File: main.cpp

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 45,124 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 29
file content (153 lines) | stat: -rw-r--r-- 7,086 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/****************************************************************************
* NanoPLY                                                                   *
* NanoPLY is a C++11 header-only library to read and write PLY file         *
*                                                                           *
* Copyright(C) 2014-2015                                                    *
* Visual Computing Lab                                                      *
* ISTI - Italian National Research Council                                  *
*                                                                           *
* This Source Code Form is subject to the terms of the Mozilla Public       *
* License, v. 2.0. If a copy of the MPL was not distributed with this       *
* file, You can obtain one at http://mozilla.org/MPL/2.0/.                  *
*                                                                           *
****************************************************************************/

#include <iostream>
#include <wrap/nanoply/include/nanoplyWrapper.hpp>

#include <vcg/complex/complex.h>
#include <vcg/complex/algorithms/create/platonic.h>
#include <vcg/complex/algorithms/update/normal.h>

struct Material
{
  vcg::Point3f kd;
  vcg::Point3f ks;
  float rho;
};


class MyVertex;
class MyFace;

class MyUsedTypes : public vcg::UsedTypes < vcg::Use< MyVertex >::AsVertexType, vcg::Use< MyFace >::AsFaceType>{};
class MyVertex : public vcg::Vertex <  MyUsedTypes, vcg::vertex::Coord3f, vcg::vertex::Normal3f, vcg::vertex::Color4b, vcg::vertex::Radiusf, vcg::vertex::BitFlags>{};
class MyFace : public vcg::Face <  MyUsedTypes, vcg::face::VertexRef, vcg::face::Normal3f, vcg::face::BitFlags>{};

class MyMesh : public vcg::tri::TriMesh < std::vector< MyVertex >, std::vector< MyFace > >
{
public:
  MyMesh::PerVertexAttributeHandle<int> vertexMaterial;
  MyMesh::PerFaceAttributeHandle<MyVertex::CoordType> faceBarycenter;
  MyMesh::PerMeshAttributeHandle<std::vector<Material>> material;
    
  MyMesh()
  {
    vertexMaterial = vcg::tri::Allocator<MyMesh>::AddPerVertexAttribute<int>(*this, std::string("materialId"));
    faceBarycenter = vcg::tri::Allocator<MyMesh>::AddPerFaceAttribute<MyVertex::CoordType>(*this, std::string("barycenter"));
    material = vcg::tri::Allocator<MyMesh>::AddPerMeshAttribute<std::vector<Material> >(*this, std::string("material"));
  }

  void FillMesh()
  {
    vcg::tri::Icosahedron(*this);
    vcg::tri::UpdateNormal<MyMesh>::PerFaceNormalized(*this);
    vcg::tri::UpdateNormal<MyMesh>::PerVertexNormalized(*this);

    int tempC = 255 / vert.size();
    for (size_t i = 0; i < vert.size(); i++)
    {
      if (i < 2)
        vertexMaterial[i] = -1;
      else if (i < vert.size() / 2)
        vertexMaterial[i] = 0;
      else
        vertexMaterial[i] = 1;
      vert[i].R() = i*i / 2.0f;
      vert[i].C() = vcg::Color4b(tempC*i, tempC*i, tempC*i, 255);
    }

    for (size_t i = 0; i < face.size(); i++)
     faceBarycenter[i] = vcg::Barycenter(face[i]);

    material().resize(2);
    material()[0] = { vcg::Point3f(0.1f, 0.2f, 0.3f), vcg::Point3f(0.3f, 0.3f, 0.3f), 5.0f };
    material()[1] = { vcg::Point3f(0.1f, 0.1f, 0.1f), vcg::Point3f(0.5f, 0.3f, 0.4f), 50.0f };
  }

};


bool Load(const char* filename, MyMesh& mesh)
{
  //Create the data descriport for the custom attributes
  nanoply::NanoPlyWrapper<MyMesh>::CustomAttributeDescriptor customAttrib;
  customAttrib.GetMeshAttrib(filename);
  int count = customAttrib.meshAttribCnt["material"];
  mesh.material().resize(count);
  customAttrib.AddVertexAttribDescriptor<int, int, 1>(std::string("materialId"), nanoply::NNP_INT32, NULL);
  customAttrib.AddFaceAttribDescriptor<vcg::Point3f, float, 3>(std::string("barycenter"), nanoply::NNP_LIST_UINT8_FLOAT32, NULL);
	if (count > 0)
	{
		customAttrib.AddMeshAttribDescriptor<Material, float, 3>(std::string("material"), std::string("kd"), nanoply::NNP_FLOAT32, mesh.material()[0].kd.V());
		customAttrib.AddMeshAttribDescriptor<Material, float, 3>(std::string("material"), std::string("ks"), nanoply::NNP_FLOAT32, mesh.material()[0].ks.V());
		customAttrib.AddMeshAttribDescriptor<Material, float, 1>(std::string("material"), std::string("rho"), nanoply::NNP_FLOAT32, &mesh.material()[0].rho);
	}

  //Load the ply file
  unsigned int mask = 0;
  mask |= nanoply::NanoPlyWrapper<MyMesh>::IO_VERTCOORD;
  mask |= nanoply::NanoPlyWrapper<MyMesh>::IO_VERTNORMAL;
  mask |= nanoply::NanoPlyWrapper<MyMesh>::IO_VERTCOLOR;
  mask |= nanoply::NanoPlyWrapper<MyMesh>::IO_VERTRADIUS;
  mask |= nanoply::NanoPlyWrapper<MyMesh>::IO_VERTATTRIB;
  mask |= nanoply::NanoPlyWrapper<MyMesh>::IO_FACEINDEX;
  mask |= nanoply::NanoPlyWrapper<MyMesh>::IO_FACENORMAL;
  mask |= nanoply::NanoPlyWrapper<MyMesh>::IO_FACEATTRIB;
  mask |= nanoply::NanoPlyWrapper<MyMesh>::IO_MESHATTRIB;
	return (nanoply::NanoPlyWrapper<MyMesh>::LoadModel(filename, mesh, mask, customAttrib) != 0);
}



bool Save(const char* filename, MyMesh& mesh, bool binary)
{
  //Create the data descriport for the custom attributes
  nanoply::NanoPlyWrapper<MyMesh>::CustomAttributeDescriptor customAttrib;
  customAttrib.AddVertexAttribDescriptor<int, int, 1>(std::string("materialId"), nanoply::NNP_INT32, &mesh.vertexMaterial[0]);
  customAttrib.AddFaceAttribDescriptor<vcg::Point3f, float, 3>(std::string("barycenter"), nanoply::NNP_LIST_UINT8_FLOAT32, mesh.faceBarycenter[0].V());
	if (mesh.material().size() > 0)
	{
		customAttrib.AddMeshAttrib(std::string("material"), mesh.material().size());
		customAttrib.AddMeshAttribDescriptor<Material, float, 3>(std::string("material"), std::string("kd"), nanoply::NNP_LIST_UINT8_FLOAT32, mesh.material()[0].kd.V());
		customAttrib.AddMeshAttribDescriptor<Material, float, 3>(std::string("material"), std::string("ks"), nanoply::NNP_LIST_UINT8_FLOAT32, mesh.material()[0].ks.V());
		customAttrib.AddMeshAttribDescriptor<Material, float, 1>(std::string("material"), std::string("rho"), nanoply::NNP_FLOAT32, &mesh.material()[0].rho);
	}

  //Save the ply file
  unsigned int mask = 0;
  mask |= nanoply::NanoPlyWrapper<MyMesh>::IO_VERTCOORD;
  mask |= nanoply::NanoPlyWrapper<MyMesh>::IO_VERTNORMAL;
  mask |= nanoply::NanoPlyWrapper<MyMesh>::IO_VERTCOLOR;
  mask |= nanoply::NanoPlyWrapper<MyMesh>::IO_VERTRADIUS;
  mask |= nanoply::NanoPlyWrapper<MyMesh>::IO_VERTATTRIB;
  mask |= nanoply::NanoPlyWrapper<MyMesh>::IO_FACEINDEX;
  mask |= nanoply::NanoPlyWrapper<MyMesh>::IO_FACENORMAL;
  mask |= nanoply::NanoPlyWrapper<MyMesh>::IO_FACEATTRIB;
  mask |= nanoply::NanoPlyWrapper<MyMesh>::IO_MESHATTRIB;
  return nanoply::NanoPlyWrapper<MyMesh>::SaveModel(filename, mesh, mask, customAttrib, binary);
}



int main()
{
  MyMesh mesh1;
  mesh1.FillMesh();
  Save("example_ascii.ply", mesh1, false);
  Save("example_binary.ply", mesh1, true);
  MyMesh mesh2, mesh3;
  Load("example_ascii.ply", mesh2);
  Load("example_binary.ply", mesh3);
  return 0;
}