File: import_vmi.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 45,124 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 29
file content (817 lines) | stat: -rw-r--r-- 39,904 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is Free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/

/****************************************************************************
  History

 $Log: not supported by cvs2svn $
 Revision 1.1  2007/02/14 01:20:37  ganovelli
 working draft of VCG Mesh Image importer and exporter. Does not consider optional attributes. The mesh atributes are only vn and fn (no bbox, texture coordiantes)



****************************************************************************/

#ifndef __VCGLIB_IMPORT_VMI
#define __VCGLIB_IMPORT_VMI

#include <wrap/io_trimesh/io_mask.h>
#include <wrap/callback.h>
/*
    VMI VCG Mesh Image.
    The vmi image file consists of a header containing the description of the vertex and face type,
    the length of vectors containing vertices of faces and the memory image of the object mesh as it is when
    passed to the function Save(SaveMeshType m)
    NOTE: THIS IS NOT A FILE FORMAT. IT IS ONLY USEFUL FOR DUMPING MESH IMAGES FOR DEBUG PURPOSE.
    Example of use: say you are running a time consuming mesh processing and you want to save intermediate
    state, but no file format support all the attributes you need in your vertex/face type.
    NOTE2: At the present if you add members to your TriMesh these will NOT be saved. More precisely, this file and
    import_vmi must be updated to reflect changes in vcg/complex/trimesh/base.h

*/

namespace vcg {
namespace tri {
namespace io {

    template <int N> struct DummyType{ char placeholder[N]; };

    /* ------------------------- derivation chain for the vertex attribute ---------------------------*/

    /** this class is for testing only the equality with the type optionally provided by the user when calling Open
    */
    template <class MeshType, class A, class T>
    struct Der:public T{
        typedef typename std::set<typename MeshType::PointerToAttribute >::iterator HWIte;

        template <int VoF>
        static void AddAttrib(MeshType &m, const char * name, unsigned int s, void * data){
            switch(VoF)
            {
            case 0: if(s == sizeof(A)){
                    typename MeshType::template PerVertexAttributeHandle<A> h = vcg::tri::Allocator<MeshType>:: template AddPerVertexAttribute<A>(m,name);
                    for(unsigned int i  = 0; i < m.vert.size(); ++i)
                        memcpy(&h[i], (void*) &((A*)data)[i],sizeof(A)); // we don't want the type conversion
                        }
                    else
                        T::template AddAttrib<0>(m,name,s,data);
                break;
            case 1: if(s == sizeof(A)){
                    typename MeshType::template PerFaceAttributeHandle<A> h = vcg::tri::Allocator<MeshType>:: template AddPerFaceAttribute<A>(m,name);
                    for(unsigned int i  = 0; i < m.face.size(); ++i)
                        memcpy(&h[i], (void*) &((A*)data)[i],sizeof(A)); // we don't want the type conversion
                    }
                    else
                        T::template AddAttrib<0>(m,name,s,data);
                break;
            case 2:
                if(s == sizeof(A)){
                    typename MeshType::template PerMeshAttributeHandle<A> h = vcg::tri::Allocator<MeshType>:: template AddPerMeshAttribute<A>(m,name);
                        memcpy(&h(), (void*) ((A*)data),sizeof(A)); // we don't want the type conversion
                }
                    else
                        T::template AddAttrib<2>(m,name,s,data);
                break;

            default:break;
            }
        }
    };

    /** this class is for testing the list of increasing size types until one is larger than the size of the unknown type
    */
    template <class MeshType, class A, class T>
    struct DerK:public T{
        typedef typename std::set<typename MeshType::PointerToAttribute >::iterator HWIte;
        template <int VoF>
        static void AddAttrib(MeshType &m, const char * name, unsigned int s, void * data){
            switch(VoF){
                    case 0:
                    if(s == sizeof(A)){
                        typename MeshType::template PerVertexAttributeHandle<A> h = vcg::tri::Allocator<MeshType>::template AddPerVertexAttribute<A>(m,name);
                        for(unsigned int i  = 0; i < m.vert.size(); ++i)
                            memcpy((void*) &(h[i]), (void*) &((A*)data)[i],sizeof(A)); // we don't want the type conversion
                    }
                    else
                        if(s < sizeof(A)){
                            // padding
                            int padd = sizeof(A) - s;
                            typename MeshType::template PerVertexAttributeHandle<A> h = vcg::tri::Allocator<MeshType>::template AddPerVertexAttribute<A>(m,name);
                            for(unsigned int i  = 0; i < m.vert.size(); ++i){
                                char * dest =  &((char*)(&h[i]))[0];
                                memcpy( (void *)dest , (void*) &((A*)data)[i],s); // we don't want the type conversion
                            }
                            typename MeshType::PointerToAttribute pa;
                            pa._name = std::string(name);
                            HWIte res = m.vert_attr.find(pa);
                            pa = *res;
                            m.vert_attr.erase(res);
                            pa._padding = padd;
                            std::pair<HWIte,bool > new_pa = m.vert_attr.insert(pa);
                            (void)new_pa;
                            assert(new_pa.second);
                        }
                        else
                            T::template AddAttrib<0>(m,name,s,data);
                    break;
                    case 1:
                        if(s == sizeof(A)){
                            typename MeshType::template PerVertexAttributeHandle<A> h = vcg::tri::Allocator<MeshType>::template AddPerVertexAttribute<A>(m,name);
                            for(unsigned int i  = 0; i < m.vert.size(); ++i)
                            memcpy((void*) &(h[i]), (void*) &((A*)data)[i],sizeof(A)); // we don't want the type conversion
                            }
                        else
                            if(s < sizeof(A)){
                                // padding
                                int padd = sizeof(A) - s;
                                typename MeshType::template PerFaceAttributeHandle<A> h = vcg::tri::Allocator<MeshType>::template AddPerFaceAttribute<A>(m,name);
                                for(unsigned int i  = 0; i < m.face.size(); ++i){
                                    char * dest =  &((char*)(&h[i]))[0];
                                    memcpy( (void *)dest , (void*) &((A*)data)[i],s); // we don't want the type conversion
                                }
                                typename MeshType::PointerToAttribute pa;
                                pa._name = std::string(name);
                                HWIte res = m.face_attr.find(pa);
                                pa = *res;
                                m.face_attr.erase(res);
                                pa._padding = padd;
                                std::pair<HWIte,bool > new_pa = m.face_attr.insert(pa);
                                (void)new_pa;
                                assert(new_pa.second);
                            }
                        else
                            T::template AddAttrib<1>(m,name,s,data);
                        break;
                    case 2:
                        if(s == sizeof(A)){
                            typename MeshType::template PerMeshAttributeHandle<A> h = vcg::tri::Allocator<MeshType>::template AddPerMeshAttribute<A>(m,name);
                                memcpy((void*)&h(), (void*)((A*)data),sizeof(A)); // we don't want the type conversion
                            }
                        else
                            if(s < sizeof(A)){
                                // padding
                                int padd = sizeof(A) - s;
                                typename MeshType::template PerMeshAttributeHandle<A> h = vcg::tri::Allocator<MeshType>::template AddPerMeshAttribute<A>(m,name);
                                char * dest =  & ((char*)(&h()))[0];
                                memcpy( (void *)dest , (void*)((A*)data),s); // we don't want the type conversion

                                typename MeshType::PointerToAttribute pa;
                                pa._name = std::string(name);
                                HWIte res = m.mesh_attr.find(pa);
                                pa = *res;
                                m.mesh_attr.erase(res);
                                pa._padding = padd;
                                std::pair<HWIte,bool > new_pa = m.mesh_attr.insert(pa);
                                (void)new_pa;
                                assert(new_pa.second);
                            }
                        else
                            T::template AddAttrib<2>(m,name,s,data);
                        break;
                    default: assert(0);break;
            }
        }
    };

    /**
    This is the templated derivation  chain
    */
    template <class MeshType>	struct K	{
        template <int VoF>
        static void AddAttrib(MeshType &/*m*/, const char * /*name*/, unsigned int /*s*/, void * /*data*/){
            // if yohu got this your attribute is larger than	1048576. Honestly...
            assert(0);
        }
    };

    template <class MeshType, class B0 >																												struct K0	: public DerK<  MeshType, B0,	K<MeshType> > {};
    template <class MeshType, class B0, class B1 >																										struct K1	: public DerK<  MeshType, B1,	K0<MeshType, B0> > {};
    template <class MeshType, class B0, class B1, class B2 >																							struct K2	: public DerK<  MeshType, B2,	K1<MeshType, B0, B1> > {};
    template <class MeshType, class B0, class B1, class B2,class B3>																					struct K3	: public DerK<  MeshType, B3,	K2<MeshType, B0, B1, B2> > {};
    template <class MeshType, class B0, class B1, class B2,class B3,class B4>																			struct K4	: public DerK<  MeshType, B4,	K3<MeshType, B0, B1, B2, B3> > {};
    template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5>																	struct K5	: public DerK<  MeshType, B5,	K4<MeshType, B0, B1, B2, B3, B4> > {};
    template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6>															struct K6	: public DerK<  MeshType, B6,	K5<MeshType, B0, B1, B2, B3, B4, B5> > {};
    template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6,class B7>												struct K7	: public DerK<  MeshType, B7,	K6<MeshType, B0, B1, B2, B3, B4, B5, B6> > {};
    template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6,class B7,class B8>										struct K8	: public DerK<  MeshType, B8,	K7<MeshType, B0, B1, B2, B3, B4, B5, B6, B7> > {};
    template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6,class B7,class B8,class B9>								struct K9	: public DerK<  MeshType, B9,	K8<MeshType, B0, B1, B2, B3, B4, B5, B6, B7, B8> > {};
    template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6,class B7,class B8,class B9,class B10>					struct K10	: public DerK<  MeshType, B10,	K9<MeshType, B0, B1, B2, B3, B4, B5, B6, B7, B8, B9> > {};
    template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6,class B7,class B8,class B9,class B10,class B11>			struct K11	: public DerK<  MeshType, B11,	K10<MeshType, B0, B1, B2, B3, B4, B5, B6, B7, B8, B9, B11 > > {};
    template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6,class B7,class B8,class B9,class B10,class B11,class B12>struct K12	: public DerK<  MeshType, B12,	K11<MeshType, B0, B1, B2, B3, B4, B5, B6, B7, B8, B9, B11, B12 > > {};

    template <class MeshType, class A0,
        class B0  = DummyType<1048576>,
        class B1  = DummyType<2048>,
        class B2  = DummyType<1024>,
        class B3  = DummyType<512>,
        class B4  = DummyType<256>,
        class B5  = DummyType<128>,
        class B6  = DummyType<64>,
        class B7  = DummyType<32>,
        class B8  = DummyType<16>,
        class B9  = DummyType<8>,
        class B10 = DummyType<4>,
        class B11 = DummyType<2>,
        class B12 = DummyType<1>
    >	struct C0		: public DerK<  MeshType, A0,    K12<MeshType, B0, B1, B2, B3, B4,B5,B6,B7,B8,B9,B10,B11,B12> > {};

    template <class MeshType, class A0, class A1>											struct C1		: public Der<  MeshType, A1,	C0<MeshType, A0> > {};
    template <class MeshType, class A0, class A1, class A2>	 								struct C2		: public Der<  MeshType, A2,	C1<MeshType, A0, A1> > {};
    template <class MeshType, class A0, class A1, class A2,class A3>	 					struct C3		: public Der<  MeshType, A3,	C2<MeshType, A0, A1, A2> > {};
    template <class MeshType, class A0, class A1, class A2,class A3,class A4>				struct AttrAll	: public Der<  MeshType, A4,	C3<MeshType, A0, A1, A2, A3> > {};



    template <class OpenMeshType,class A0 = long, class A1 = double, class A2 = int,class A3 = short, class A4 = char >
    class ImporterVMI: public AttrAll<OpenMeshType,A0,A1,A2,A3,A4>
    {

        static void ReadString(std::string & out){
            unsigned int l; Read(&l,4,1);
            char * buf = new char[l+1];
            Read(buf,1,l);buf[l]='\0';
            out = std::string(buf);
            delete [] buf;
            }

        static void ReadInt( unsigned int & i){ Read(&i,1,4);}
        static void ReadFloat( float & v){ Read(&v,1,sizeof(float));}


         static int   LoadVertexOcfMask( ){
            int mask  =0;
            std::string s;

            // vertex quality
            ReadString( s);
            if( s == std::string("HAS_VERTEX_QUALITY_OCF")) mask |= Mask::IOM_VERTQUALITY;

            // vertex color
            ReadString( s);
            if( s == std::string("HAS_VERTEX_COLOR_OCF"))  mask |= Mask::IOM_VERTCOLOR;

            // vertex normal
            ReadString( s);
            if( s == std::string("HAS_VERTEX_NORMAL_OCF")) mask |= Mask::IOM_VERTNORMAL;

            // vertex mark
            ReadString( s);
            //if( s == std::string("HAS_VERTEX_MARK_OCF"))  mask |=

            // vertex texcoord
            ReadString( s);
            if( s == std::string("HAS_VERTEX_TEXCOORD_OCF"))  mask |= Mask::IOM_VERTTEXCOORD;

            // vertex-face adjacency
            ReadString( s);
            //if( s == std::string("HAS_VERTEX_VFADJACENCY_OCF")) mask |=

            // vertex curvature
            ReadString( s);
            //if( s == std::string("HAS_VERTEX_CURVATURE_OCF"))  mask |=

            //// vertex curvature dir
            ReadString( s);
            //if( s == std::string("HAS_VERTEX_CURVATUREDIR_OCF"))  mask |=

            // vertex radius
            ReadString( s);
            if( s == std::string("HAS_VERTEX_RADIUS_OCF"))  mask |= Mask::IOM_VERTRADIUS;

            return mask;
       }

        template <typename MeshType, typename CONT>
                struct LoadVertexOcf{
                        LoadVertexOcf(FILE* /*f*/,const CONT & /*vert*/){
                                // do nothing, it is a std::vector
                        }
                };



        template <typename MeshType>
        struct
        LoadVertexOcf<MeshType,vertex::vector_ocf<typename OpenMeshType::VertexType> >{
                        typedef typename OpenMeshType::VertexType VertexType;
            LoadVertexOcf( FILE * /*f*/, vertex::vector_ocf<typename OpenMeshType::VertexType> & vert){
            std::string s;

                // vertex quality
                ReadString( s);
                if( s == std::string("HAS_VERTEX_QUALITY_OCF")) {
                        vert.EnableQuality();
                        Read((void*)&vert.QV[0],sizeof(typename VertexType::QualityType),vert.size() );
                }

                // vertex color
                ReadString( s);
                if( s == std::string("HAS_VERTEX_COLOR_OCF")) {
                        vert.EnableColor();
                        Read((void*)&vert.CV[0],sizeof(typename VertexType::ColorType),vert.size() );
                }

                // vertex normal
                ReadString( s);
                if( s == std::string("HAS_VERTEX_NORMAL_OCF")) {
                        vert.EnableNormal();
                        Read((void*)&vert.NV[0],sizeof(typename VertexType::NormalType),vert.size() );
                }

                 // vertex mark
                ReadString( s);
                if( s == std::string("HAS_VERTEX_MARK_OCF")) {
                        vert.EnableMark();
                        Read((void*)&vert.MV[0],sizeof(typename VertexType::MarkType),vert.size() );
                }

                // vertex texcoord
                ReadString( s);
                if( s == std::string("HAS_VERTEX_TEXCOORD_OCF")) {
                        vert.EnableTexCoord();
                        Read((void*)&vert.TV[0],sizeof(typename VertexType::TexCoordType),vert.size() );
                }

                // vertex-face adjacency
                ReadString( s);
                if( s == std::string("HAS_VERTEX_VFADJACENCY_OCF")) {
                        vert.EnableVFAdjacency();
                        Read((void*)&vert.AV[0],sizeof(typename vertex::vector_ocf<VertexType>::VFAdjType),vert.size() );
                }

                // vertex curvature
                ReadString( s);
                if( s == std::string("HAS_VERTEX_CURVATURE_OCF")) {
                        vert.EnableCurvature();
                        Read((void*)&vert.CuV[0],sizeof(typename VertexType::CurvatureType),vert.size() );
                }

                // vertex curvature dir
                ReadString( s);
                if( s == std::string("HAS_VERTEX_CURVATUREDIR_OCF")) {
                        vert.EnableCurvatureDir();
                        Read((void*)&vert.CuDV[0],sizeof(typename VertexType::CurvatureDirType),vert.size() );
                }

                // vertex radius
                ReadString( s);
                if( s == std::string("HAS_VERTEX_RADIUS_OCF")) {
                        vert.EnableRadius();
                        Read((void*)&vert.RadiusV[0],sizeof(typename VertexType::RadiusType),vert.size() );
                }

                        }
                };

                template <typename MeshType, typename CONT>
                struct LoadFaceOcf{
                        LoadFaceOcf(const CONT & /* face */){
                                // do nothing, it is a std::vector
                        }
                };


                 static int  LoadFaceOcfMask( ){
                int mask=0;
                    std::string s;

                // face quality
                    ReadString( s);
                    if( s == std::string("HAS_FACE_QUALITY_OCF"))	mask	|=  Mask::IOM_FACEQUALITY;

                    // face color
                    ReadString( s);
                         if( s == std::string("HAS_FACE_COLOR_OCF"))		mask	|=   Mask::IOM_FACECOLOR;

                    // face normal
                    ReadString( s);
                    if( s == std::string("HAS_FACE_NORMAL_OCF"))  mask	|=  Mask::IOM_FACENORMAL;

                    //// face mark
                    ReadString( s);
                    //if( s == std::string("HAS_FACE_MARK_OCF")) mask	|=

                    // face wedgetexcoord
                    ReadString( s);
                    if( s == std::string("HAS_FACE_WEDGETEXCOORD_OCF")) mask	|= Mask::IOM_WEDGTEXCOORD;


                    // face-face adjacency
                    ReadString( s);
//                    if( s == std::string("HAS_FACE_FFADJACENCY_OCF")) mask	|= */

                    // vertex-face adjacency
                    ReadString( s);
                    //if( s == std::string("HAS_FACE_VFADJACENCY_OCF")) mask	|=

                    // face WedgeColor
                    ReadString( s);
                    if( s == std::string("HAS_FACE_WEDGECOLOR_OCF")) mask	|=  Mask::IOM_WEDGCOLOR;

                    // face WedgeNormal
                    ReadString( s);
                    if( s == std::string("HAS_FACE_WEDGENORMAL_OCF")) mask	|=  Mask::IOM_WEDGNORMAL;
                    return mask;
            }


                /* partial specialization for vector_ocf */
                template <typename MeshType>
                                                                struct LoadFaceOcf< MeshType, face::vector_ocf<typename OpenMeshType::FaceType> >{
                                                typedef typename OpenMeshType::FaceType FaceType;
                        LoadFaceOcf( face::vector_ocf<FaceType> & face){
                                std::string s;

                                // face quality
                                ReadString( s);
                                if( s == std::string("HAS_FACE_QUALITY_OCF")) {
                                        face.EnableQuality();
                                        Read((void*)&face.QV[0],sizeof(typename FaceType::QualityType),face.size() );
                                }

                                // face color
                                ReadString( s);
                                if( s == std::string("HAS_FACE_COLOR_OCF")) {
                                        face.EnableColor();
                                        Read((void*)&face.CV[0],sizeof(typename FaceType::ColorType),face.size() );
                                }

                                // face normal
                                ReadString( s);
                                if( s == std::string("HAS_FACE_NORMAL_OCF")) {
                                        face.EnableNormal();
                                        Read((void*)&face.NV[0],sizeof(typename FaceType::NormalType),face.size() );
                                }

                                // face mark
                                ReadString( s);
                                if( s == std::string("HAS_FACE_MARK_OCF")) {
                                        face.EnableMark();
                                        Read((void*)&face.MV[0],sizeof(typename FaceType::MarkType),face.size() );
                                }

                                // face wedgetexcoord
                                ReadString( s);
                                if( s == std::string("HAS_FACE_WEDGETEXCOORD_OCF")) {
                                        face.EnableWedgeTexCoord();
                                        Read((void*)&face.WTV[0],sizeof(typename FaceType::WedgeTexCoordType),face.size() );
                                }


                                // face-face adjacency
                                ReadString( s);
                                if( s == std::string("HAS_FACE_FFADJACENCY_OCF")) {
                                        face.EnableFFAdjacency();
                                        Read((void*)&face.AF[0],sizeof(typename  face::vector_ocf<FaceType>::AdjTypePack),face.size() );
                                }

                                // vertex-face adjacency
                                ReadString( s);
                                if( s == std::string("HAS_FACE_VFADJACENCY_OCF")) {
                                        face.EnableVFAdjacency();
                                        Read((void*)&face.AV[0],sizeof(typename  face::vector_ocf<FaceType>::AdjTypePack),face.size() );
                                }

                                // face WedgeColor
                                ReadString( s);
                                if( s == std::string("HAS_FACE_WEDGECOLOR_OCF")) {
                                        face.EnableWedgeColor();
                                        Read((void*)&face.WCV[0],sizeof(typename  face::vector_ocf<FaceType>::WedgeColorTypePack),face.size() );
                                }

                                // face WedgeNormal
                                ReadString( s);
                                if( s == std::string("HAS_FACE_WEDGENORMAL_OCF")) {
                                        face.EnableWedgeNormal();
                                        Read((void*)&face.WNV[0],sizeof(typename  face::vector_ocf<FaceType>::WedgeNormalTypePack),face.size() );
                                }
                        }
                };

    static int  FaceMaskBitFromString(std::string s){
        if( s.find("Color",0) != std::string::npos )			return Mask::IOM_FACECOLOR;			else
        if( s.find("BitFlags",0) != std::string::npos )			return Mask::IOM_FACEFLAGS;			else
        if( s.find("VertexRef",0) != std::string::npos )		return Mask::IOM_FACEINDEX;			else
        if( s.find("Normal",0) != std::string::npos )			return Mask::IOM_FACENORMAL;		else
        if( s.find("Quality",0) != std::string::npos )			return Mask::IOM_FACEQUALITY;		else
        if( s.find("Quality",0) != std::string::npos )			return Mask::IOM_FACEQUALITY;		else
        if( s.find("WedgeColor",0) != std::string::npos )		return Mask::IOM_WEDGCOLOR;			else
        if( s.find("WedgeNormal",0) != std::string::npos )		return Mask::IOM_WEDGNORMAL;		else
        if( s.find("WedgeTexCoord",0) != std::string::npos)		return Mask::IOM_WEDGTEXCOORD;		else
        return 0;
    }
    static int  VertexMaskBitFromString(std::string s){
        if( s.find("Color",0) != std::string::npos )		return Mask::IOM_VERTCOLOR;		else
        if( s.find("Coord",0) != std::string::npos )		return Mask::IOM_VERTCOORD;		else
        if( s.find("BitFlags",0) != std::string::npos )		return Mask::IOM_VERTFLAGS;		else
        if( s.find("Quality",0) != std::string::npos )		return Mask::IOM_VERTQUALITY;	else
        if( s.find("Normal",0) != std::string::npos )		return Mask::IOM_VERTNORMAL;	else
        if( s.find("TexCoord",0) != std::string::npos )		return Mask::IOM_VERTTEXCOORD;	else
        if( s.find("Radius",0) != std::string::npos )		return Mask::IOM_VERTRADIUS;	else
            return 0;
    }


        static FILE *& F(){static FILE * f; return f;}


        static void * Malloc(unsigned int n){ return (n)?malloc(n):0;}
        static void Free(void * ptr){ if(ptr) free (ptr);}


        typedef typename OpenMeshType::FaceType FaceType;
        typedef typename OpenMeshType::FaceContainer FaceContainer;
        typedef typename OpenMeshType::FaceIterator FaceIterator;

        typedef typename OpenMeshType::VertContainer VertContainer;
        typedef typename OpenMeshType::VertexIterator VertexIterator;
        typedef typename OpenMeshType::VertexType VertexType;

    public:
       enum VMIErrorCodes {
                VMI_NO_ERROR = 0,
                VMI_INCOMPATIBLE_VERTEX_TYPE,
                VMI_INCOMPATIBLE_FACE_TYPE,
                VMI_FAILED_OPEN
       };

        /*!
         *	Standard call for knowing the meaning of an error code
         * \param message_code	The code returned by <CODE>Open</CODE>
         *	\return							The string describing the error code
         */
        static const char* ErrorMsg(int message_code)
        {
            static const char* error_msg[] =
            {
                "No errors",
                "The file has a incompatible vertex signature",
                "The file has a incompatible Face signature",
                "General failure of the file opening"
            };

            if(message_code>4 || message_code<0)
                return "Unknown error";
            else
                return error_msg[message_code];
        };

        /* Read the info about the mesh. Note: in the header the bounding box is always written/readed
           as a vcg::Box3f, even if the scalar type is not float. The bounding box of the mesh will
           be set properly on loading.
          */
        static bool GetHeader(	std::vector<std::string>& fnameV,
                                std::vector<std::string>& fnameF,
                                unsigned int & vertSize,
                                unsigned int &faceSize,
                                vcg::Box3f & bbox,
                                int & mask){
            std::string name;
            unsigned int nameFsize,nameVsize,i;

            ReadString( name); ReadInt( nameFsize);

            for(i=0; i < nameFsize; ++i)
                {ReadString(  name);fnameF.push_back( name );mask |= FaceMaskBitFromString(name);}
            mask |= LoadFaceOcfMask();

            ReadString( name); ReadInt( faceSize);
            ReadString(  name); ReadInt( nameVsize);

            for(i=0; i < nameVsize; ++i)
                {ReadString(  name) ;fnameV.push_back( name);mask |= VertexMaskBitFromString(name);}
            mask |= LoadVertexOcfMask();

            ReadString( name);
            ReadInt( vertSize);

            ReadString( name);
            float float_value;
            for(unsigned int i =0; i < 2; ++i){ReadFloat( float_value); bbox.min[i]=float_value;}
            for(unsigned int i =0; i < 2; ++i){ReadFloat( float_value); bbox.max[i]=float_value;}

            ReadString( name);
            assert(strstr( name.c_str(),"end_header")!=NULL);
            return true;
        }


        static bool GetHeader(const char * filename,std::vector<std::string>& nameV, std::vector<std::string>& nameF, unsigned int & vertSize, unsigned int &faceSize,vcg::Box3f & bbox,int & mask){
                F() = fopen(filename,"rb");
                bool res =  GetHeader(nameV, nameF, vertSize, faceSize,bbox,mask);
                fclose(F());
                return res;
    }

    public:
        static const char * & In_mem(){static const char *    in_mem; return in_mem;}
        static unsigned int & In_mode(){static unsigned int  in_mode = 0; return in_mode;}


        static unsigned int & pos(){static unsigned int  p = 0; return p;}
        static int Read_sim(const void * , size_t size, size_t count ){ pos() += size * count;return size * count; }
        static int Read_mem( void *dst , size_t size, size_t count ){ memcpy(dst,&In_mem()[pos()],size*count); pos() += size * count;return size * count; }


        static int Read( void * dst,  size_t size, size_t count){
            switch(In_mode()){
            case 0: return Read_mem(dst, size,count );  break;
            case 1: return fread(dst, size,count, F() ); break;
             }
            assert(0);
            return 0;
        }


        static bool LoadMask(const char * f, int & mask){
            std::vector<std::string>  nameV;
            std::vector<std::string>  nameF;
            unsigned int   vertSize, faceSize;
            vcg::Box3f bbox;
            F() = fopen(f,"rb");
            In_mode() = 1;
            GetHeader(nameV,nameF,vertSize, faceSize, bbox, mask);
            return true;
        }

        static bool LoadMaskFromMem(  const char * ptr, int & mask){
            std::vector<std::string>  nameV;
            std::vector<std::string>  nameF;
            unsigned int   vertSize, faceSize;
            vcg::Box3f bbox;
            In_mode() = 0;
            pos() = 0;
            In_mem() = ptr;
            GetHeader(nameV,nameF,vertSize, faceSize, bbox, mask);
            return true;
        }

        static int Open(OpenMeshType &m, const char * filename, int & mask,CallBackPos  * /*cb*/ = 0 )       {
            In_mode() = 1;
            F() = fopen(filename,"rb");
            if(!F()) return VMI_FAILED_OPEN;
            if(F()==NULL)	return 1; // 1 is the error code for cant'open, see the ErrorMsg function
            int res = Deserialize(m,mask);
            fclose(F());
            return  res;
        }
        static int ReadFromMem(  OpenMeshType &m, int & mask,char * ptr){
            In_mode() = 0;
            pos() = 0;
            In_mem() = ptr;
            return Deserialize(m,mask);
        }

        static int Deserialize(OpenMeshType &m, int & mask)
        {
            typedef typename OpenMeshType::VertexType VertexType;
            typedef typename OpenMeshType::FaceType FaceType;
            typename OpenMeshType::FaceIterator fi;
            typename OpenMeshType::VertexIterator vi;

            std::vector<std::string> nameF,nameV,fnameF,fnameV;
            unsigned int vertSize,faceSize;

            /* read the header */
      vcg::Box3f lbbox;
      GetHeader(fnameV, fnameF, vertSize, faceSize,lbbox,mask);
      m.bbox.Import(lbbox);
            /* read the mesh type */
            OpenMeshType::FaceType::Name(nameF);
            OpenMeshType::VertexType::Name(nameV);

            /* check if the type is the very same, otherwise return */
            if(fnameV != nameV) return VMI_INCOMPATIBLE_VERTEX_TYPE;
            if(fnameF != nameF) return VMI_INCOMPATIBLE_FACE_TYPE;

             void *  offsetV = 0,*offsetF = 0;

             if(vertSize!=0)
                /* read the address of the first vertex */
                Read(&offsetV,sizeof( void *),1 );

             if(faceSize!=0)
                /* read the address of the first face */
                Read(&offsetF,sizeof( void *),1 );

            /* read the object mesh */
            Read(&m.shot,sizeof(Shot<typename OpenMeshType::ScalarType>),1 );
            Read(&m.vn,sizeof(int),1 );
            Read(&m.fn,sizeof(int),1 );
            Read(&m.imark,sizeof(int),1 );
            Read(&m.bbox,sizeof(Box3<typename OpenMeshType::ScalarType>),1 );
            Read(&m.C(),sizeof(Color4b),1 );


            /* resize the vector of vertices */
            m.vert.resize(vertSize);


            size_t read = 0;
            /* load the vertices */
            if(vertSize>0){
                read=Read((void*)& m.vert[0],sizeof(VertexType),vertSize );
                 LoadVertexOcf<OpenMeshType,VertContainer>(F(),m.vert);
            }

            read = 0;
            m.face.resize(faceSize);
            if(faceSize>0){
                /* load the faces */
                read = Read((void*)& m.face[0],sizeof(FaceType),faceSize );
                LoadFaceOcf<OpenMeshType,FaceContainer>(m.face);
            }


            /* load the per vertex attributes */
            std::string _string,_trash;
            unsigned int n,sz;

            ReadString( _trash); ReadInt( n);

            for(size_t ia = 0 ; ia < n; ++ia){
                ReadString(_trash); ReadString(_string);
                ReadString(_trash); ReadInt(sz);

                void * data = Malloc(sz*m.vert.size());
                Read(data,sz,m.vert.size());
                AttrAll<OpenMeshType,A0,A1,A2,A3,A4>::template AddAttrib<0>(m,_string.c_str(),sz,data);
                Free(data);
            }

            /* load the per face attributes */
            ReadString(_trash); ReadInt( n);
            for(size_t ia = 0 ; ia < n; ++ia){
                ReadString(_trash); ReadString( _string);
                ReadString(_trash); ReadInt( sz);
                void * data = Malloc(sz*m.face.size());
                Read(data,sz,m.face.size() );
                AttrAll<OpenMeshType,A0,A1,A2,A3,A4>::template AddAttrib<1>(m,_string.c_str(),sz,data);
                Free(data);
            }

            /* load the per mesh attributes */
            ReadString( _trash); ReadInt( n);
            for(unsigned int ia = 0 ; ia < n; ++ia){
                ReadString( _trash); ReadString( _string);
                ReadString( _trash); ReadInt( sz);
                void * data = Malloc(sz);
                Read(data,1,sz );
                AttrAll<OpenMeshType,A0,A1,A2,A3,A4>::template AddAttrib<2>(m,_string.c_str(),sz,data);
                Free(data);
            }

            if(!m.face.empty()){
            if(FaceVectorHasVFAdjacency(m.face))
                for(vi = m.vert.begin(); vi != m.vert.end(); ++vi){
                    (*vi).VFp() = (*vi).VFp()-(FaceType*)offsetF+ &m.face[0];
                    (*vi).VFp() = (*vi).VFp()-(FaceType*)offsetF+ &m.face[0];
                    (*vi).VFp() = (*vi).VFp()-(FaceType*)offsetF+ &m.face[0];
                }

            if(FaceVectorHasFVAdjacency(m.face))
                for(fi = m.face.begin(); fi != m.face.end(); ++fi){
                    (*fi).V(0) = (*fi).V(0)-(VertexType*)offsetV+ &m.vert[0];
                    (*fi).V(1) = (*fi).V(1)-(VertexType*)offsetV+ &m.vert[0];
                    (*fi).V(2) = (*fi).V(2)-(VertexType*)offsetV+ &m.vert[0];
                }

            if(FaceVectorHasFFAdjacency(m.face))
                for(fi = m.face.begin(); fi != m.face.end(); ++fi){
                    (*fi).FFp(0) = (*fi).FFp(0)-(FaceType*)offsetF+ &m.face[0];
                    (*fi).FFp(1) = (*fi).FFp(1)-(FaceType*)offsetF+ &m.face[0];
                    (*fi).FFp(2) = (*fi).FFp(2)-(FaceType*)offsetF+ &m.face[0];
                }

            }

            return VMI_NO_ERROR; // zero is the standard (!) code of success
        }

    }; // end class


} // end Namespace tri
} // end Namespace io
} // end Namespace vcg

#endif