i pos, int rast_i) {
std::vector<int>& bottom = poly.getBottom(rast_i);
std::vector<int>& deltaY = poly.getDeltaY(rast_i);
//get the standard cost on X axis
int score = emptyCellBetweenPolyAndLeftHorizon(poly, pos, rast_i);
//apply a penalty if the poly is the poly is far from the bottom horizon
//thus preferring poly which are closer to the bottom horizon
for (size_t i = 0; i < bottom.size(); ++i) {
//ASSUMPTION: if the poly is (partially/fully) under the bottom horizon,
//then we will count this as a good thing (subtracting a quantity from the cost) but since we don't have
//a grid holding the current state of the packing field, we don't know the position of the polygons beneath us,
//so we ASSUME that there isn't any polygon between the poly we're considering and the X axis of the packing field,
//and count the number of cells between us and the TOP end the packing field
//(NOTE: ^^^^^^^ this implies that the closer we are to the bottom horizon, the lower the cost will get)
if (pos.Y() + bottom[i] < mBottomHorizon[pos.X() + i])
//number of cells between us and the TOP side the packing field
score -= (mSize.Y() - pos.Y() - bottom[i]);
//score -= (pos.Y() + bottom[i] + deltaY[i]);
else //the number of cells between the left side of the poly at the (posX+i)-th column and the value of the horizon in that column
score += pos.X() + bottom[i] - mBottomHorizon[pos.X() + i];
}
return score;
}
int maxYofPoly(RasterizedOutline2& poly, Point2i pos, int rast_i)
{
//return pos.Y() + poly.gridHeight(rast_i);
int maxY = -INT_MAX;
std::vector<int>& bottom = poly.getBottom(rast_i);
std::vector<int>& deltaY = poly.getDeltaY(rast_i);
for (unsigned i = 0; i < bottom.size(); ++i) {
int yi = 0;
if (pos.Y() + bottom[i] + deltaY[i] < mBottomHorizon[pos.X() + i]) {
yi = -(pos.Y() + bottom[i]);
} else {
yi = pos.Y() + bottom[i] + deltaY[i];
}
if (yi > maxY)
maxY = yi;
}
return maxY;
}
int maxXofPoly(RasterizedOutline2& poly, Point2i pos, int rast_i)
{
//return pos.X() + poly.gridWidth(rast_i);
int maxX = -INT_MAX;
std::vector<int>& left = poly.getLeft(rast_i);
std::vector<int>& deltaX = poly.getDeltaX(rast_i);
for (unsigned i = 0; i < left.size(); ++i) {
int xi = 0;
if (pos.X() + left[i] + deltaX[i] < mLeftHorizon[pos.Y() + i]) {
xi = -(pos.X() + left[i]);
} else {
xi = pos.X() + left[i] + deltaX[i];
}
if (xi > maxX)
maxX = xi;
}
return maxX;
}
/* Returns the number of empty cells between the poly's left side and the
* left horizon. If the poly is below the left horizon, it returns the
* distance between the poly's and grid left side inverted in sign. */
int emptyCellBetweenPolyAndLeftHorizon(RasterizedOutline2& poly, Point2i pos, int rast_i)
{
std::vector<int>& left = poly.getLeft(rast_i);
int score = 0;
//count the number of empty cells between poly's left side and the left horizon
for (size_t i = 0; i < left.size(); ++i) {
if (pos.X() + left[i] < mLeftHorizon[pos.Y() + i])
score -= pos.X() + left[i];
else
score += pos.X() + left[i] - mLeftHorizon[pos.Y() + i];
}
return score;
}
//updates the horizons according to the chosen position
void placePoly(RasterizedOutline2& poly, Point2i pos, int rast_i) {
std::vector<int>& bottom = poly.getBottom(rast_i);
std::vector<int>& deltaY = poly.getDeltaY(rast_i);
std::vector<int>& left = poly.getLeft(rast_i);
std::vector<int>& deltaX = poly.getDeltaX(rast_i);
//update bottom horizon
for (int i = 0; i < poly.gridWidth(rast_i); i++) {
int tmpHor = pos.Y() + bottom[i] + deltaY[i];
if (tmpHor > mBottomHorizon[pos.X() + i]) {
// check if we create a bigger gap than the one currently tracked
// as the inner horizon. If we do, the current bottom horizon
// becomes the new inner horizon
int gapExtent = pos.Y() + bottom[i] - mBottomHorizon[pos.X() + i];
if (gapExtent < 0) {
// This can happen if the poly was placed using the left horizon
// and ends up filling both the inner and outer space at the same time
// just update the inner horizon extent...
if (mInnerBottomHorizon[pos.X() + i] < pos.Y() + bottom[i]
&& mInnerBottomHorizon[pos.X() + i] + mInnerBottomExtent[pos.X() + i] > pos.Y() + bottom[i])
mInnerBottomExtent[pos.X() + i] = pos.Y() + bottom[i] - mInnerBottomHorizon[pos.X() + i];
}
else if (gapExtent > mInnerBottomExtent[pos.X() + i]) {
mInnerBottomHorizon[pos.X() + i] = mBottomHorizon[pos.X() + i];
mInnerBottomExtent[pos.X() + i] = gapExtent;
}
// then update the bottom horizon
mBottomHorizon[pos.X() + i] = tmpHor;
} else {
// if the poly fills the space between the currently tracked
// inner bottom horizon and its extent, update the gap.
// Note that this update is local, since we only track the inner horizon and
// its extent. If bigger gaps exist, we lose track of them.
int bottomExtent = pos.Y() + bottom[i] - mInnerBottomHorizon[pos.X() + i];
int topExtent = mInnerBottomHorizon[pos.X() + i] + mInnerBottomExtent[pos.X() + i] - tmpHor;
if (bottomExtent >= 0 && topExtent >= 0) {
if (bottomExtent > topExtent) {
mInnerBottomExtent[pos.X() + i] = bottomExtent;
} else {
mInnerBottomHorizon[pos.X() + i] = tmpHor;
mInnerBottomExtent[pos.X() + i] = topExtent;
}
} else {
// this is a tricky situation where the poly partially intersects the inner horizon
// TODO: properly update the extents, for now I just clear the inner horizon
mInnerBottomHorizon[pos.X() + i] = 0;
mInnerBottomExtent[pos.X() + i] = 0;
}
}
}
//update left horizon
for (int i = 0; i < poly.gridHeight(rast_i); i++) {
int tmpHor = pos.X() + left[i] + deltaX[i];
if (tmpHor > mLeftHorizon[pos.Y() + i]) {
int gapExtent = pos.X() + left[i] - mLeftHorizon[pos.Y() + i];
if (gapExtent < 0) {
if (mInnerLeftHorizon[pos.Y() + i] < pos.X() + left[i]
&& mInnerLeftHorizon[pos.Y() + i] + mInnerLeftExtent[pos.Y() + i] > pos.X() + left[i])
mInnerLeftExtent[pos.Y() + i] = pos.X() + left[i] - mInnerLeftHorizon[pos.Y() + i];
}
else if (gapExtent > mInnerLeftExtent[pos.Y() + i]) {
mInnerLeftHorizon[pos.Y() + i] = mLeftHorizon[pos.Y() + i];
mInnerLeftExtent[pos.Y() + i] = gapExtent;
}
mLeftHorizon[pos.Y() + i] = tmpHor;
} else {
int leftExtent = pos.X() + left[i] - mInnerLeftHorizon[pos.Y() + i];
int rightExtent = mInnerLeftHorizon[pos.Y() + i] + mInnerLeftExtent[pos.Y() + i] - tmpHor;
if (leftExtent >= 0 && rightExtent >= 0) {
if (leftExtent > rightExtent) {
mInnerLeftExtent[pos.Y() + i] = leftExtent;
} else {
mInnerLeftHorizon[pos.Y() + i] = tmpHor;
mInnerLeftExtent[pos.Y() + i] = rightExtent;
}
} else {
// this is a tricky situation where the poly partially intersects the inner horizon
// TODO: properly update the extents, for now I just clear the inner horizon
mInnerLeftHorizon[pos.Y() + i] = 0;
mInnerLeftExtent[pos.Y() + i] = 0;
}
}
}
}
};
static bool Pack(std::vector< std::vector< Point2x> > &polyPointsVec,
Point2i containerSize,
std::vector<Similarity2x> &trVec,
const Parameters &packingPar)
{
std::vector<Point2i> containerSizes(1, containerSize);
std::vector<int> polyToContainer;
return Pack(polyPointsVec, containerSizes, trVec, polyToContainer, packingPar);
}
static bool Pack(std::vector<std::vector<Point2x>> &polyPointsVec,
const std::vector<Point2i> &containerSizes,
std::vector<Similarity2x> &trVec,
std::vector<int> &polyToContainer,
const Parameters &packingPar)
{
int containerNum = containerSizes.size();
float gridArea = 0;
//if containerSize isn't multiple of cell size, crop the grid (leaving containerSize as it is)
for (int i = 0; i < containerNum; i++) {
Point2i gridSize(containerSizes[i].X(),
containerSizes[i].Y());
gridArea += (gridSize.X() * gridSize.Y());
}
float totalArea = 0;
for (size_t j = 0; j < polyPointsVec.size(); j++) {
float curArea = tri::OutlineUtil<SCALAR_TYPE>::Outline2Area(polyPointsVec[j]);
if(curArea<0) tri::OutlineUtil<SCALAR_TYPE>::ReverseOutline2(polyPointsVec[j]);
totalArea += fabs(curArea);
}
//we first set it to the "optimal" scale
float optimalScale = sqrt(gridArea / totalArea);
//create the vector of polys, starting for the poly points we received as parameter
std::vector<RasterizedOutline2> polyVec(polyPointsVec.size());
for(size_t i=0;i<polyVec.size();i++) {
polyVec[i].setPoints(polyPointsVec[i]);
}
std::vector<std::vector<int>> trials = InitializePermutationVectors(polyPointsVec, packingPar);
double bestEfficiency = 0;
for (std::size_t i = 0; i < trials.size(); ++i) {
float currScale = optimalScale;
float latestFailScale = 0;
std::vector<Similarity2x> trVecIter;
std::vector<int> polyToContainerIter;
bool ret = false;
//we look for the first scale factor which makes the packing algo succeed
//we will use this value in the bisection method afterwards
ret = PolyPacking(polyPointsVec, containerSizes, trVecIter, polyToContainerIter, packingPar, currScale, polyVec, trials[i]);
while (!ret) {
//printf("Initial packing failed %d\n", k++);
latestFailScale = currScale;
currScale *= 0.60;
ret = PolyPacking(polyPointsVec, containerSizes, trVecIter, polyToContainerIter, packingPar, currScale, polyVec, trials[i]);
}
//if it managed to pack with the optimal scale (VERY unlikely), skip bisection
float latestSuccessScale = currScale;
//int cnt = 1;
assert(currScale <= optimalScale);
if (currScale < optimalScale) {
//BISECTION METHOD
float tmpScale = (latestSuccessScale + latestFailScale) / 2;
while ( (latestFailScale / latestSuccessScale) - 1 > 0.001
|| ((latestFailScale / latestSuccessScale) - 1 < 0.001 && !ret) ) {
tmpScale = (latestSuccessScale + latestFailScale) / 2;
ret = PolyPacking(polyPointsVec, containerSizes, trVecIter, polyToContainerIter, packingPar, tmpScale, polyVec, trials[i]);
if (ret) latestSuccessScale = tmpScale;
else latestFailScale = tmpScale;
//cnt++;
}
}
float finalArea = 0;
//compute occupied area
for (size_t j = 0; j < polyPointsVec.size(); j++) {
std::vector<Point2f> oldPoints = polyPointsVec[j];
for (size_t k = 0; k < oldPoints.size(); k++) {
oldPoints[k].Scale(latestSuccessScale, latestSuccessScale);
}
finalArea += tri::OutlineUtil<SCALAR_TYPE>::Outline2Area(oldPoints);
}
//printf("PACKING EFFICIENCY: %f with scale %f after %d attempts\n", finalArea/gridArea, latestSuccessScale, cnt);
double efficiency = finalArea / gridArea;
if (efficiency > bestEfficiency) {
trVec = trVecIter;
polyToContainer = polyToContainerIter;
bestEfficiency = efficiency;
}
}
return true;
}
static std::vector<std::vector<int>>
InitializePermutationVectors(const std::vector<std::vector<Point2x>>& polyPointsVec,
const Parameters& packingPar)
{
std::vector<std::vector<int>> trials;
// Build a permutation that holds the indexes of the polys ordered by their area
std::vector<int> perm(polyPointsVec.size());
for(size_t i = 0; i < polyPointsVec.size(); i++)
perm[i] = i;
sort(perm.begin(), perm.end(), ComparisonFunctor<float>(polyPointsVec));
trials.push_back(perm);
// if packing with random permutations, compute a small number of randomized
// sequences. Each random sequence is generated from the initial permutation
// by shuffling only the larger polygons
if (packingPar.permutations) {
int minObjNum = std::min(5, int(perm.size()));
float largestArea = tri::OutlineUtil<SCALAR_TYPE>::Outline2Area(polyPointsVec[perm[0]]);
float thresholdArea = largestArea * 0.5;
std::size_t i;
for (i = 0; i < polyPointsVec.size(); ++i)
if (tri::OutlineUtil<SCALAR_TYPE>::Outline2Area(polyPointsVec[perm[i]]) < thresholdArea)
break;
int numPermutedObjects = std::max(minObjNum, int(i));
int permutationCount = numPermutedObjects * 5;
//printf("PACKING: trying %d random permutations of the largest %d elements\n", permutationCount, numPermutedObjects);
for (int k = 0; k < permutationCount; ++k) {
std::random_shuffle(perm.begin(), perm.begin() + numPermutedObjects);
trials.push_back(perm);
}
}
return trials;
}
static bool PackAtFixedScale(std::vector<std::vector<Point2x>> &polyPointsVec,
const std::vector<Point2i> &containerSizes,
std::vector<Similarity2x> &trVec,
std::vector<int> &polyToContainer,
const Parameters &packingPar,
float scale)
{
//create the vector of polys, starting for the poly points we received as parameter
std::vector<RasterizedOutline2> polyVec(polyPointsVec.size());
for(size_t i=0;i<polyVec.size();i++) {
polyVec[i].setPoints(polyPointsVec[i]);
}
std::vector<std::vector<int>> trials = InitializePermutationVectors(polyPointsVec, packingPar);
for (std::size_t i = 0; i < trials.size(); ++i) {
std::vector<Similarity2x> trVecIter;
std::vector<int> polyToContainerIter;
if (PolyPacking(polyPointsVec, containerSizes, trVecIter, polyToContainerIter, packingPar, scale, polyVec, trials[i], false)) {
trVec = trVecIter;
polyToContainer = polyToContainerIter;
return true;
}
}
return false;
}
/*
* Pack charts using a best effort policy. The idea is that this function
* packs what it can in the given space without scaling the outlines.
*
* Returns the number of charts actually packed.
*
* Function parameters:
* outline2Vec (IN) vector of outlines to pack
* containerSizes (IN) vector of container (grid) sizes
* trVec (OUT) vector of transformations that must be applied to the objects
* polyToContainer (OUT) vector of outline-to-container mappings. If polyToContainer[i] == -1
* then outline i did not fit in the packing grids, and the transformation trVec[i] is meaningless
* */
static int
PackBestEffort(std::vector<std::vector<Point2x>> &outline2Vec,
const std::vector<Point2i> &containerSizes,
std::vector<Similarity2x> &trVec,
std::vector<int> &polyToContainer,
const Parameters &packingPar)
{
return PackBestEffortAtScale(outline2Vec, containerSizes, trVec, polyToContainer, packingPar, 1.0f);
}
/* Same as PackBestEffort() but allows to specify the outlines scaling factor */
static int
PackBestEffortAtScale(std::vector<std::vector<Point2x>> &outline2Vec,
const std::vector<Point2i> &containerSizes,
std::vector<Similarity2x> &trVec,
std::vector<int> &polyToContainer,
const Parameters &packingPar, float scaleFactor)
{
std::vector<RasterizedOutline2> polyVec(outline2Vec.size());
for(size_t i=0;i<polyVec.size();i++) {
polyVec[i].setPoints(outline2Vec[i]);
}
polyToContainer.resize(outline2Vec.size(), -1);
std::vector<std::vector<int>> trials = InitializePermutationVectors(outline2Vec, packingPar);
int bestNumPlaced = 0;
for (std::size_t i = 0; i < trials.size(); ++i) {
std::vector<Similarity2x> trVecIter;
std::vector<int> polyToContainerIter;
PolyPacking(outline2Vec, containerSizes, trVecIter, polyToContainerIter, packingPar, scaleFactor, polyVec, trials[i], true);
int numPlaced = outline2Vec.size() - std::count(polyToContainerIter.begin(), polyToContainerIter.end(), -1);
if (numPlaced > bestNumPlaced) {
trVec = trVecIter;
polyToContainer = polyToContainerIter;
bestNumPlaced = numPlaced;
}
}
return bestNumPlaced;
}
//tries to pack polygons using the given gridSize and scaleFactor
//stores the result, i.e. the vector of similarities, in trVec
static bool PolyPacking(std::vector< std::vector< Point2x> > &outline2Vec,
const std::vector<Point2i> &containerSizes,
std::vector<Similarity2x> &trVec,
std::vector<int> &polyToContainer,
const Parameters &packingPar,
float scaleFactor,
std::vector<RasterizedOutline2>& polyVec,
const std::vector<int>& perm,
bool bestEffort = false)
{
int containerNum = containerSizes.size();
polyToContainer.clear();
polyToContainer.resize(outline2Vec.size());
trVec.resize(outline2Vec.size());
//create packing fields, one for each container
std::vector<Point2i> gridSizes;
std::vector<packingfield> packingFields;
for (int i=0; i < containerNum; i++) {
gridSizes.push_back(Point2i(containerSizes[i].X(),
containerSizes[i].Y()));
packingfield one(gridSizes[i], packingPar);
packingFields.push_back(one);
}
// **** First Step: Rasterize all the polygons ****
for (size_t i = 0; i < polyVec.size(); i++) {
polyVec[i].resetState(packingPar.rotationNum);
for (int rast_i = 0; rast_i < packingPar.rotationNum/4; rast_i++) {
//create the rasterization (i.e. fills bottom/top/grids/internalWastedCells arrays)
RASTERIZER_TYPE::rasterize(polyVec[i], scaleFactor, rast_i, packingPar.rotationNum, packingPar.gutterWidth);
}
}
// **** Second Step: iterate on the polys, and try to find the best position ****
for (size_t currPoly = 0; currPoly < polyVec.size(); currPoly++) {
int i = perm[currPoly];
int bestRastIndex = -1;
int bestCost = INT_MAX;
int bestPolyX = -1;
int bestPolyY = -1;
int bestContainer = -1; //the container where the poly fits best
bool placedUsingSecondaryHorizon = false;
//try all the rasterizations and choose the best fitting one
for (int rast_i = 0; rast_i < packingPar.rotationNum; rast_i++) {
//try to fit the poly in all containers, in all valid positions
for (int grid_i = 0; grid_i < containerNum; grid_i++) {
int maxCol = gridSizes[grid_i].X() - polyVec[i].gridWidth(rast_i);
int maxRow = gridSizes[grid_i].Y() - polyVec[i].gridHeight(rast_i);
//look for the best position, dropping from top
for (int col = 0; col < maxCol; col++) {
int currPolyY;
if (!placedUsingSecondaryHorizon) {
currPolyY = packingFields[grid_i].dropY(polyVec[i],col, rast_i);
if (currPolyY != INVALID_POSITION) {
assert(currPolyY + polyVec[i].gridHeight(rast_i) < gridSizes[grid_i].Y() && "drop");
int currCost = packingFields[grid_i].getCostY(polyVec[i], Point2i(col, currPolyY), rast_i);
if (packingPar.doubleHorizon && (packingPar.minmax == true))
currCost += packingFields[grid_i].getCostX(polyVec[i], Point2i(col, currPolyY), rast_i);
if (currCost < bestCost) {
bestContainer = grid_i;
bestCost = currCost;
bestRastIndex = rast_i;
bestPolyX = col;
bestPolyY = currPolyY;
placedUsingSecondaryHorizon = false;
}
}
}
if (packingPar.innerHorizon) {
currPolyY = packingFields[grid_i].dropYInner(polyVec[i],col, rast_i);
if (currPolyY != INVALID_POSITION) {
assert(currPolyY + polyVec[i].gridHeight(rast_i) < gridSizes[grid_i].Y() && "drop_inner");
int currCost = packingFields[grid_i].getCostY(polyVec[i], Point2i(col, currPolyY), rast_i);
if (packingPar.doubleHorizon && (packingPar.minmax == true))
currCost += packingFields[grid_i].getCostX(polyVec[i], Point2i(col, currPolyY), rast_i);
if (!placedUsingSecondaryHorizon || currCost < bestCost) {
bestContainer = grid_i;
bestCost = currCost;
bestRastIndex = rast_i;
bestPolyX = col;
bestPolyY = currPolyY;
placedUsingSecondaryHorizon = true;
}
}
}
}
if (!packingPar.doubleHorizon)
continue;
for (int row = 0; row < maxRow; row++) {
int currPolyX;
if (!placedUsingSecondaryHorizon) {
currPolyX = packingFields[grid_i].dropX(polyVec[i],row, rast_i);
if (currPolyX != INVALID_POSITION) {
assert(currPolyX + polyVec[i].gridWidth(rast_i) < gridSizes[grid_i].X() && "drop");
int currCost = packingFields[grid_i].getCostX(polyVec[i], Point2i(currPolyX, row), rast_i);
if (packingPar.doubleHorizon && (packingPar.minmax == true))
currCost += packingFields[grid_i].getCostY(polyVec[i], Point2i(currPolyX, row), rast_i);
if (currCost < bestCost) {
bestContainer = grid_i;
bestCost = currCost;
bestRastIndex = rast_i;
bestPolyX = currPolyX;
bestPolyY = row;
placedUsingSecondaryHorizon = false;
}
}
}
if (packingPar.innerHorizon) {
currPolyX = packingFields[grid_i].dropXInner(polyVec[i],row, rast_i);
if (currPolyX != INVALID_POSITION) {
assert(currPolyX + polyVec[i].gridWidth(rast_i) < gridSizes[grid_i].X() && "drop_inner");
int currCost = packingFields[grid_i].getCostX(polyVec[i], Point2i(currPolyX, row), rast_i);
if (packingPar.doubleHorizon && (packingPar.minmax == true))
currCost += packingFields[grid_i].getCostY(polyVec[i], Point2i(currPolyX, row), rast_i);
if (!placedUsingSecondaryHorizon || currCost < bestCost) {
bestContainer = grid_i;
bestCost = currCost;
bestRastIndex = rast_i;
bestPolyX = currPolyX;
bestPolyY = row;
placedUsingSecondaryHorizon = true;
}
}
}
}
}
}
//if we couldn't find a valid position for the poly return false, as we couldn't pack with the current scaleFactor
if (bestRastIndex == -1) {
// printf("Items didn't fit using %f as scaleFactor\n", scaleFactor);
if (bestEffort) {
polyToContainer[i] = -1;
trVec[i] = {};
} else {
return false;
}
} else {
//we found the best position for a given poly,
//let's place it, so that the horizons are updated accordingly
packingFields[bestContainer].placePoly(polyVec[i], Point2i(bestPolyX, bestPolyY), bestRastIndex);
//create the rotated bb which we will use to set the similarity translation prop
float angleRad = float(bestRastIndex)*(M_PI*2.0)/float(packingPar.rotationNum);
Box2f bb;
std::vector<Point2f> points = polyVec[i].getPoints();
for(size_t i=0;i<points.size();++i) {
Point2f pp=points[i];
pp.Rotate(angleRad);
bb.Add(pp);
}
//associate the poly to the container where it fitted best
polyToContainer[i] = bestContainer;
//now we have bestPolyX/bestRastIndex
//we have to update the similarities vector accordingly!
float polyXInImgCoords = bestPolyX;
float scaledBBWidth = bb.DimX()*scaleFactor;
float polyWidthInImgCoords = polyVec[i].gridWidth(bestRastIndex);
float offsetX = (polyWidthInImgCoords - ceil(scaledBBWidth))/2.0;
float scaledBBMinX = bb.min.X()*scaleFactor;
//note: bestPolyY is 0 if the poly is at the bottom of the grid
float imgHeight = containerSizes[bestContainer].Y();
float polyYInImgCoords = bestPolyY;
float polyHeightInImgCoords = polyVec[i].gridHeight(bestRastIndex);
float topPolyYInImgCoords = polyYInImgCoords + polyHeightInImgCoords;
float scaledBBHeight = bb.DimY()*scaleFactor;
float offsetY = (polyHeightInImgCoords - ceil(scaledBBHeight))/2.0;
float scaledBBMinY = bb.min.Y()*scaleFactor;
trVec[i].tra = Point2f(polyXInImgCoords - scaledBBMinX + offsetX,
imgHeight - topPolyYInImgCoords - scaledBBMinY + offsetY);
trVec[i].rotRad = angleRad;
trVec[i].sca = scaleFactor;
}
}
return true;
}
}; // end class
} // end namespace vcg
#endif // __RASTERIZED_OUTLINE2_PACKER_H__
|