1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.15 2007/07/31 12:35:42 ganovelli
added ScalarType to tetra3
Revision 1.14 2006/07/06 12:39:51 ganovelli
adde barycenter()
Revision 1.13 2006/06/06 14:35:31 zifnab1974
Changes for compilation on linux AMD64. Some remarks: Linux filenames are case-sensitive. _fileno and _filelength do not exist on linux
Revision 1.12 2006/03/01 15:59:34 pietroni
added InterpolationParameters function
Revision 1.11 2005/12/12 11:15:26 ganovelli
modifications to compile with gcc
Revision 1.10 2005/11/29 16:20:33 pietroni
added IsInside() function
Revision 1.9 2004/10/13 12:45:51 cignoni
Better Doxygen documentation
Revision 1.8 2004/09/01 12:21:11 pietroni
minor changes to comply gcc compiler (typename's )
Revision 1.7 2004/07/09 10:08:21 ganovelli
ComputeVOlume moved outside the class and other
minor corrections
Revision 1.6 2004/06/25 18:17:03 ganovelli
minor changes
Revision 1.5 2004/05/13 12:51:00 turini
Changed SolidAngle : table EV in table EofV
Changed DiedralAngle : tables FE and FV in tables FofE and FofV
Revision 1.4 2004/05/13 08:42:36 pietroni
the relation between entities functions are in tetra class (don't neeed template argoument)
Revision 1.3 2004/04/28 16:31:17 turini
Changed :
in SolidAngle(vind) :
double da0=DiedralAngle(EV(vind,0));
double da1=DiedralAngle(EV(vind,1));
double da2=DiedralAngle(EV(vind,2));
in
double da0=DiedralAngle(EofV(vind,0));
double da1=DiedralAngle(EofV(vind,1));
double da2=DiedralAngle(EofV(vind,2));
Changed :
in DiedralAngle(edgeind) :
int f1=FE(edgeind,0);
int f2=FE(edgeind,1);
in
int f1=FofE(edgeind,0);
int f2=FofE(edgeind,1);
Changed :
in DiedralAngle(edgeind) :
Point3d p0=FV(f1,0)->P();
Point3d p1=FV(f1,1)->P();
Point3d p2=FV(f1,2)->P();
in
Point3d p0=_v[FofV(f1,0)];
Point3d p1=_v[FofV(f1,1)];
Point3d p2=_v[FofV(f1,2)];
Changed :
in DiedralAngle(edgeind) :
p0=FV(f2,0)->P();
p1=FV(f2,1)->P();
p2=FV(f2,2)->P();
in
p0=_v[FofV(f2,0)];
p1=_v[FofV(f2,1)];
p2=_v[FofV(f2,2)];
Revision 1.2 2004/04/28 11:37:15 pietroni
*** empty log message ***
Revision 1.1 2004/04/22 13:19:12 ganovelli
first version
Revision 1.2 2004/04/20 16:26:48 pietroni
*** empty log message ***
Revision 1.1 2004/04/15 08:54:20 pietroni
*** empty log message ***
Revision 1.1 2004/04/08 01:13:31 pietroni
Initial commit
***************************************************************************/
#ifndef __VCG_TETRA3
#define __VCG_TETRA3
#include <vcg/space/point3.h>
#include <vcg/math/matrix44.h>
#include <vcg/math/matrix33.h>
#include <algorithm>
namespace vcg
{
/** \addtogroup space */
/*@{*/
/**
Templated class for storing a generic tetrahedron
*/
class Tetra
{
public:
//Tatrahedron Functions to retrieve information about relation between faces of tetrahedron(faces,adges,vertices).
static int VofE(const int &indexE, const int &indexV)
{
assert((indexE < 6) && (indexV < 2));
static int edgevert[6][2] = {{0, 1},
{0, 2},
{0, 3},
{1, 2},
{1, 3},
{2, 3}};
return (edgevert[indexE][indexV]);
}
static int VofF(const int &indexF, const int &indexV)
{
assert((indexF < 4) && (indexV < 3));
static int facevert[4][3] = {{0, 1, 2},
{0, 3, 1},
{0, 2, 3},
{1, 3, 2}};
return (facevert[indexF][indexV]);
}
static int EofV(const int &indexV, const int &indexE)
{
assert((indexE < 3) && (indexV < 4));
static int vertedge[4][3] = {{0, 1, 2},
{0, 3, 4},
{5, 1, 3},
{4, 5, 2}};
return vertedge[indexV][indexE];
}
static int EofF(const int &indexF, const int &indexE)
{
assert((indexF < 4) && (indexE < 3));
static int faceedge[4][3] = {{0, 3, 1},
{2, 4, 0},
{1, 5, 2},
{4, 5, 3}};
return faceedge[indexF][indexE];
}
static int FofV(const int &indexV, const int &indexF)
{
assert((indexV < 4) && (indexF < 3));
static int vertface[4][3] = {{0, 1, 2},
{0, 3, 1},
{0, 2, 3},
{1, 3, 2}};
return vertface[indexV][indexF];
}
static int FofE(const int &indexE, const int &indexSide)
{
assert((indexE < 6) && (indexSide < 2));
static int edgeface[6][2] = {{0, 1},
{0, 2},
{1, 2},
{0, 3},
{1, 3},
{2, 3}};
return edgeface[indexE][indexSide];
}
static int VofEE(const int &indexE0, const int &indexE1)
{
assert((indexE0 < 6) && (indexE0 >= 0));
assert((indexE1 < 6) && (indexE1 >= 0));
static int edgesvert[6][6] = {{-1, 0, 0, 1, 1, -1},
{0, -1, 0, 2, -1, 2},
{0, 0, -1, -1, 3, 3},
{1, 2, -1, -1, 1, 2},
{1, -1, 3, 1, -1, 3},
{-1, 2, 3, 2, 3, -1}};
return (edgesvert[indexE0][indexE1]);
}
static int VofFFF(const int &indexF0, const int &indexF1, const int &indexF2)
{
assert((indexF0 < 4) && (indexF0 >= 0));
assert((indexF1 < 4) && (indexF1 >= 0));
assert((indexF2 < 4) && (indexF2 >= 0));
static int facesvert[4][4][4] = {
{//0
{-1, -1, -1, -1},
{-1, -1, 0, 1},
{-1, 0, -1, 2},
{-1, 1, 2, -1}},
{//1
{-1, -1, 0, 1},
{-1, -1, -1, -1},
{0, -1, -1, 3},
{1, -1, 3, -1}},
{//2
{-1, 0, -1, 2},
{0, -1, -1, 3},
{-1, -1, -1, -1},
{2, 3, -1, -1}},
{//3
{-1, 1, 2, -1},
{1, -1, 3, -1},
{2, 3, -1, -1},
{-1, -1, -1, -1}}};
return facesvert[indexF0][indexF1][indexF2];
}
static int EofFF(const int &indexF0, const int &indexF1)
{
assert((indexF0 < 4) && (indexF0 >= 0));
assert((indexF1 < 4) && (indexF1 >= 0));
static int facesedge[4][4] = {{-1, 0, 1, 3},
{0, -1, 2, 4},
{1, 2, -1, 5},
{3, 4, 5, -1}};
return (facesedge[indexF0][indexF1]);
}
static int EofVV(const int &indexV0, const int &indexV1)
{
assert((indexV0 < 4) && (indexV0 >= 0));
assert((indexV1 < 4) && (indexV1 >= 0));
static int verticesedge[4][4] = {{-1, 0, 1, 2},
{0, -1, 3, 4},
{1, 3, -1, 5},
{2, 4, 5, -1}};
return verticesedge[indexV0][indexV1];
}
static int FofVVV(const int &indexV0, const int &indexV1, const int &indexV2)
{
assert((indexV0 < 4) && (indexV0 >= 0));
assert((indexV1 < 4) && (indexV1 >= 0));
assert((indexV2 < 4) && (indexV2 >= 0));
static int verticesface[4][4][4] = {
{//0
{-1, -1, -1, -1},
{-1, -1, 0, 1},
{-1, 0, -1, 2},
{-1, 1, 2, -1}},
{//1
{-1, -1, 0, 1},
{-1, -1, -1, -1},
{0, -1, -1, 3},
{1, -1, 3, -1}},
{//2
{-1, 0, -1, 2},
{0, -1, -1, 3},
{-1, -1, -1, -1},
{2, 3, -1, -1}},
{//3
{-1, 1, 2, -1},
{1, -1, 3, -1},
{2, 3, -1, -1},
{-1, -1, -1, -1}}};
return verticesface[indexV0][indexV1][indexV2];
}
static int FofEE(const int &indexE0, const int &indexE1)
{
assert((indexE0 < 6) && (indexE0 >= 0));
assert((indexE1 < 6) && (indexE1 >= 0));
static int edgesface[6][6] = {{-1, 0, 1, 0, 1, -1},
{0, -1, 2, 0, -1, 2},
{1, 2, -1, -1, 1, 2},
{0, 0, -1, -1, 3, 3},
{1, -1, 1, 3, -1, 3},
{-1, 2, 2, 3, 3, -1}};
return edgesface[indexE0][indexE1];
}
static int FoppositeV (const int & indexV)
{
assert(indexV < 4 && indexV >= 0);
static int oppFaces[4] = { 3, 2, 1, 0 };
return oppFaces[indexV];
}
static int VoppositeF (const int & indexF)
{
assert(indexF < 4 && indexF >= 0);
static int oppVerts[4] = { 3, 2, 1, 0 };
return oppVerts[indexF];
}
static int EoppositeE (const int & indexE)
{
assert(indexE < 6 && indexE >= 0);
return 5 - indexE;
}
/** @brief Computes the tetrahedron barycenter
*/
template <class TetraType>
static Point3<typename TetraType::ScalarType> Barycenter(const TetraType &t)
{
return ((t.cP(0) + t.cP(1) + t.cP(2) + t.cP(3)) / (typename TetraType::ScalarType)4.0);
}
// compute and return the volume of a tetrahedron
template <class TetraType>
static typename TetraType::ScalarType ComputeVolume(const TetraType &t)
{
return (typename TetraType::ScalarType)(((t.cP(2) - t.cP(0)) ^ (t.cP(1) - t.cP(0))) * (t.cP(3) - t.cP(0)) / 6.0);
}
/// Returns the normal to the face face of the tetrahedron t
template <class TetraType>
static Point3<typename TetraType::ScalarType> Normal(const TetraType &t, const int &face)
{
return (((t.cP(Tetra::VofF(face, 1)) - t.cP(Tetra::VofF(face, 0))) ^ (t.cP(Tetra::VofF(face, 2)) - t.cP(Tetra::VofF(face, 0)))).Normalize());
}
template <class TetraType>
static typename TetraType::ScalarType DihedralAngle(const TetraType &t, const size_t eidx)
{
typedef typename TetraType::CoordType CoordType;
//get two faces incident on eidx
int f0 = Tetra::FofE(eidx, 0);
int f1 = Tetra::FofE(eidx, 1);
CoordType p0 = t.cP(Tetra::VofF(f0, 0));
CoordType p1 = t.cP(Tetra::VofF(f0, 1));
CoordType p2 = t.cP(Tetra::VofF(f0, 2));
CoordType n0 = ((p2 - p0) ^ (p1 - p0)).normalized();
p0 = t.cP(Tetra::VofF(f1, 0));
p1 = t.cP(Tetra::VofF(f1, 1));
p2 = t.cP(Tetra::VofF(f1, 2));
CoordType n1 = ((p2 - p0) ^ (p1 - p0)).normalized();
return M_PI - double(acos(n0 * n1));
};
template <class TetraType>
static typename TetraType::ScalarType SolidAngle(const TetraType &t, const size_t vidx)
{
typedef typename TetraType::ScalarType ScalarType;
ScalarType a0 = DihedralAngle(t, Tetra::EofV(vidx, 0));
ScalarType a1 = DihedralAngle(t, Tetra::EofV(vidx, 1));
ScalarType a2 = DihedralAngle(t, Tetra::EofV(vidx, 2));
return (a0 + a1 + a2) - M_PI;
};
template <class TetraType>
static typename TetraType::ScalarType AspectRatio(const TetraType &t)
{
typedef typename TetraType::ScalarType ScalarType;
ScalarType a0 = SolidAngle(t, 0);
ScalarType a1 = SolidAngle(t, 1);
ScalarType a2 = SolidAngle(t, 2);
ScalarType a3 = SolidAngle(t, 3);
return std::min(a0, std::min(a1, std::min(a2, a3)));
}
};
/**
Templated class for storing a generic tetrahedron in a 3D space.
Note the relation with the Face class of TetraMesh complex, both classes provide the P(i) access functions to their points and therefore they share the algorithms on it (e.g. area, normal etc...)
*/
template <class ScalarType>
class Tetra3 : public Tetra
{
public:
typedef Point3<ScalarType> CoordType;
//typedef typename ScalarType ScalarType;
/*********************************************
**/
private:
/// Vector of the 4 points that defines the tetrahedron
CoordType _v[4];
public:
/// Shortcut per accedere ai punti delle facce
inline CoordType &P(const int j) { return _v[j]; }
inline CoordType const &cP(const int j) const { return _v[j]; }
inline CoordType &P0(const int j) { return _v[j]; }
inline CoordType &P1(const int j) { return _v[(j + 1) % 4]; }
inline CoordType &P2(const int j) { return _v[(j + 2) % 4]; }
inline CoordType &P3(const int j) { return _v[(j + 3) % 4]; }
inline const CoordType &P0(const int j) const { return _v[j]; }
inline const CoordType &P1(const int j) const { return _v[(j + 1) % 4]; }
inline const CoordType &P2(const int j) const { return _v[(j + 2) % 4]; }
inline const CoordType &P3(const int j) const { return _v[(j + 3) % 4]; }
inline const CoordType &cP0(const int j) const { return _v[j]; }
inline const CoordType &cP1(const int j) const { return _v[(j + 1) % 4]; }
inline const CoordType &cP2(const int j) const { return _v[(j + 2) % 4]; }
inline const CoordType &cP3(const int j) const { return _v[(j + 3) % 4]; }
/// compute and return the barycenter of a tetrahedron
CoordType ComputeBarycenter()
{
return ((_v[0] + _v[1] + _v[2] + _v[3]) / 4);
}
/// compute and return the solid angle on a vertex
double SolidAngle(int vind)
{
double da0 = DiedralAngle(EofV(vind, 0));
double da1 = DiedralAngle(EofV(vind, 1));
double da2 = DiedralAngle(EofV(vind, 2));
return ((da0 + da1 + da2) - M_PI);
}
/// compute and return the diadedral angle on an edge
double DiedralAngle(int edgeind)
{
int f1 = FofE(edgeind, 0);
int f2 = FofE(edgeind, 1);
CoordType p0 = _v[FofV(f1, 0)];
CoordType p1 = _v[FofV(f1, 1)];
CoordType p2 = _v[FofV(f1, 2)];
CoordType norm1 = ((p1 - p0) ^ (p2 - p0));
p0 = _v[FofV(f2, 0)];
p1 = _v[FofV(f2, 1)];
p2 = _v[FofV(f2, 2)];
CoordType norm2 = ((p1 - p0) ^ (p2 - p0));
norm1.Normalize();
norm2.Normalize();
return (M_PI - acos(double(norm1 * norm2)));
}
/// compute and return the aspect ratio of the tetrahedron
ScalarType ComputeAspectRatio()
{
double a0 = SolidAngle(0);
double a1 = SolidAngle(1);
double a2 = SolidAngle(2);
double a3 = SolidAngle(3);
return (ScalarType)std::min(a0, std::min(a1, std::min(a2, a3)));
}
///return true of p is inside tetrahedron's volume
bool IsInside(const CoordType &p)
{
//bb control
vcg::Box3<typename CoordType::ScalarType> bb;
for (int i = 0; i < 4; i++)
bb.Add(_v[i]);
if (!bb.IsIn(p))
return false;
vcg::Matrix44<ScalarType> M0;
vcg::Matrix44<ScalarType> M1;
vcg::Matrix44<ScalarType> M2;
vcg::Matrix44<ScalarType> M3;
vcg::Matrix44<ScalarType> M4;
CoordType p1 = _v[0];
CoordType p2 = _v[1];
CoordType p3 = _v[2];
CoordType p4 = _v[3];
M0[0][0] = p1.V(0);
M0[0][1] = p1.V(1);
M0[0][2] = p1.V(2);
M0[1][0] = p2.V(0);
M0[1][1] = p2.V(1);
M0[1][2] = p2.V(2);
M0[2][0] = p3.V(0);
M0[2][1] = p3.V(1);
M0[2][2] = p3.V(2);
M0[3][0] = p4.V(0);
M0[3][1] = p4.V(1);
M0[3][2] = p4.V(2);
M0[0][3] = 1;
M0[1][3] = 1;
M0[2][3] = 1;
M0[3][3] = 1;
M1 = M0;
M1[0][0] = p.V(0);
M1[0][1] = p.V(1);
M1[0][2] = p.V(2);
M2 = M0;
M2[1][0] = p.V(0);
M2[1][1] = p.V(1);
M2[1][2] = p.V(2);
M3 = M0;
M3[2][0] = p.V(0);
M3[2][1] = p.V(1);
M3[2][2] = p.V(2);
M4 = M0;
M4[3][0] = p.V(0);
M4[3][1] = p.V(1);
M4[3][2] = p.V(2);
ScalarType d0 = M0.Determinant();
ScalarType d1 = M1.Determinant();
ScalarType d2 = M2.Determinant();
ScalarType d3 = M3.Determinant();
ScalarType d4 = M4.Determinant();
// all determinant must have same sign
return (((d0 > 0) && (d1 > 0) && (d2 > 0) && (d3 > 0) && (d4 > 0)) || ((d0 < 0) && (d1 < 0) && (d2 < 0) && (d3 < 0) && (d4 < 0)));
}
void InterpolationParameters(const CoordType &bq, ScalarType &a, ScalarType &b, ScalarType &c, ScalarType &d)
{
const ScalarType EPSILON = ScalarType(0.000001);
Matrix33<ScalarType> M;
CoordType v0 = P(0) - P(2);
CoordType v1 = P(1) - P(2);
CoordType v2 = P(3) - P(2);
CoordType v3 = bq - P(2);
M[0][0] = v0.X();
M[1][0] = v0.Y();
M[2][0] = v0.Z();
M[0][1] = v1.X();
M[1][1] = v1.Y();
M[2][1] = v1.Z();
M[0][2] = v2.X();
M[1][2] = v2.Y();
M[2][2] = v2.Z();
Matrix33<ScalarType> inv_M = vcg::Inverse<ScalarType>(M);
CoordType Barycentric = inv_M * v3;
a = Barycentric.V(0);
b = Barycentric.V(1);
d = Barycentric.V(2);
c = 1 - (a + b + d);
}
}; //end Class
/*@}*/
} // namespace vcg
#endif
|