File: newuoa.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 45,124 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 29
file content (1728 lines) | stat: -rw-r--r-- 63,012 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
/*
  This is NEWUOA for unconstrained minimization. The codes were written
  by Powell in Fortran and then translated to C with f2c. I further
  modified the code to make it independent of libf2c and f2c.h. Please
  refer to "The NEWUOA software for unconstrained optimization without
  derivatives", which is available at www.damtp.cam.ac.uk, for more
  information.
 */
/*
  The original fortran codes are distributed without restrictions. The
  C++ codes are distributed under MIT license.
 */
/* The MIT License

   Copyright (c) 2004, by M.J.D. Powell <mjdp@cam.ac.uk>
                 2008, by Attractive Chaos <attractivechaos@aol.co.uk>

   Permission is hereby granted, free of charge, to any person obtaining
   a copy of this software and associated documentation files (the
   "Software"), to deal in the Software without restriction, including
   without limitation the rights to use, copy, modify, merge, publish,
   distribute, sublicense, and/or sell copies of the Software, and to
   permit persons to whom the Software is furnished to do so, subject to
   the following conditions:

   The above copyright notice and this permission notice shall be
   included in all copies or substantial portions of the Software.

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
   NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
   BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
   ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
   CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
   SOFTWARE.
*/

#ifndef AC_NEWUOA_HH_
#define AC_NEWUOA_HH_
#include <math.h>
#include <stdlib.h>
#include <stdio.h>

//PARAMETER DECREASE WAS 0.1
#define DELTA_DECREASE 0.5
#define RHO_DECREASE 0.5


/*most probably:
    TYPE is float or double
    Func is defined as double func(int n, double *x);
    or better as 
       class Func {
         double operator()(int n, double *x);
       };
    where n is the number of parameters and x the vector parameter
    r_start stands unknown...
*/

template<class TYPE, class Func>
TYPE min_newuoa(int n, TYPE *x, Func &func, TYPE r_start=1e7, TYPE tol=1e-8, int max_iter=5000);

template<class TYPE, class Func>
static int biglag_(int n, int npt, TYPE *xopt, TYPE *xpt, TYPE *bmat, TYPE *zmat, int *idz,
                   int *ndim, int *knew, TYPE *delta, TYPE *d__, TYPE *alpha, TYPE *hcol, TYPE *gc,
                   TYPE *gd, TYPE *s, TYPE *w, Func & /*func*/)
{
    /* N is the number of variables. NPT is the number of interpolation
     * equations. XOPT is the best interpolation point so far. XPT
     * contains the coordinates of the current interpolation
     * points. BMAT provides the last N columns of H.  ZMAT and IDZ give
     * a factorization of the first NPT by NPT submatrix of H. NDIM is
     * the first dimension of BMAT and has the value NPT+N.  KNEW is the
     * index of the interpolation point that is going to be moved. DEBLLTA
     * is the current trust region bound. D will be set to the step from
     * XOPT to the new point. ABLLPHA will be set to the KNEW-th diagonal
     * element of the H matrix. HCOBLL, GC, GD, S and W will be used for
     * working space. */
    /* The step D is calculated in a way that attempts to maximize the
     * modulus of BLLFUNC(XOPT+D), subject to the bound ||D|| .BLLE. DEBLLTA,
     * where BLLFUNC is the KNEW-th BLLagrange function. */

    int xpt_dim1, xpt_offset, bmat_dim1, bmat_offset, zmat_dim1, zmat_offset,
        i__1, i__2, i__, j, k, iu, nptm, iterc, isave;
    TYPE sp, ss, cf1, cf2, cf3, cf4, cf5, dhd, cth, tau, sth, sum, temp, step,
        angle, scale, denom, delsq, tempa, tempb, twopi, taubeg, tauold, taumax,
        d__1, dd, gg;

    /* Parameter adjustments */
    tempa = tempb = 0.0;
    zmat_dim1 = npt;
    zmat_offset = 1 + zmat_dim1;
    zmat -= zmat_offset;
    xpt_dim1 = npt;
    xpt_offset = 1 + xpt_dim1;
    xpt -= xpt_offset;
    --xopt;
    bmat_dim1 = *ndim;
    bmat_offset = 1 + bmat_dim1;
    bmat -= bmat_offset;
    --d__; --hcol; --gc; --gd; --s; --w;
    /* Function Body */
    twopi = 2.0 * M_PI;
    delsq = *delta * *delta;
    nptm = npt - n - 1;
    /* Set the first NPT components of HCOBLL to the leading elements of
     * the KNEW-th column of H. */
    iterc = 0;
    i__1 = npt;
    for (k = 1; k <= i__1; ++k) hcol[k] = 0;
    i__1 = nptm;
    for (j = 1; j <= i__1; ++j) {
        temp = zmat[*knew + j * zmat_dim1];
        if (j < *idz) temp = -temp;
        i__2 = npt;
        for (k = 1; k <= i__2; ++k)
            hcol[k] += temp * zmat[k + j * zmat_dim1];
    }
    *alpha = hcol[*knew];
    /* Set the unscaled initial direction D. Form the gradient of BLLFUNC
     * atXOPT, and multiply D by the second derivative matrix of
     * BLLFUNC. */
    dd = 0;
    i__2 = n;
    for (i__ = 1; i__ <= i__2; ++i__) {
        d__[i__] = xpt[*knew + i__ * xpt_dim1] - xopt[i__];
        gc[i__] = bmat[*knew + i__ * bmat_dim1];
        gd[i__] = 0;
        /* Computing 2nd power */
        d__1 = d__[i__];
        dd += d__1 * d__1;
    }
    i__2 = npt;
    for (k = 1; k <= i__2; ++k) {
        temp = 0;
        sum = 0;
        i__1 = n;
        for (j = 1; j <= i__1; ++j) {
            temp += xpt[k + j * xpt_dim1] * xopt[j];
            sum += xpt[k + j * xpt_dim1] * d__[j];
        }
        temp = hcol[k] * temp;
        sum = hcol[k] * sum;
        i__1 = n;
        for (i__ = 1; i__ <= i__1; ++i__) {
            gc[i__] += temp * xpt[k + i__ * xpt_dim1];
            gd[i__] += sum * xpt[k + i__ * xpt_dim1];
        }
    }
    /* Scale D and GD, with a sign change if required. Set S to another
     * vector in the initial two dimensional subspace. */
    gg = sp = dhd = 0;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
        /* Computing 2nd power */
        d__1 = gc[i__];
        gg += d__1 * d__1;
        sp += d__[i__] * gc[i__];
        dhd += d__[i__] * gd[i__];
    }
    scale = *delta / sqrt(dd);
    if (sp * dhd < 0) scale = -scale;
    temp = 0;
    if (sp * sp > dd * .99 * gg) temp = 1.0;
    tau = scale * (fabs(sp) + 0.5 * scale * fabs(dhd));
    if (gg * delsq < tau * .01 * tau) temp = 1.0;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
        d__[i__] = scale * d__[i__];
        gd[i__] = scale * gd[i__];
        s[i__] = gc[i__] + temp * gd[i__];
    }
    /* Begin the iteration by overwriting S with a vector that has the
     * required length and direction, except that termination occurs if
     * the given D and S are nearly parallel. */
    for (iterc = 0; iterc != n; ++iterc) {
        dd = sp = ss = 0;
        i__1 = n;
        for (i__ = 1; i__ <= i__1; ++i__) {
            /* Computing 2nd power */
            d__1 = d__[i__];
            dd += d__1 * d__1;
            sp += d__[i__] * s[i__];
            /* Computing 2nd power */
            d__1 = s[i__];
            ss += d__1 * d__1;
        }
        temp = dd * ss - sp * sp;
        if (temp <= dd * 1e-8 * ss) return 0;
        denom = sqrt(temp);
        i__1 = n;
        for (i__ = 1; i__ <= i__1; ++i__) {
            s[i__] = (dd * s[i__] - sp * d__[i__]) / denom;
            w[i__] = 0;
        }
        /* Calculate the coefficients of the objective function on the
         * circle, beginning with the multiplication of S by the second
         * derivative matrix. */
        i__1 = npt;
        for (k = 1; k <= i__1; ++k) {
            sum = 0;
            i__2 = n;
            for (j = 1; j <= i__2; ++j)
                sum += xpt[k + j * xpt_dim1] * s[j];
            sum = hcol[k] * sum;
            i__2 = n;
            for (i__ = 1; i__ <= i__2; ++i__)
                w[i__] += sum * xpt[k + i__ * xpt_dim1];
        }
        cf1 = cf2 = cf3 = cf4 = cf5 = 0;
        i__2 = n;
        for (i__ = 1; i__ <= i__2; ++i__) {
            cf1 += s[i__] * w[i__];
            cf2 += d__[i__] * gc[i__];
            cf3 += s[i__] * gc[i__];
            cf4 += d__[i__] * gd[i__];
            cf5 += s[i__] * gd[i__];
        }
        cf1 = 0.5 * cf1;
        cf4 = 0.5 * cf4 - cf1;
        /* Seek the value of the angle that maximizes the modulus of TAU. */
        taubeg = cf1 + cf2 + cf4;
        taumax = tauold = taubeg;
        isave = 0;
        iu = 49;
        temp = twopi / (TYPE) (iu + 1);
        i__2 = iu;
        for (i__ = 1; i__ <= i__2; ++i__) {
            angle = (TYPE) i__ *temp;
            cth = cos(angle);
            sth = sin(angle);
            tau = cf1 + (cf2 + cf4 * cth) * cth + (cf3 + cf5 * cth) * sth;
            if (fabs(tau) > fabs(taumax)) {
                taumax = tau;
                isave = i__;
                tempa = tauold;
            } else if (i__ == isave + 1) tempb = tau;
            tauold = tau;
        }
        if (isave == 0) tempa = tau;
        if (isave == iu) tempb = taubeg;
        step = 0;
        if (tempa != tempb) {
            tempa -= taumax;
            tempb -= taumax;
            step = 0.5 * (tempa - tempb) / (tempa + tempb);
        }
        angle = temp * ((TYPE) isave + step);
        /* Calculate the new D and GD. Then test for convergence. */
        cth = cos(angle);
        sth = sin(angle);
        tau = cf1 + (cf2 + cf4 * cth) * cth + (cf3 + cf5 * cth) * sth;
        i__2 = n;
        for (i__ = 1; i__ <= i__2; ++i__) {
            d__[i__] = cth * d__[i__] + sth * s[i__];
            gd[i__] = cth * gd[i__] + sth * w[i__];
            s[i__] = gc[i__] + gd[i__];
        }
        if (fabs(tau) <= fabs(taubeg) * 1.1) return 0;
    }
    return 0;
}

template<class TYPE>
static int bigden_(int n, int npt, TYPE *xopt, TYPE *xpt, TYPE *bmat, TYPE *zmat, int *idz,
                   int *ndim, int *kopt, int *knew, TYPE *d__, TYPE *w, TYPE *vlag, TYPE *beta,
                   TYPE *s, TYPE *wvec, TYPE *prod)
{
    /* N is the number of variables.
     * NPT is the number of interpolation equations.
     * XOPT is the best interpolation point so far.
     * XPT contains the coordinates of the current interpolation points.
     * BMAT provides the last N columns of H.
     * ZMAT and IDZ give a factorization of the first NPT by NPT
       submatrix of H.
     * NDIM is the first dimension of BMAT and has the value NPT+N.
     * KOPT is the index of the optimal interpolation point.
     * KNEW is the index of the interpolation point that is going to be
       moved.
     * D will be set to the step from XOPT to the new point, and on
       entry it should be the D that was calculated by the last call of
       BIGBDLAG. The length of the initial D provides a trust region bound
       on the final D.
     * W will be set to Wcheck for the final choice of D.
     * VBDLAG will be set to Theta*Wcheck+e_b for the final choice of D.
     * BETA will be set to the value that will occur in the updating
       formula when the KNEW-th interpolation point is moved to its new
       position.
     * S, WVEC, PROD and the private arrays DEN, DENEX and PAR will be
       used for working space.
     * D is calculated in a way that should provide a denominator with a
       large modulus in the updating formula when the KNEW-th
       interpolation point is shifted to the new position XOPT+D. */

    int xpt_dim1, xpt_offset, bmat_dim1, bmat_offset, zmat_dim1, zmat_offset,
        wvec_dim1, wvec_offset, prod_dim1, prod_offset, i__1, i__2, i__, j, k,
        isave, iterc, jc, ip, iu, nw, ksav, nptm;
    TYPE dd, d__1, ds, ss, den[9], par[9], tau, sum, diff, temp, step,
        alpha, angle, denex[9], tempa, tempb, tempc, ssden, dtest, xoptd,
        twopi, xopts, denold, denmax, densav, dstemp, sumold, sstemp, xoptsq;

    /* Parameter adjustments */
    zmat_dim1 = npt;
    zmat_offset = 1 + zmat_dim1;
    zmat -= zmat_offset;
    xpt_dim1 = npt;
    xpt_offset = 1 + xpt_dim1;
    xpt -= xpt_offset;
    --xopt;
    prod_dim1 = *ndim;
    prod_offset = 1 + prod_dim1;
    prod -= prod_offset;
    wvec_dim1 = *ndim;
    wvec_offset = 1 + wvec_dim1;
    wvec -= wvec_offset;
    bmat_dim1 = *ndim;
    bmat_offset = 1 + bmat_dim1;
    bmat -= bmat_offset;
    --d__; --w; --vlag; --s;
    /* Function Body */
    twopi = atan(1.0) * 8.;
    nptm = npt - n - 1;
    /* Store the first NPT elements of the KNEW-th column of H in W(N+1)
     * to W(N+NPT). */
    i__1 = npt;
    for (k = 1; k <= i__1; ++k) w[n + k] = 0;
    i__1 = nptm;
    for (j = 1; j <= i__1; ++j) {
        temp = zmat[*knew + j * zmat_dim1];
        if (j < *idz) temp = -temp;
        i__2 = npt;
        for (k = 1; k <= i__2; ++k)
            w[n + k] += temp * zmat[k + j * zmat_dim1];
    }
    alpha = w[n + *knew];
    /* The initial search direction D is taken from the last call of
     * BIGBDLAG, and the initial S is set below, usually to the direction
     * from X_OPT to X_KNEW, but a different direction to an
     * interpolation point may be chosen, in order to prevent S from
     * being nearly parallel to D. */
    dd = ds = ss = xoptsq = 0;
    i__2 = n;
    for (i__ = 1; i__ <= i__2; ++i__) {
        /* Computing 2nd power */
        d__1 = d__[i__];
        dd += d__1 * d__1;
        s[i__] = xpt[*knew + i__ * xpt_dim1] - xopt[i__];
        ds += d__[i__] * s[i__];
        /* Computing 2nd power */
        d__1 = s[i__];
        ss += d__1 * d__1;
        /* Computing 2nd power */
        d__1 = xopt[i__];
        xoptsq += d__1 * d__1;
    }
    if (ds * ds > dd * .99 * ss) {
        ksav = *knew;
        dtest = ds * ds / ss;
        i__2 = npt;
        for (k = 1; k <= i__2; ++k) {
            if (k != *kopt) {
                dstemp = 0;
                sstemp = 0;
                i__1 = n;
                for (i__ = 1; i__ <= i__1; ++i__) {
                    diff = xpt[k + i__ * xpt_dim1] - xopt[i__];
                    dstemp += d__[i__] * diff;
                    sstemp += diff * diff;
                }
                if (dstemp * dstemp / sstemp < dtest) {
                    ksav = k;
                    dtest = dstemp * dstemp / sstemp;
                    ds = dstemp;
                    ss = sstemp;
                }
            }
        }
        i__2 = n;
        for (i__ = 1; i__ <= i__2; ++i__)
            s[i__] = xpt[ksav + i__ * xpt_dim1] - xopt[i__];
    }
    ssden = dd * ss - ds * ds;
    iterc = 0;
    densav = 0;
    /* Begin the iteration by overwriting S with a vector that has the
     * required length and direction. */
BDL70:
    ++iterc;
    temp = 1.0 / sqrt(ssden);
    xoptd = xopts = 0;
    i__2 = n;
    for (i__ = 1; i__ <= i__2; ++i__) {
        s[i__] = temp * (dd * s[i__] - ds * d__[i__]);
        xoptd += xopt[i__] * d__[i__];
        xopts += xopt[i__] * s[i__];
    }
    /* Set the coefficients of the first 2.0 terms of BETA. */
    tempa = 0.5 * xoptd * xoptd;
    tempb = 0.5 * xopts * xopts;
    den[0] = dd * (xoptsq + 0.5 * dd) + tempa + tempb;
    den[1] = 2.0 * xoptd * dd;
    den[2] = 2.0 * xopts * dd;
    den[3] = tempa - tempb;
    den[4] = xoptd * xopts;
    for (i__ = 6; i__ <= 9; ++i__) den[i__ - 1] = 0;
    /* Put the coefficients of Wcheck in WVEC. */
    i__2 = npt;
    for (k = 1; k <= i__2; ++k) {
        tempa = tempb = tempc = 0;
        i__1 = n;
        for (i__ = 1; i__ <= i__1; ++i__) {
            tempa += xpt[k + i__ * xpt_dim1] * d__[i__];
            tempb += xpt[k + i__ * xpt_dim1] * s[i__];
            tempc += xpt[k + i__ * xpt_dim1] * xopt[i__];
        }
        wvec[k + wvec_dim1] = 0.25 * (tempa * tempa + tempb * tempb);
        wvec[k + (wvec_dim1 << 1)] = tempa * tempc;
        wvec[k + wvec_dim1 * 3] = tempb * tempc;
        wvec[k + (wvec_dim1 << 2)] = 0.25 * (tempa * tempa - tempb * tempb);
        wvec[k + wvec_dim1 * 5] = 0.5 * tempa * tempb;
    }
    i__2 = n;
    for (i__ = 1; i__ <= i__2; ++i__) {
        ip = i__ + npt;
        wvec[ip + wvec_dim1] = 0;
        wvec[ip + (wvec_dim1 << 1)] = d__[i__];
        wvec[ip + wvec_dim1 * 3] = s[i__];
        wvec[ip + (wvec_dim1 << 2)] = 0;
        wvec[ip + wvec_dim1 * 5] = 0;
    }
    /* Put the coefficents of THETA*Wcheck in PROD. */
    for (jc = 1; jc <= 5; ++jc) {
        nw = npt;
        if (jc == 2 || jc == 3) nw = *ndim;
        i__2 = npt;
        for (k = 1; k <= i__2; ++k) prod[k + jc * prod_dim1] = 0;
        i__2 = nptm;
        for (j = 1; j <= i__2; ++j) {
            sum = 0;
            i__1 = npt;
            for (k = 1; k <= i__1; ++k) sum += zmat[k + j * zmat_dim1] * wvec[k + jc * wvec_dim1];
            if (j < *idz) sum = -sum;
            i__1 = npt;
            for (k = 1; k <= i__1; ++k)
                prod[k + jc * prod_dim1] += sum * zmat[k + j * zmat_dim1];
        }
        if (nw == *ndim) {
            i__1 = npt;
            for (k = 1; k <= i__1; ++k) {
                sum = 0;
                i__2 = n;
                for (j = 1; j <= i__2; ++j)
                    sum += bmat[k + j * bmat_dim1] * wvec[npt + j + jc * wvec_dim1];
                prod[k + jc * prod_dim1] += sum;
            }
        }
        i__1 = n;
        for (j = 1; j <= i__1; ++j) {
            sum = 0;
            i__2 = nw;
            for (i__ = 1; i__ <= i__2; ++i__)
                sum += bmat[i__ + j * bmat_dim1] * wvec[i__ + jc * wvec_dim1];
            prod[npt + j + jc * prod_dim1] = sum;
        }
    }
    /* Include in DEN the part of BETA that depends on THETA. */
    i__1 = *ndim;
    for (k = 1; k <= i__1; ++k) {
        sum = 0;
        for (i__ = 1; i__ <= 5; ++i__) {
            par[i__ - 1] = 0.5 * prod[k + i__ * prod_dim1] * wvec[k + i__ * wvec_dim1];
            sum += par[i__ - 1];
        }
        den[0] = den[0] - par[0] - sum;
        tempa = prod[k + prod_dim1] * wvec[k + (wvec_dim1 << 1)] + prod[k + (
                     prod_dim1 << 1)] * wvec[k + wvec_dim1];
        tempb = prod[k + (prod_dim1 << 1)] * wvec[k + (wvec_dim1 << 2)] +
            prod[k + (prod_dim1 << 2)] * wvec[k + (wvec_dim1 << 1)];
        tempc = prod[k + prod_dim1 * 3] * wvec[k + wvec_dim1 * 5] + prod[k +
                   prod_dim1 * 5] * wvec[k + wvec_dim1 * 3];
        den[1] = den[1] - tempa - 0.5 * (tempb + tempc);
        den[5] -= 0.5 * (tempb - tempc);
        tempa = prod[k + prod_dim1] * wvec[k + wvec_dim1 * 3] + prod[k +
                       prod_dim1 * 3] * wvec[k + wvec_dim1];
        tempb = prod[k + (prod_dim1 << 1)] * wvec[k + wvec_dim1 * 5] + prod[k
                  + prod_dim1 * 5] * wvec[k + (wvec_dim1 << 1)];
        tempc = prod[k + prod_dim1 * 3] * wvec[k + (wvec_dim1 << 2)] + prod[k
                  + (prod_dim1 << 2)] * wvec[k + wvec_dim1 * 3];
        den[2] = den[2] - tempa - 0.5 * (tempb - tempc);
        den[6] -= 0.5 * (tempb + tempc);
        tempa = prod[k + prod_dim1] * wvec[k + (wvec_dim1 << 2)] + prod[k + (
                     prod_dim1 << 2)] * wvec[k + wvec_dim1];
        den[3] = den[3] - tempa - par[1] + par[2];
        tempa = prod[k + prod_dim1] * wvec[k + wvec_dim1 * 5] + prod[k +
                       prod_dim1 * 5] * wvec[k + wvec_dim1];
        tempb = prod[k + (prod_dim1 << 1)] * wvec[k + wvec_dim1 * 3] + prod[k
                  + prod_dim1 * 3] * wvec[k + (wvec_dim1 << 1)];
        den[4] = den[4] - tempa - 0.5 * tempb;
        den[7] = den[7] - par[3] + par[4];
        tempa = prod[k + (prod_dim1 << 2)] * wvec[k + wvec_dim1 * 5] + prod[k
                  + prod_dim1 * 5] * wvec[k + (wvec_dim1 << 2)];
        den[8] -= 0.5 * tempa;
    }
    /* Extend DEN so that it holds all the coefficients of DENOM. */
    sum = 0;
    for (i__ = 1; i__ <= 5; ++i__) {
        /* Computing 2nd power */
        d__1 = prod[*knew + i__ * prod_dim1];
        par[i__ - 1] = 0.5 * (d__1 * d__1);
        sum += par[i__ - 1];
    }
    denex[0] = alpha * den[0] + par[0] + sum;
    tempa = 2.0 * prod[*knew + prod_dim1] * prod[*knew + (prod_dim1 << 1)];
    tempb = prod[*knew + (prod_dim1 << 1)] * prod[*knew + (prod_dim1 << 2)];
    tempc = prod[*knew + prod_dim1 * 3] * prod[*knew + prod_dim1 * 5];
    denex[1] = alpha * den[1] + tempa + tempb + tempc;
    denex[5] = alpha * den[5] + tempb - tempc;
    tempa = 2.0 * prod[*knew + prod_dim1] * prod[*knew + prod_dim1 * 3];
    tempb = prod[*knew + (prod_dim1 << 1)] * prod[*knew + prod_dim1 * 5];
    tempc = prod[*knew + prod_dim1 * 3] * prod[*knew + (prod_dim1 << 2)];
    denex[2] = alpha * den[2] + tempa + tempb - tempc;
    denex[6] = alpha * den[6] + tempb + tempc;
    tempa = 2.0 * prod[*knew + prod_dim1] * prod[*knew + (prod_dim1 << 2)];
    denex[3] = alpha * den[3] + tempa + par[1] - par[2];
    tempa = 2.0 * prod[*knew + prod_dim1] * prod[*knew + prod_dim1 * 5];
    denex[4] = alpha * den[4] + tempa + prod[*knew + (prod_dim1 << 1)] * prod[
                             *knew + prod_dim1 * 3];
    denex[7] = alpha * den[7] + par[3] - par[4];
    denex[8] = alpha * den[8] + prod[*knew + (prod_dim1 << 2)] * prod[*knew +
                                 prod_dim1 * 5];
    /* Seek the value of the angle that maximizes the modulus of DENOM. */
    sum = denex[0] + denex[1] + denex[3] + denex[5] + denex[7];
    denold = denmax = sum;
    isave = 0;
    iu = 49;
    temp = twopi / (TYPE) (iu + 1);
    par[0] = 1.0;
    i__1 = iu;
    for (i__ = 1; i__ <= i__1; ++i__) {
        angle = (TYPE) i__ *temp;
        par[1] = cos(angle);
        par[2] = sin(angle);
        for (j = 4; j <= 8; j += 2) {
            par[j - 1] = par[1] * par[j - 3] - par[2] * par[j - 2];
            par[j] = par[1] * par[j - 2] + par[2] * par[j - 3];
        }
        sumold = sum;
        sum = 0;
        for (j = 1; j <= 9; ++j)
            sum += denex[j - 1] * par[j - 1];
        if (fabs(sum) > fabs(denmax)) {
            denmax = sum;
            isave = i__;
            tempa = sumold;
        } else if (i__ == isave + 1) {
            tempb = sum;
        }
    }
    if (isave == 0) tempa = sum;
    if (isave == iu) tempb = denold;
    step = 0;
    if (tempa != tempb) {
        tempa -= denmax;
        tempb -= denmax;
        step = 0.5 * (tempa - tempb) / (tempa + tempb);
    }
    angle = temp * ((TYPE) isave + step);
    /* Calculate the new parameters of the denominator, the new VBDLAG
     * vector and the new D. Then test for convergence. */
    par[1] = cos(angle);
    par[2] = sin(angle);
    for (j = 4; j <= 8; j += 2) {
        par[j - 1] = par[1] * par[j - 3] - par[2] * par[j - 2];
        par[j] = par[1] * par[j - 2] + par[2] * par[j - 3];
    }
    *beta = 0;
    denmax = 0;
    for (j = 1; j <= 9; ++j) {
        *beta += den[j - 1] * par[j - 1];
        denmax += denex[j - 1] * par[j - 1];
    }
    i__1 = *ndim;
    for (k = 1; k <= i__1; ++k) {
        vlag[k] = 0;
        for (j = 1; j <= 5; ++j)
            vlag[k] += prod[k + j * prod_dim1] * par[j - 1];
    }
    tau = vlag[*knew];
    dd = tempa = tempb = 0;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
        d__[i__] = par[1] * d__[i__] + par[2] * s[i__];
        w[i__] = xopt[i__] + d__[i__];
        /* Computing 2nd power */
        d__1 = d__[i__];
        dd += d__1 * d__1;
        tempa += d__[i__] * w[i__];
        tempb += w[i__] * w[i__];
    }
    if (iterc >= n) goto BDL340;
		if (iterc > 1) densav = std::max(densav, denold);
    if (fabs(denmax) <= fabs(densav) * 1.1) goto BDL340;
    densav = denmax;
    /* Set S to 0.5 the gradient of the denominator with respect to
     * D. Then branch for the next iteration. */
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
        temp = tempa * xopt[i__] + tempb * d__[i__] - vlag[npt + i__];
        s[i__] = tau * bmat[*knew + i__ * bmat_dim1] + alpha * temp;
    }
    i__1 = npt;
    for (k = 1; k <= i__1; ++k) {
        sum = 0;
        i__2 = n;
        for (j = 1; j <= i__2; ++j)
            sum += xpt[k + j * xpt_dim1] * w[j];
        temp = (tau * w[n + k] - alpha * vlag[k]) * sum;
        i__2 = n;
        for (i__ = 1; i__ <= i__2; ++i__)
            s[i__] += temp * xpt[k + i__ * xpt_dim1];
    }
    ss = 0;
    ds = 0;
    i__2 = n;
    for (i__ = 1; i__ <= i__2; ++i__) {
        /* Computing 2nd power */
        d__1 = s[i__];
        ss += d__1 * d__1;
        ds += d__[i__] * s[i__];
    }
    ssden = dd * ss - ds * ds;
    if (ssden >= dd * 1e-8 * ss) goto BDL70;
    /* Set the vector W before the RETURN from the subroutine. */
BDL340:
    i__2 = *ndim;
    for (k = 1; k <= i__2; ++k) {
        w[k] = 0;
        for (j = 1; j <= 5; ++j) w[k] += wvec[k + j * wvec_dim1] * par[j - 1];
    }
    vlag[*kopt] += 1.0;
    return 0;
}

template<class TYPE>
int trsapp_(int n, int npt, TYPE * xopt, TYPE * xpt, TYPE * gq, TYPE * hq, TYPE * pq,
            TYPE * delta, TYPE * step, TYPE * d__, TYPE * g, TYPE * hd, TYPE * hs, TYPE * crvmin)
{
    /* The arguments NPT, XOPT, XPT, GQ, HQ and PQ have their usual
     * meanings, in order to define the current quadratic model Q.
     * DETRLTA is the trust region radius, and has to be positive. STEP
     * will be set to the calculated trial step. The arrays D, G, HD and
     * HS will be used for working space. CRVMIN will be set to the
     * least curvature of H aint the conjugate directions that occur,
     * except that it is set to 0 if STEP goes all the way to the trust
     * region boundary. The calculation of STEP begins with the
     * truncated conjugate gradient method. If the boundary of the trust
     * region is reached, then further changes to STEP may be made, each
     * one being in the 2D space spanned by the current STEP and the
     * corresponding gradient of Q. Thus STEP should provide a
     * substantial reduction to Q within the trust region. */

    int xpt_dim1, xpt_offset, i__1, i__2, i__, j, k, ih, iu, iterc,
        isave, itersw, itermax;
    TYPE d__1, d__2, dd, cf, dg, gg, ds, sg, ss, dhd, dhs,
        cth, sgk, shs, sth, qadd, qbeg, qred, qmin, temp,
        qsav, qnew, ggbeg, alpha, angle, reduc, ggsav, delsq,
        tempa, tempb, bstep, ratio, twopi, angtest;

    /* Parameter adjustments */
    tempa = tempb = shs = sg = bstep = ggbeg = gg = qred = dd = 0.0;
    xpt_dim1 = npt;
    xpt_offset = 1 + xpt_dim1;
    xpt -= xpt_offset;
    --xopt; --gq; --hq; --pq; --step; --d__; --g; --hd; --hs;
    /* Function Body */
    twopi = 2.0 * M_PI;
    delsq = *delta * *delta;
    iterc = 0;
    itermax = n;
    itersw = itermax;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) d__[i__] = xopt[i__];
    goto TRL170;
    /* Prepare for the first line search. */
TRL20:
    qred = dd = 0;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
        step[i__] = 0;
        hs[i__] = 0;
        g[i__] = gq[i__] + hd[i__];
        d__[i__] = -g[i__];
        /* Computing 2nd power */
        d__1 = d__[i__];
        dd += d__1 * d__1;
    }
    *crvmin = 0;
    if (dd == 0) goto TRL160;
    ds = ss = 0;
    gg = dd;
    ggbeg = gg;
    /* Calculate the step to the trust region boundary and the product
     * HD. */
TRL40:
    ++iterc;
    temp = delsq - ss;
    bstep = temp / (ds + sqrt(ds * ds + dd * temp));
    goto TRL170;
TRL50:
    dhd = 0;
    i__1 = n;
    for (j = 1; j <= i__1; ++j) dhd += d__[j] * hd[j];
    /* Update CRVMIN and set the step-length ATRLPHA. */
    alpha = bstep;
    if (dhd > 0) {
        temp = dhd / dd;
        if (iterc == 1) *crvmin = temp;
        *crvmin = std::min(*crvmin, temp);
        /* Computing MIN */
        d__1 = alpha, d__2 = gg / dhd;
        alpha = std::min(d__1, d__2);
    }
    qadd = alpha * (gg - 0.5 * alpha * dhd);
    qred += qadd;
    /* Update STEP and HS. */
    ggsav = gg;
    gg = 0;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
        step[i__] += alpha * d__[i__];
        hs[i__] += alpha * hd[i__];
        /* Computing 2nd power */
        d__1 = g[i__] + hs[i__];
        gg += d__1 * d__1;
    }
    /* Begin another conjugate direction iteration if required. */
    if (alpha < bstep) {
        if (qadd <= qred * .01 || gg <= ggbeg * 1e-4 || iterc == itermax) goto TRL160;
        temp = gg / ggsav;
        dd = ds = ss = 0;
        i__1 = n;
        for (i__ = 1; i__ <= i__1; ++i__) {
            d__[i__] = temp * d__[i__] - g[i__] - hs[i__];
            /* Computing 2nd power */
            d__1 = d__[i__];
            dd += d__1 * d__1;
            ds += d__[i__] * step[i__];
            /* Computing 2nd power */
            d__1 = step[i__];
            ss += d__1 * d__1;
        }
        if (ds <= 0) goto TRL160;
        if (ss < delsq) goto TRL40;
    }
    *crvmin = 0;
    itersw = iterc;
    /* Test whether an alternative iteration is required. */
TRL90:
    if (gg <= ggbeg * 1e-4) goto TRL160;
    sg = 0;
    shs = 0;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
        sg += step[i__] * g[i__];
        shs += step[i__] * hs[i__];
    }
    sgk = sg + shs;
    angtest = sgk / sqrt(gg * delsq);
    if (angtest <= -.99) goto TRL160;
    /* Begin the alternative iteration by calculating D and HD and some
     * scalar products. */
    ++iterc;
    temp = sqrt(delsq * gg - sgk * sgk);
    tempa = delsq / temp;
    tempb = sgk / temp;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__)
        d__[i__] = tempa * (g[i__] + hs[i__]) - tempb * step[i__];
    goto TRL170;
TRL120:
    dg = dhd = dhs = 0;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
        dg += d__[i__] * g[i__];
        dhd += hd[i__] * d__[i__];
        dhs += hd[i__] * step[i__];
    }
    /* Seek the value of the angle that minimizes Q. */
    cf = 0.5 * (shs - dhd);
    qbeg = sg + cf;
    qsav = qmin = qbeg;
    isave = 0;
    iu = 49;
    temp = twopi / (TYPE) (iu + 1);
    i__1 = iu;
    for (i__ = 1; i__ <= i__1; ++i__) {
        angle = (TYPE) i__ *temp;
        cth = cos(angle);
        sth = sin(angle);
        qnew = (sg + cf * cth) * cth + (dg + dhs * cth) * sth;
        if (qnew < qmin) {
            qmin = qnew;
            isave = i__;
            tempa = qsav;
        } else if (i__ == isave + 1) tempb = qnew;
        qsav = qnew;
    }
    if ((TYPE) isave == 0) tempa = qnew;
    if (isave == iu) tempb = qbeg;
    angle = 0;
    if (tempa != tempb) {
        tempa -= qmin;
        tempb -= qmin;
        angle = 0.5 * (tempa - tempb) / (tempa + tempb);
    }
    angle = temp * ((TYPE) isave + angle);
    /* Calculate the new STEP and HS. Then test for convergence. */
    cth = cos(angle);
    sth = sin(angle);
    reduc = qbeg - (sg + cf * cth) * cth - (dg + dhs * cth) * sth;
    gg = 0;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
        step[i__] = cth * step[i__] + sth * d__[i__];
        hs[i__] = cth * hs[i__] + sth * hd[i__];
        /* Computing 2nd power */
        d__1 = g[i__] + hs[i__];
        gg += d__1 * d__1;
    }
    qred += reduc;
    ratio = reduc / qred;
    if (iterc < itermax && ratio > .01) goto TRL90;
TRL160:
    return 0;
    /* The following instructions act as a subroutine for setting the
     * vector HD to the vector D multiplied by the second derivative
     * matrix of Q.  They are called from three different places, which
     * are distinguished by the value of ITERC. */
TRL170:
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) hd[i__] = 0;
    i__1 = npt;
    for (k = 1; k <= i__1; ++k) {
        temp = 0;
        i__2 = n;
        for (j = 1; j <= i__2; ++j)
            temp += xpt[k + j * xpt_dim1] * d__[j];
        temp *= pq[k];
        i__2 = n;
        for (i__ = 1; i__ <= i__2; ++i__)
            hd[i__] += temp * xpt[k + i__ * xpt_dim1];
    }
    ih = 0;
    i__2 = n;
    for (j = 1; j <= i__2; ++j) {
        i__1 = j;
        for (i__ = 1; i__ <= i__1; ++i__) {
            ++ih;
            if (i__ < j) hd[j] += hq[ih] * d__[i__];
            hd[i__] += hq[ih] * d__[j];
        }
    }
    if (iterc == 0) goto TRL20;
    if (iterc <= itersw) goto TRL50;
    goto TRL120;
}

template<class TYPE>
static int update_(int n, int npt, TYPE *bmat, TYPE *zmat, int *idz, int *ndim, TYPE *vlag,
                   TYPE *beta, int *knew, TYPE *w)
{
    /* The arrays BMAT and ZMAT with IDZ are updated, in order to shift
     * the interpolation point that has index KNEW. On entry, VLAG
     * contains the components of the vector Theta*Wcheck+e_b of the
     * updating formula (6.11), and BETA holds the value of the
     * parameter that has this name. The vector W is used for working
     * space. */

    int bmat_dim1, bmat_offset, zmat_dim1, zmat_offset, i__1, i__2, i__,
        j, ja, jb, jl, jp, nptm, iflag;
    TYPE d__1, d__2, tau, temp, scala, scalb, alpha, denom, tempa, tempb, tausq;

    /* Parameter adjustments */
    tempb = 0.0;
    zmat_dim1 = npt;
    zmat_offset = 1 + zmat_dim1;
    zmat -= zmat_offset;
    bmat_dim1 = *ndim;
    bmat_offset = 1 + bmat_dim1;
    bmat -= bmat_offset;
    --vlag;
    --w;
    /* Function Body */
    nptm = npt - n - 1;
    /* Apply the rotations that put zeros in the KNEW-th row of ZMAT. */
    jl = 1;
    i__1 = nptm;
    for (j = 2; j <= i__1; ++j) {
        if (j == *idz) {
            jl = *idz;
        } else if (zmat[*knew + j * zmat_dim1] != 0) {
            /* Computing 2nd power */
            d__1 = zmat[*knew + jl * zmat_dim1];
            /* Computing 2nd power */
            d__2 = zmat[*knew + j * zmat_dim1];
            temp = sqrt(d__1 * d__1 + d__2 * d__2);
            tempa = zmat[*knew + jl * zmat_dim1] / temp;
            tempb = zmat[*knew + j * zmat_dim1] / temp;
            i__2 = npt;
            for (i__ = 1; i__ <= i__2; ++i__) {
                temp = tempa * zmat[i__ + jl * zmat_dim1] + tempb * zmat[i__
                               + j * zmat_dim1];
                zmat[i__ + j * zmat_dim1] = tempa * zmat[i__ + j * zmat_dim1]
                    - tempb * zmat[i__ + jl * zmat_dim1];
                zmat[i__ + jl * zmat_dim1] = temp;
            }
            zmat[*knew + j * zmat_dim1] = 0;
        }
    }
    /* Put the first NPT components of the KNEW-th column of HLAG into
     * W, and calculate the parameters of the updating formula. */
    tempa = zmat[*knew + zmat_dim1];
    if (*idz >= 2) tempa = -tempa;
    if (jl > 1) tempb = zmat[*knew + jl * zmat_dim1];
    i__1 = npt;
    for (i__ = 1; i__ <= i__1; ++i__) {
        w[i__] = tempa * zmat[i__ + zmat_dim1];
        if (jl > 1) w[i__] += tempb * zmat[i__ + jl * zmat_dim1];
    }
    alpha = w[*knew];
    tau = vlag[*knew];
    tausq = tau * tau;
    denom = alpha * *beta + tausq;
    vlag[*knew] -= 1.0;
    /* Complete the updating of ZMAT when there is only 1.0 nonzero
     * element in the KNEW-th row of the new matrix ZMAT, but, if IFLAG
     * is set to 1.0, then the first column of ZMAT will be exchanged
     * with another 1.0 later. */
    iflag = 0;
    if (jl == 1) {
        temp = sqrt((fabs(denom)));
        tempb = tempa / temp;
        tempa = tau / temp;
        i__1 = npt;
        for (i__ = 1; i__ <= i__1; ++i__)
            zmat[i__ + zmat_dim1] = tempa * zmat[i__ + zmat_dim1] - tempb *
                vlag[i__];
        if (*idz == 1 && temp < 0) *idz = 2;
        if (*idz >= 2 && temp >= 0) iflag = 1;
    } else {
        /* Complete the updating of ZMAT in the alternative case. */
        ja = 1;
        if (*beta >= 0) {
            ja = jl;
        }
        jb = jl + 1 - ja;
        temp = zmat[*knew + jb * zmat_dim1] / denom;
        tempa = temp * *beta;
        tempb = temp * tau;
        temp = zmat[*knew + ja * zmat_dim1];
        scala = 1.0 / sqrt(fabs(*beta) * temp * temp + tausq);
        scalb = scala * sqrt((fabs(denom)));
        i__1 = npt;
        for (i__ = 1; i__ <= i__1; ++i__) {
            zmat[i__ + ja * zmat_dim1] = scala * (tau * zmat[i__ + ja *
                         zmat_dim1] - temp * vlag[i__]);
            zmat[i__ + jb * zmat_dim1] = scalb * (zmat[i__ + jb * zmat_dim1]
                      - tempa * w[i__] - tempb * vlag[i__]);
        }
        if (denom <= 0) {
            if (*beta < 0) ++(*idz);
            if (*beta >= 0) iflag = 1;
        }
    }
    /* IDZ is reduced in the following case, and usually the first
     * column of ZMAT is exchanged with a later 1.0. */
    if (iflag == 1) {
        --(*idz);
        i__1 = npt;
        for (i__ = 1; i__ <= i__1; ++i__) {
            temp = zmat[i__ + zmat_dim1];
            zmat[i__ + zmat_dim1] = zmat[i__ + *idz * zmat_dim1];
            zmat[i__ + *idz * zmat_dim1] = temp;
        }
    }
    /* Finally, update the matrix BMAT. */
    i__1 = n;
    for (j = 1; j <= i__1; ++j) {
        jp = npt + j;
        w[jp] = bmat[*knew + j * bmat_dim1];
        tempa = (alpha * vlag[jp] - tau * w[jp]) / denom;
        tempb = (-(*beta) * w[jp] - tau * vlag[jp]) / denom;
        i__2 = jp;
        for (i__ = 1; i__ <= i__2; ++i__) {
            bmat[i__ + j * bmat_dim1] = bmat[i__ + j * bmat_dim1] + tempa *
                vlag[i__] + tempb * w[i__];
            if (i__ > npt) {
                bmat[jp + (i__ - npt) * bmat_dim1] = bmat[i__ + j *
                                 bmat_dim1];
            }
        }
    }
    return 0;
}

template<class TYPE, class Func>
static TYPE newuob_(int n, int npt, TYPE *x,
                    TYPE rhobeg, TYPE rhoend, int *ret_nf, int maxfun,
                    TYPE *xbase, TYPE *xopt, TYPE *xnew,
                    TYPE *xpt, TYPE *fval, TYPE *gq, TYPE *hq,
                    TYPE *pq, TYPE *bmat, TYPE *zmat, int *ndim,
                    TYPE *d__, TYPE *vlag, TYPE *w, Func &func)
{
    /* XBASE will hold a shift of origin that should reduce the
       contributions from rounding errors to values of the model and
       Lagrange functions.
     * XOPT will be set to the displacement from XBASE of the vector of
       variables that provides the least calculated F so far.
     * XNEW will be set to the displacement from XBASE of the vector of
       variables for the current calculation of F.
     * XPT will contain the interpolation point coordinates relative to
       XBASE.
     * FVAL will hold the values of F at the interpolation points.
     * GQ will hold the gradient of the quadratic model at XBASE.
     * HQ will hold the explicit second derivatives of the quadratic
       model.
     * PQ will contain the parameters of the implicit second derivatives
       of the quadratic model.
     * BMAT will hold the last N columns of H.
     * ZMAT will hold the factorization of the leading NPT by NPT
       submatrix of H, this factorization being ZMAT times Diag(DZ)
       times ZMAT^T, where the elements of DZ are plus or minus 1.0, as
       specified by IDZ.
     * NDIM is the first dimension of BMAT and has the value NPT+N.
     * D is reserved for trial steps from XOPT.
     * VLAG will contain the values of the Lagrange functions at a new
       point X.  They are part of a product that requires VLAG to be of
       length NDIM.
     * The array W will be used for working space. Its length must be at
       least 10*NDIM = 10*(NPT+N). Set some constants. */

    int xpt_dim1, xpt_offset, bmat_dim1, bmat_offset, zmat_dim1, zmat_offset,
        i__1, i__2, i__3, i__, j, k, ih, nf, nh, ip, jp, np, nfm, idz, ipt, jpt,
        nfmm, knew, kopt, nptm, ksave, nfsav, itemp, ktemp, itest, nftest;
    TYPE d__1, d__2, d__3, f, dx, dsq, rho, sum, fbeg, diff, beta, gisq,
        temp, suma, sumb, fopt, bsum, gqsq, xipt, xjpt, sumz, diffa, diffb,
        diffc, hdiag, alpha, delta, recip, reciq, fsave, dnorm, ratio, dstep,
        vquad, tempq, rhosq, detrat, crvmin, distsq, xoptsq;

    /* Parameter adjustments */
    diffc = ratio = dnorm = nfsav = diffa = diffb = xoptsq = f = 0.0;
    rho = fbeg = fopt = xjpt = xipt = 0.0;
    itest = ipt = jpt = 0;
    alpha = dstep = 0.0;
    zmat_dim1 = npt;
    zmat_offset = 1 + zmat_dim1;
    zmat -= zmat_offset;
    xpt_dim1 = npt;
    xpt_offset = 1 + xpt_dim1;
    xpt -= xpt_offset;
    --x; --xbase; --xopt; --xnew; --fval; --gq; --hq; --pq;
    bmat_dim1 = *ndim;
    bmat_offset = 1 + bmat_dim1;
    bmat -= bmat_offset;
    --d__;
    --vlag;
    --w;
    /* Function Body */
    np = n + 1;
    nh = n * np / 2;
    nptm = npt - np;
    nftest = (maxfun > 1)? maxfun : 1;
    /* Set the initial elements of XPT, BMAT, HQ, PQ and ZMAT to 0. */
    i__1 = n;
    for (j = 1; j <= i__1; ++j) {
        xbase[j] = x[j];
        i__2 = npt;
        for (k = 1; k <= i__2; ++k)
            xpt[k + j * xpt_dim1] = 0;
        i__2 = *ndim;
        for (i__ = 1; i__ <= i__2; ++i__)
            bmat[i__ + j * bmat_dim1] = 0;
    }
    i__2 = nh;
    for (ih = 1; ih <= i__2; ++ih) hq[ih] = 0;
    i__2 = npt;
    for (k = 1; k <= i__2; ++k) {
        pq[k] = 0;
        i__1 = nptm;
        for (j = 1; j <= i__1; ++j)
            zmat[k + j * zmat_dim1] = 0;
    }
    /* Begin the initialization procedure. NF becomes 1.0 more than the
     * number of function values so far. The coordinates of the
     * displacement of the next initial interpolation point from XBASE
     * are set in XPT(NF,.). */
    rhosq = rhobeg * rhobeg;
    recip = 1.0 / rhosq;
    reciq = sqrt(.5) / rhosq;
    nf = 0;
L50:
    nfm = nf;
    nfmm = nf - n;
    ++nf;
    if (nfm <= n << 1) {
        if (nfm >= 1 && nfm <= n) {
            xpt[nf + nfm * xpt_dim1] = rhobeg;
        } else if (nfm > n) {
            xpt[nf + nfmm * xpt_dim1] = -(rhobeg);
        }
    } else {
        itemp = (nfmm - 1) / n;
        jpt = nfm - itemp * n - n;
        ipt = jpt + itemp;
        if (ipt > n) {
            itemp = jpt;
            jpt = ipt - n;
            ipt = itemp;
        }
        xipt = rhobeg;
        if (fval[ipt + np] < fval[ipt + 1]) xipt = -xipt;
        xjpt = rhobeg;
        if (fval[jpt + np] < fval[jpt + 1]) xjpt = -xjpt;
        xpt[nf + ipt * xpt_dim1] = xipt;
        xpt[nf + jpt * xpt_dim1] = xjpt;
    }
    /* Calculate the next value of F, label 70 being reached immediately
     * after this calculation. The least function value so far and its
     * index are required. */
    i__1 = n;
    for (j = 1; j <= i__1; ++j)
        x[j] = xpt[nf + j * xpt_dim1] + xbase[j];
    goto L310;
L70:
    fval[nf] = f;
    if (nf == 1) {
        fbeg = fopt = f;
        kopt = 1;
    } else if (f < fopt) {
        fopt = f;
        kopt = nf;
    }
    /* Set the non0 initial elements of BMAT and the quadratic model
     * in the cases when NF is at most 2*N+1. */
    if (nfm <= n << 1) {
        if (nfm >= 1 && nfm <= n) {
            gq[nfm] = (f - fbeg) / rhobeg;
            if (npt < nf + n) {
                bmat[nfm * bmat_dim1 + 1] = -1.0 / rhobeg;
                bmat[nf + nfm * bmat_dim1] = 1.0 / rhobeg;
                bmat[npt + nfm + nfm * bmat_dim1] = -.5 * rhosq;
            }
        } else if (nfm > n) {
            bmat[nf - n + nfmm * bmat_dim1] = .5 / rhobeg;
            bmat[nf + nfmm * bmat_dim1] = -.5 / rhobeg;
            zmat[nfmm * zmat_dim1 + 1] = -reciq - reciq;
            zmat[nf - n + nfmm * zmat_dim1] = reciq;
            zmat[nf + nfmm * zmat_dim1] = reciq;
            ih = nfmm * (nfmm + 1) / 2;
            temp = (fbeg - f) / rhobeg;
            hq[ih] = (gq[nfmm] - temp) / rhobeg;
            gq[nfmm] = .5 * (gq[nfmm] + temp);
        }
        /* Set the off-diagonal second derivatives of the Lagrange
         * functions and the initial quadratic model. */
    } else {
        ih = ipt * (ipt - 1) / 2 + jpt;
        if (xipt < 0) ipt += n;
        if (xjpt < 0) jpt += n;
        zmat[nfmm * zmat_dim1 + 1] = recip;
        zmat[nf + nfmm * zmat_dim1] = recip;
        zmat[ipt + 1 + nfmm * zmat_dim1] = -recip;
        zmat[jpt + 1 + nfmm * zmat_dim1] = -recip;
        hq[ih] = (fbeg - fval[ipt + 1] - fval[jpt + 1] + f) / (xipt * xjpt);
    }
    if (nf < npt) goto L50;
    /* Begin the iterative procedure, because the initial model is
     * complete. */
    rho = rhobeg;
    delta = rho;
    idz = 1;
    diffa = diffb = itest = xoptsq = 0;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
        xopt[i__] = xpt[kopt + i__ * xpt_dim1];
        /* Computing 2nd power */
        d__1 = xopt[i__];
        xoptsq += d__1 * d__1;
    }
L90:
    nfsav = nf;
    /* Generate the next trust region step and test its length. Set KNEW
     * to -1 if the purpose of the next F will be to improve the
     * model. */
L100:
    knew = 0;
    trsapp_(n, npt, &xopt[1], &xpt[xpt_offset], &gq[1], &hq[1], &pq[1], &
       delta, &d__[1], &w[1], &w[np], &w[np + n], &w[np + (n << 1)], &
        crvmin);
    dsq = 0;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
        /* Computing 2nd power */
        d__1 = d__[i__];
        dsq += d__1 * d__1;
    }
    /* Computing MIN */
    d__1 = delta, d__2 = sqrt(dsq);
    dnorm = std::min(d__1, d__2);
    if (dnorm < .5 * rho) {
        knew = -1;
        delta = DELTA_DECREASE * delta;
        ratio = -1.;
        if (delta <= rho * 1.5) delta = rho;
        if (nf <= nfsav + 2) goto L460;
        temp = crvmin * .125 * rho * rho;
        /* Computing MAX */
        d__1 = std::max(diffa, diffb);
        if (temp <= std::max(d__1, diffc)) goto L460;
        goto L490;
    }
    /* Shift XBASE if XOPT may be too far from XBASE. First make the
     * changes to BMAT that do not depend on ZMAT. */
L120:
    if (dsq <= xoptsq * .001) {
        tempq = xoptsq * .25;
        i__1 = npt;
        for (k = 1; k <= i__1; ++k) {
            sum = 0;
            i__2 = n;
            for (i__ = 1; i__ <= i__2; ++i__)
                sum += xpt[k + i__ * xpt_dim1] * xopt[i__];
            temp = pq[k] * sum;
            sum -= .5 * xoptsq;
            w[npt + k] = sum;
            i__2 = n;
            for (i__ = 1; i__ <= i__2; ++i__) {
                gq[i__] += temp * xpt[k + i__ * xpt_dim1];
                xpt[k + i__ * xpt_dim1] -= .5 * xopt[i__];
                vlag[i__] = bmat[k + i__ * bmat_dim1];
                w[i__] = sum * xpt[k + i__ * xpt_dim1] + tempq * xopt[i__];
                ip = npt + i__;
                i__3 = i__;
                for (j = 1; j <= i__3; ++j)
                    bmat[ip + j * bmat_dim1] = bmat[ip + j * bmat_dim1] +
                        vlag[i__] * w[j] + w[i__] * vlag[j];
            }
        }
        /* Then the revisions of BMAT that depend on ZMAT are
         * calculated. */
        i__3 = nptm;
        for (k = 1; k <= i__3; ++k) {
            sumz = 0;
            i__2 = npt;
            for (i__ = 1; i__ <= i__2; ++i__) {
                sumz += zmat[i__ + k * zmat_dim1];
                w[i__] = w[npt + i__] * zmat[i__ + k * zmat_dim1];
            }
            i__2 = n;
            for (j = 1; j <= i__2; ++j) {
                sum = tempq * sumz * xopt[j];
                i__1 = npt;
                for (i__ = 1; i__ <= i__1; ++i__)
                    sum += w[i__] * xpt[i__ + j * xpt_dim1];
                vlag[j] = sum;
                if (k < idz) sum = -sum;
                i__1 = npt;
                for (i__ = 1; i__ <= i__1; ++i__)
                    bmat[i__ + j * bmat_dim1] += sum * zmat[i__ + k * zmat_dim1];
            }
            i__1 = n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                ip = i__ + npt;
                temp = vlag[i__];
                if (k < idz) temp = -temp;
                i__2 = i__;
                for (j = 1; j <= i__2; ++j)
                    bmat[ip + j * bmat_dim1] += temp * vlag[j];
            }
        }
        /* The following instructions complete the shift of XBASE,
         * including the changes to the parameters of the quadratic
         * model. */
        ih = 0;
        i__2 = n;
        for (j = 1; j <= i__2; ++j) {
            w[j] = 0;
            i__1 = npt;
            for (k = 1; k <= i__1; ++k) {
                w[j] += pq[k] * xpt[k + j * xpt_dim1];
                xpt[k + j * xpt_dim1] -= .5 * xopt[j];
            }
            i__1 = j;
            for (i__ = 1; i__ <= i__1; ++i__) {
                ++ih;
                if (i__ < j) gq[j] += hq[ih] * xopt[i__];
                gq[i__] += hq[ih] * xopt[j];
                hq[ih] = hq[ih] + w[i__] * xopt[j] + xopt[i__] * w[j];
                bmat[npt + i__ + j * bmat_dim1] = bmat[npt + j + i__ *
                                 bmat_dim1];
            }
        }
        i__1 = n;
        for (j = 1; j <= i__1; ++j) {
            xbase[j] += xopt[j];
            xopt[j] = 0;
        }
        xoptsq = 0;
    }
    /* Pick the model step if KNEW is positive. A different choice of D
     * may be made later, if the choice of D by BIGLAG causes
     * substantial cancellation in DENOM. */
    if (knew > 0) {
        biglag_(n, npt, &xopt[1], &xpt[xpt_offset], &bmat[bmat_offset], &zmat[zmat_offset], &idz,
                ndim, &knew, &dstep, &d__[1], &alpha, &vlag[1], &vlag[npt + 1], &w[1], &w[np], &w[np + n], func);
    }
    /* Calculate VLAG and BETA for the current choice of D. The first
     * NPT components of W_check will be held in W. */
    i__1 = npt;
    for (k = 1; k <= i__1; ++k) {
        suma = 0;
        sumb = 0;
        sum = 0;
        i__2 = n;
        for (j = 1; j <= i__2; ++j) {
            suma += xpt[k + j * xpt_dim1] * d__[j];
            sumb += xpt[k + j * xpt_dim1] * xopt[j];
            sum += bmat[k + j * bmat_dim1] * d__[j];
        }
        w[k] = suma * (.5 * suma + sumb);
        vlag[k] = sum;
    }
    beta = 0;
    i__1 = nptm;
    for (k = 1; k <= i__1; ++k) {
        sum = 0;
        i__2 = npt;
        for (i__ = 1; i__ <= i__2; ++i__)
            sum += zmat[i__ + k * zmat_dim1] * w[i__];
        if (k < idz) {
            beta += sum * sum;
            sum = -sum;
        } else beta -= sum * sum;
        i__2 = npt;
        for (i__ = 1; i__ <= i__2; ++i__)
            vlag[i__] += sum * zmat[i__ + k * zmat_dim1];
    }
    bsum = 0;
    dx = 0;
    i__2 = n;
    for (j = 1; j <= i__2; ++j) {
        sum = 0;
        i__1 = npt;
        for (i__ = 1; i__ <= i__1; ++i__)
            sum += w[i__] * bmat[i__ + j * bmat_dim1];
        bsum += sum * d__[j];
        jp = npt + j;
        i__1 = n;
        for (k = 1; k <= i__1; ++k)
            sum += bmat[jp + k * bmat_dim1] * d__[k];
        vlag[jp] = sum;
        bsum += sum * d__[j];
        dx += d__[j] * xopt[j];
    }
    beta = dx * dx + dsq * (xoptsq + dx + dx + .5 * dsq) + beta - bsum;
    vlag[kopt] += 1.0;
    /* If KNEW is positive and if the cancellation in DENOM is
     * unacceptable, then BIGDEN calculates an alternative model step,
     * XNEW being used for working space. */
    if (knew > 0) {
        /* Computing 2nd power */
        d__1 = vlag[knew];
        temp = 1.0 + alpha * beta / (d__1 * d__1);
        if (fabs(temp) <= .8) {
            bigden_(n, npt, &xopt[1], &xpt[xpt_offset], &bmat[bmat_offset], &
                zmat[zmat_offset], &idz, ndim, &kopt, &knew, &d__[1], &w[
                                             1], &vlag[1], &beta, &xnew[1], &w[*ndim + 1], &w[*ndim *
                                    6 + 1]);
        }
    }
    /* Calculate the next value of the objective function. */
L290:
    i__2 = n;
    for (i__ = 1; i__ <= i__2; ++i__) {
        xnew[i__] = xopt[i__] + d__[i__];
        x[i__] = xbase[i__] + xnew[i__];
    }
    ++nf;
L310:
    if (nf > nftest) {
        --nf;
        //fprintf(stderr, "++ Return from NEWUOA because CALFUN has been called MAXFUN times.\n");
        goto L530;
    }
    f = func(n, &x[1]);
    if (nf <= npt) goto L70;
    if (knew == -1) goto L530;
    /* Use the quadratic model to predict the change in F due to the
     * step D, and set DIFF to the error of this prediction. */
    vquad = ih = 0;
    i__2 = n;
    for (j = 1; j <= i__2; ++j) {
        vquad += d__[j] * gq[j];
        i__1 = j;
        for (i__ = 1; i__ <= i__1; ++i__) {
            ++ih;
            temp = d__[i__] * xnew[j] + d__[j] * xopt[i__];
            if (i__ == j) temp = .5 * temp;
            vquad += temp * hq[ih];
        }
    }
    i__1 = npt;
    for (k = 1; k <= i__1; ++k) vquad += pq[k] * w[k];
    diff = f - fopt - vquad;
    diffc = diffb;
    diffb = diffa;
    diffa = fabs(diff);
    if (dnorm > rho) nfsav = nf;
    /* Update FOPT and XOPT if the new F is the least value of the
     * objective function so far. The branch when KNEW is positive
     * occurs if D is not a trust region step. */
    fsave = fopt;
    if (f < fopt) {
        fopt = f;
        xoptsq = 0;
        i__1 = n;
        for (i__ = 1; i__ <= i__1; ++i__) {
            xopt[i__] = xnew[i__];
            /* Computing 2nd power */
            d__1 = xopt[i__];
            xoptsq += d__1 * d__1;
        }
    }
    ksave = knew;
    if (knew > 0) goto L410;
    /* Pick the next value of DELTA after a trust region step. */
    if (vquad >= 0) {
        fprintf(stderr, "++ Return from NEWUOA because a trust region step has failed to reduce Q.\n");
        goto L530;
    }
    ratio = (f - fsave) / vquad;
    if (ratio <= 0.1) {
        delta = .5 * dnorm;
    } else if (ratio <= .7) {
        /* Computing MAX */
        d__1 = .5 * delta;
        delta = std::max(d__1, dnorm);
    } else {
        /* Computing MAX */
        d__1 = .5 * delta, d__2 = dnorm + dnorm;
        delta = std::max(d__1, d__2);
    }
    if (delta <= rho * 1.5) delta = rho;
    /* Set KNEW to the index of the next interpolation point to be
     * deleted. */
    /* Computing MAX */
    d__2 = 0.1 * delta;
    /* Computing 2nd power */
    d__1 = std::max(d__2, rho);
    rhosq = d__1 * d__1;
    ktemp = detrat = 0;
    if (f >= fsave) {
        ktemp = kopt;
        detrat = 1.0;
    }
    i__1 = npt;
    for (k = 1; k <= i__1; ++k) {
        hdiag = 0;
        i__2 = nptm;
        for (j = 1; j <= i__2; ++j) {
            temp = 1.0;
            if (j < idz) temp = -1.0;
            /* Computing 2nd power */
            d__1 = zmat[k + j * zmat_dim1];
            hdiag += temp * (d__1 * d__1);
        }
        /* Computing 2nd power */
        d__2 = vlag[k];
        temp = (d__1 = beta * hdiag + d__2 * d__2, fabs(d__1));
        distsq = 0;
        i__2 = n;
        for (j = 1; j <= i__2; ++j) {
            /* Computing 2nd power */
            d__1 = xpt[k + j * xpt_dim1] - xopt[j];
            distsq += d__1 * d__1;
        }
        if (distsq > rhosq) {
            /* Computing 3rd power */
            d__1 = distsq / rhosq;
            temp *= d__1 * (d__1 * d__1);
        }
        if (temp > detrat && k != ktemp) {
            detrat = temp;
            knew = k;
        }
    }
    if (knew == 0) goto L460;
    /* Update BMAT, ZMAT and IDZ, so that the KNEW-th interpolation
     * point can be moved. Begin the updating of the quadratic model,
     * starting with the explicit second derivative term. */
L410:
    update_(n, npt, &bmat[bmat_offset], &zmat[zmat_offset], &idz, ndim, &vlag[1], &beta, &knew, &w[1]);
    fval[knew] = f;
    ih = 0;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
        temp = pq[knew] * xpt[knew + i__ * xpt_dim1];
        i__2 = i__;
        for (j = 1; j <= i__2; ++j) {
            ++ih;
            hq[ih] += temp * xpt[knew + j * xpt_dim1];
        }
    }
    pq[knew] = 0;
    /* Update the other second derivative parameters, and then the
     * gradient vector of the model. Also include the new interpolation
     * point. */
    i__2 = nptm;
    for (j = 1; j <= i__2; ++j) {
        temp = diff * zmat[knew + j * zmat_dim1];
        if (j < idz) temp = -temp;
        i__1 = npt;
        for (k = 1; k <= i__1; ++k) {
            pq[k] += temp * zmat[k + j * zmat_dim1];
        }
    }
    gqsq = 0;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
        gq[i__] += diff * bmat[knew + i__ * bmat_dim1];
        /* Computing 2nd power */
        d__1 = gq[i__];
        gqsq += d__1 * d__1;
        xpt[knew + i__ * xpt_dim1] = xnew[i__];
    }
    /* If a trust region step makes a small change to the objective
     * function, then calculate the gradient of the least Frobenius norm
     * interpolant at XBASE, and store it in W, using VLAG for a vector
     * of right hand sides. */
    if (ksave == 0 && delta == rho) {
        if (fabs(ratio) > .01) {
            itest = 0;
        } else {
            i__1 = npt;
            for (k = 1; k <= i__1; ++k)
                vlag[k] = fval[k] - fval[kopt];
            gisq = 0;
            i__1 = n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                sum = 0;
                i__2 = npt;
                for (k = 1; k <= i__2; ++k)
                    sum += bmat[k + i__ * bmat_dim1] * vlag[k];
                gisq += sum * sum;
                w[i__] = sum;
            }
            /* Test whether to replace the new quadratic model by the
             * least Frobenius norm interpolant, making the replacement
             * if the test is satisfied. */
            ++itest;
            if (gqsq < gisq * 100.) itest = 0;
            if (itest >= 3) {
                i__1 = n;
                for (i__ = 1; i__ <= i__1; ++i__) gq[i__] = w[i__];
                i__1 = nh;
                for (ih = 1; ih <= i__1; ++ih) hq[ih] = 0;
                i__1 = nptm;
                for (j = 1; j <= i__1; ++j) {
                    w[j] = 0;
                    i__2 = npt;
                    for (k = 1; k <= i__2; ++k)
                        w[j] += vlag[k] * zmat[k + j * zmat_dim1];
                    if (j < idz) w[j] = -w[j];
                }
                i__1 = npt;
                for (k = 1; k <= i__1; ++k) {
                    pq[k] = 0;
                    i__2 = nptm;
                    for (j = 1; j <= i__2; ++j)
                        pq[k] += zmat[k + j * zmat_dim1] * w[j];
                }
                itest = 0;
            }
        }
    }
    if (f < fsave) kopt = knew;
    /* If a trust region step has provided a sufficient decrease in F,
     * then branch for another trust region calculation. The case
     * KSAVE>0 occurs when the new function value was calculated by a
     * model step. */
    if (f <= fsave + 0.1 * vquad) goto L100;
    if (ksave > 0) goto L100;
    /* Alternatively, find out if the interpolation points are close
     * enough to the best point so far. */
    knew = 0;
L460:
    distsq = delta * 4. * delta;
    i__2 = npt;
    for (k = 1; k <= i__2; ++k) {
        sum = 0;
        i__1 = n;
        for (j = 1; j <= i__1; ++j) {
            /* Computing 2nd power */
            d__1 = xpt[k + j * xpt_dim1] - xopt[j];
            sum += d__1 * d__1;
        }
        if (sum > distsq) {
            knew = k;
            distsq = sum;
        }
    }
    /* If KNEW is positive, then set DSTEP, and branch back for the next
     * iteration, which will generate a "model step". */
    if (knew > 0) {
        /* Computing MAX and MIN*/
        d__2 = 0.1 * sqrt(distsq), d__3 = .5 * delta;
        d__1 = std::min(d__2, d__3);
        dstep = std::max(d__1, rho);
        dsq = dstep * dstep;
        goto L120;
    }
    if (ratio > 0) goto L100;
    if (std::max(delta, dnorm) > rho) goto L100;
    /* The calculations with the current value of RHO are complete. Pick
     * the next values of RHO and DELTA. */
L490:
    if (rho > rhoend) {
        delta = .5 * rho;
        ratio = rho / rhoend;
        if (ratio <= 16.) rho = rhoend;
        else if (ratio <= 250.) rho = sqrt(ratio) * rhoend;
        else rho = RHO_DECREASE * rho;
        delta = std::max(delta, rho);
        goto L90;
    }
    /* Return from the calculation, after another Newton-Raphson step,
     * if it is too short to have been tried before. */
    if (knew == -1) goto L290;
L530:
    if (fopt <= f) {
        i__2 = n;
        for (i__ = 1; i__ <= i__2; ++i__)
            x[i__] = xbase[i__] + xopt[i__];
        f = fopt;
    }
    *ret_nf = nf;
    return f;
}

template<class TYPE, class Func>
static TYPE newuoa_(int n, int npt, TYPE *x, TYPE rhobeg, TYPE rhoend, int *ret_nf, int maxfun, TYPE *w, Func &func)
{
    /* This subroutine seeks the least value of a function of many
     * variables, by a trust region method that forms quadratic models
     * by interpolation. There can be some freedom in the interpolation
     * conditions, which is taken up by minimizing the Frobenius norm of
     * the change to the second derivative of the quadratic model,
     * beginning with a zero matrix. The arguments of the subroutine are
     * as follows. */

    /* N must be set to the number of variables and must be at least
     * two. NPT is the number of interpolation conditions. Its value
     * must be in the interval [N+2,(N+1)(N+2)/2]. Initial values of the
     * variables must be set in X(1),X(2),...,X(N). They will be changed
     * to the values that give the least calculated F. RHOBEG and RHOEND
     * must be set to the initial and final values of a trust region
     * radius, so both must be positive with RHOEND<=RHOBEG. Typically
     * RHOBEG should be about one tenth of the greatest expected change
     * to a variable, and RHOEND should indicate the accuracy that is
     * required in the final values of the variables. MAXFUN must be set
     * to an upper bound on the number of calls of CALFUN.  The array W
     * will be used for working space. Its length must be at least
     * (NPT+13)*(NPT+N)+3*N*(N+3)/2. */

    /* SUBROUTINE CALFUN (N,X,F) must be provided by the user. It must
     * set F to the value of the objective function for the variables
     * X(1),X(2),...,X(N). Partition the working space array, so that
     * different parts of it can be treated separately by the subroutine
     * that performs the main calculation. */

    int id, np, iw, igq, ihq, ixb, ifv, ipq, ivl, ixn,
        ixo, ixp, ndim, nptm, ibmat, izmat;

    /* Parameter adjustments */
    --w; --x;
    /* Function Body */
    np = n + 1;
    nptm = npt - np;
    if (npt < n + 2 || npt > (n + 2) * np / 2) {
        fprintf(stderr, "** Return from NEWUOA because NPT is not in the required interval.\n");
        return 1;
    }
    ndim = npt + n;
    ixb = 1;
    ixo = ixb + n;
    ixn = ixo + n;
    ixp = ixn + n;
    ifv = ixp + n * npt;
    igq = ifv + npt;
    ihq = igq + n;
    ipq = ihq + n * np / 2;
    ibmat = ipq + npt;
    izmat = ibmat + ndim * n;
    id = izmat + npt * nptm;
    ivl = id + n;
    iw = ivl + ndim;
    /* The above settings provide a partition of W for subroutine
     * NEWUOB. The partition requires the first NPT*(NPT+N)+5*N*(N+3)/2
     * elements of W plus the space that is needed by the last array of
     * NEWUOB. */
    return newuob_(n, npt, &x[1], rhobeg, rhoend, ret_nf, maxfun, &w[ixb], &w[ixo], &w[ixn],
                   &w[ixp], &w[ifv], &w[igq], &w[ihq], &w[ipq], &w[ibmat], &w[izmat],
                   &ndim, &w[id], &w[ivl], &w[iw], func);
}

template<class TYPE, class Func>
TYPE min_newuoa(int n, TYPE *x, Func &func, TYPE rb, TYPE tol, int max_iter)
{
    int npt = 2 * n + 1, rnf;
    TYPE ret;
    TYPE *w = (TYPE*)calloc((npt+13)*(npt+n) + 3*n*(n+3)/2 + 11, sizeof(TYPE));
    ret = newuoa_(n, 2*n+1, x, rb, tol, &rnf, max_iter, w, func);
    free(w);
    return ret;
}

#endif