1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
|
/*
This is NEWUOA for unconstrained minimization. The codes were written
by Powell in Fortran and then translated to C with f2c. I further
modified the code to make it independent of libf2c and f2c.h. Please
refer to "The NEWUOA software for unconstrained optimization without
derivatives", which is available at www.damtp.cam.ac.uk, for more
information.
*/
/*
The original fortran codes are distributed without restrictions. The
C++ codes are distributed under MIT license.
*/
/* The MIT License
Copyright (c) 2004, by M.J.D. Powell <mjdp@cam.ac.uk>
2008, by Attractive Chaos <attractivechaos@aol.co.uk>
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#ifndef AC_NEWUOA_HH_
#define AC_NEWUOA_HH_
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
//PARAMETER DECREASE WAS 0.1
#define DELTA_DECREASE 0.5
#define RHO_DECREASE 0.5
/*most probably:
TYPE is float or double
Func is defined as double func(int n, double *x);
or better as
class Func {
double operator()(int n, double *x);
};
where n is the number of parameters and x the vector parameter
r_start stands unknown...
*/
template<class TYPE, class Func>
TYPE min_newuoa(int n, TYPE *x, Func &func, TYPE r_start=1e7, TYPE tol=1e-8, int max_iter=5000);
template<class TYPE, class Func>
static int biglag_(int n, int npt, TYPE *xopt, TYPE *xpt, TYPE *bmat, TYPE *zmat, int *idz,
int *ndim, int *knew, TYPE *delta, TYPE *d__, TYPE *alpha, TYPE *hcol, TYPE *gc,
TYPE *gd, TYPE *s, TYPE *w, Func & /*func*/)
{
/* N is the number of variables. NPT is the number of interpolation
* equations. XOPT is the best interpolation point so far. XPT
* contains the coordinates of the current interpolation
* points. BMAT provides the last N columns of H. ZMAT and IDZ give
* a factorization of the first NPT by NPT submatrix of H. NDIM is
* the first dimension of BMAT and has the value NPT+N. KNEW is the
* index of the interpolation point that is going to be moved. DEBLLTA
* is the current trust region bound. D will be set to the step from
* XOPT to the new point. ABLLPHA will be set to the KNEW-th diagonal
* element of the H matrix. HCOBLL, GC, GD, S and W will be used for
* working space. */
/* The step D is calculated in a way that attempts to maximize the
* modulus of BLLFUNC(XOPT+D), subject to the bound ||D|| .BLLE. DEBLLTA,
* where BLLFUNC is the KNEW-th BLLagrange function. */
int xpt_dim1, xpt_offset, bmat_dim1, bmat_offset, zmat_dim1, zmat_offset,
i__1, i__2, i__, j, k, iu, nptm, iterc, isave;
TYPE sp, ss, cf1, cf2, cf3, cf4, cf5, dhd, cth, tau, sth, sum, temp, step,
angle, scale, denom, delsq, tempa, tempb, twopi, taubeg, tauold, taumax,
d__1, dd, gg;
/* Parameter adjustments */
tempa = tempb = 0.0;
zmat_dim1 = npt;
zmat_offset = 1 + zmat_dim1;
zmat -= zmat_offset;
xpt_dim1 = npt;
xpt_offset = 1 + xpt_dim1;
xpt -= xpt_offset;
--xopt;
bmat_dim1 = *ndim;
bmat_offset = 1 + bmat_dim1;
bmat -= bmat_offset;
--d__; --hcol; --gc; --gd; --s; --w;
/* Function Body */
twopi = 2.0 * M_PI;
delsq = *delta * *delta;
nptm = npt - n - 1;
/* Set the first NPT components of HCOBLL to the leading elements of
* the KNEW-th column of H. */
iterc = 0;
i__1 = npt;
for (k = 1; k <= i__1; ++k) hcol[k] = 0;
i__1 = nptm;
for (j = 1; j <= i__1; ++j) {
temp = zmat[*knew + j * zmat_dim1];
if (j < *idz) temp = -temp;
i__2 = npt;
for (k = 1; k <= i__2; ++k)
hcol[k] += temp * zmat[k + j * zmat_dim1];
}
*alpha = hcol[*knew];
/* Set the unscaled initial direction D. Form the gradient of BLLFUNC
* atXOPT, and multiply D by the second derivative matrix of
* BLLFUNC. */
dd = 0;
i__2 = n;
for (i__ = 1; i__ <= i__2; ++i__) {
d__[i__] = xpt[*knew + i__ * xpt_dim1] - xopt[i__];
gc[i__] = bmat[*knew + i__ * bmat_dim1];
gd[i__] = 0;
/* Computing 2nd power */
d__1 = d__[i__];
dd += d__1 * d__1;
}
i__2 = npt;
for (k = 1; k <= i__2; ++k) {
temp = 0;
sum = 0;
i__1 = n;
for (j = 1; j <= i__1; ++j) {
temp += xpt[k + j * xpt_dim1] * xopt[j];
sum += xpt[k + j * xpt_dim1] * d__[j];
}
temp = hcol[k] * temp;
sum = hcol[k] * sum;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
gc[i__] += temp * xpt[k + i__ * xpt_dim1];
gd[i__] += sum * xpt[k + i__ * xpt_dim1];
}
}
/* Scale D and GD, with a sign change if required. Set S to another
* vector in the initial two dimensional subspace. */
gg = sp = dhd = 0;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing 2nd power */
d__1 = gc[i__];
gg += d__1 * d__1;
sp += d__[i__] * gc[i__];
dhd += d__[i__] * gd[i__];
}
scale = *delta / sqrt(dd);
if (sp * dhd < 0) scale = -scale;
temp = 0;
if (sp * sp > dd * .99 * gg) temp = 1.0;
tau = scale * (fabs(sp) + 0.5 * scale * fabs(dhd));
if (gg * delsq < tau * .01 * tau) temp = 1.0;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
d__[i__] = scale * d__[i__];
gd[i__] = scale * gd[i__];
s[i__] = gc[i__] + temp * gd[i__];
}
/* Begin the iteration by overwriting S with a vector that has the
* required length and direction, except that termination occurs if
* the given D and S are nearly parallel. */
for (iterc = 0; iterc != n; ++iterc) {
dd = sp = ss = 0;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing 2nd power */
d__1 = d__[i__];
dd += d__1 * d__1;
sp += d__[i__] * s[i__];
/* Computing 2nd power */
d__1 = s[i__];
ss += d__1 * d__1;
}
temp = dd * ss - sp * sp;
if (temp <= dd * 1e-8 * ss) return 0;
denom = sqrt(temp);
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
s[i__] = (dd * s[i__] - sp * d__[i__]) / denom;
w[i__] = 0;
}
/* Calculate the coefficients of the objective function on the
* circle, beginning with the multiplication of S by the second
* derivative matrix. */
i__1 = npt;
for (k = 1; k <= i__1; ++k) {
sum = 0;
i__2 = n;
for (j = 1; j <= i__2; ++j)
sum += xpt[k + j * xpt_dim1] * s[j];
sum = hcol[k] * sum;
i__2 = n;
for (i__ = 1; i__ <= i__2; ++i__)
w[i__] += sum * xpt[k + i__ * xpt_dim1];
}
cf1 = cf2 = cf3 = cf4 = cf5 = 0;
i__2 = n;
for (i__ = 1; i__ <= i__2; ++i__) {
cf1 += s[i__] * w[i__];
cf2 += d__[i__] * gc[i__];
cf3 += s[i__] * gc[i__];
cf4 += d__[i__] * gd[i__];
cf5 += s[i__] * gd[i__];
}
cf1 = 0.5 * cf1;
cf4 = 0.5 * cf4 - cf1;
/* Seek the value of the angle that maximizes the modulus of TAU. */
taubeg = cf1 + cf2 + cf4;
taumax = tauold = taubeg;
isave = 0;
iu = 49;
temp = twopi / (TYPE) (iu + 1);
i__2 = iu;
for (i__ = 1; i__ <= i__2; ++i__) {
angle = (TYPE) i__ *temp;
cth = cos(angle);
sth = sin(angle);
tau = cf1 + (cf2 + cf4 * cth) * cth + (cf3 + cf5 * cth) * sth;
if (fabs(tau) > fabs(taumax)) {
taumax = tau;
isave = i__;
tempa = tauold;
} else if (i__ == isave + 1) tempb = tau;
tauold = tau;
}
if (isave == 0) tempa = tau;
if (isave == iu) tempb = taubeg;
step = 0;
if (tempa != tempb) {
tempa -= taumax;
tempb -= taumax;
step = 0.5 * (tempa - tempb) / (tempa + tempb);
}
angle = temp * ((TYPE) isave + step);
/* Calculate the new D and GD. Then test for convergence. */
cth = cos(angle);
sth = sin(angle);
tau = cf1 + (cf2 + cf4 * cth) * cth + (cf3 + cf5 * cth) * sth;
i__2 = n;
for (i__ = 1; i__ <= i__2; ++i__) {
d__[i__] = cth * d__[i__] + sth * s[i__];
gd[i__] = cth * gd[i__] + sth * w[i__];
s[i__] = gc[i__] + gd[i__];
}
if (fabs(tau) <= fabs(taubeg) * 1.1) return 0;
}
return 0;
}
template<class TYPE>
static int bigden_(int n, int npt, TYPE *xopt, TYPE *xpt, TYPE *bmat, TYPE *zmat, int *idz,
int *ndim, int *kopt, int *knew, TYPE *d__, TYPE *w, TYPE *vlag, TYPE *beta,
TYPE *s, TYPE *wvec, TYPE *prod)
{
/* N is the number of variables.
* NPT is the number of interpolation equations.
* XOPT is the best interpolation point so far.
* XPT contains the coordinates of the current interpolation points.
* BMAT provides the last N columns of H.
* ZMAT and IDZ give a factorization of the first NPT by NPT
submatrix of H.
* NDIM is the first dimension of BMAT and has the value NPT+N.
* KOPT is the index of the optimal interpolation point.
* KNEW is the index of the interpolation point that is going to be
moved.
* D will be set to the step from XOPT to the new point, and on
entry it should be the D that was calculated by the last call of
BIGBDLAG. The length of the initial D provides a trust region bound
on the final D.
* W will be set to Wcheck for the final choice of D.
* VBDLAG will be set to Theta*Wcheck+e_b for the final choice of D.
* BETA will be set to the value that will occur in the updating
formula when the KNEW-th interpolation point is moved to its new
position.
* S, WVEC, PROD and the private arrays DEN, DENEX and PAR will be
used for working space.
* D is calculated in a way that should provide a denominator with a
large modulus in the updating formula when the KNEW-th
interpolation point is shifted to the new position XOPT+D. */
int xpt_dim1, xpt_offset, bmat_dim1, bmat_offset, zmat_dim1, zmat_offset,
wvec_dim1, wvec_offset, prod_dim1, prod_offset, i__1, i__2, i__, j, k,
isave, iterc, jc, ip, iu, nw, ksav, nptm;
TYPE dd, d__1, ds, ss, den[9], par[9], tau, sum, diff, temp, step,
alpha, angle, denex[9], tempa, tempb, tempc, ssden, dtest, xoptd,
twopi, xopts, denold, denmax, densav, dstemp, sumold, sstemp, xoptsq;
/* Parameter adjustments */
zmat_dim1 = npt;
zmat_offset = 1 + zmat_dim1;
zmat -= zmat_offset;
xpt_dim1 = npt;
xpt_offset = 1 + xpt_dim1;
xpt -= xpt_offset;
--xopt;
prod_dim1 = *ndim;
prod_offset = 1 + prod_dim1;
prod -= prod_offset;
wvec_dim1 = *ndim;
wvec_offset = 1 + wvec_dim1;
wvec -= wvec_offset;
bmat_dim1 = *ndim;
bmat_offset = 1 + bmat_dim1;
bmat -= bmat_offset;
--d__; --w; --vlag; --s;
/* Function Body */
twopi = atan(1.0) * 8.;
nptm = npt - n - 1;
/* Store the first NPT elements of the KNEW-th column of H in W(N+1)
* to W(N+NPT). */
i__1 = npt;
for (k = 1; k <= i__1; ++k) w[n + k] = 0;
i__1 = nptm;
for (j = 1; j <= i__1; ++j) {
temp = zmat[*knew + j * zmat_dim1];
if (j < *idz) temp = -temp;
i__2 = npt;
for (k = 1; k <= i__2; ++k)
w[n + k] += temp * zmat[k + j * zmat_dim1];
}
alpha = w[n + *knew];
/* The initial search direction D is taken from the last call of
* BIGBDLAG, and the initial S is set below, usually to the direction
* from X_OPT to X_KNEW, but a different direction to an
* interpolation point may be chosen, in order to prevent S from
* being nearly parallel to D. */
dd = ds = ss = xoptsq = 0;
i__2 = n;
for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing 2nd power */
d__1 = d__[i__];
dd += d__1 * d__1;
s[i__] = xpt[*knew + i__ * xpt_dim1] - xopt[i__];
ds += d__[i__] * s[i__];
/* Computing 2nd power */
d__1 = s[i__];
ss += d__1 * d__1;
/* Computing 2nd power */
d__1 = xopt[i__];
xoptsq += d__1 * d__1;
}
if (ds * ds > dd * .99 * ss) {
ksav = *knew;
dtest = ds * ds / ss;
i__2 = npt;
for (k = 1; k <= i__2; ++k) {
if (k != *kopt) {
dstemp = 0;
sstemp = 0;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
diff = xpt[k + i__ * xpt_dim1] - xopt[i__];
dstemp += d__[i__] * diff;
sstemp += diff * diff;
}
if (dstemp * dstemp / sstemp < dtest) {
ksav = k;
dtest = dstemp * dstemp / sstemp;
ds = dstemp;
ss = sstemp;
}
}
}
i__2 = n;
for (i__ = 1; i__ <= i__2; ++i__)
s[i__] = xpt[ksav + i__ * xpt_dim1] - xopt[i__];
}
ssden = dd * ss - ds * ds;
iterc = 0;
densav = 0;
/* Begin the iteration by overwriting S with a vector that has the
* required length and direction. */
BDL70:
++iterc;
temp = 1.0 / sqrt(ssden);
xoptd = xopts = 0;
i__2 = n;
for (i__ = 1; i__ <= i__2; ++i__) {
s[i__] = temp * (dd * s[i__] - ds * d__[i__]);
xoptd += xopt[i__] * d__[i__];
xopts += xopt[i__] * s[i__];
}
/* Set the coefficients of the first 2.0 terms of BETA. */
tempa = 0.5 * xoptd * xoptd;
tempb = 0.5 * xopts * xopts;
den[0] = dd * (xoptsq + 0.5 * dd) + tempa + tempb;
den[1] = 2.0 * xoptd * dd;
den[2] = 2.0 * xopts * dd;
den[3] = tempa - tempb;
den[4] = xoptd * xopts;
for (i__ = 6; i__ <= 9; ++i__) den[i__ - 1] = 0;
/* Put the coefficients of Wcheck in WVEC. */
i__2 = npt;
for (k = 1; k <= i__2; ++k) {
tempa = tempb = tempc = 0;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
tempa += xpt[k + i__ * xpt_dim1] * d__[i__];
tempb += xpt[k + i__ * xpt_dim1] * s[i__];
tempc += xpt[k + i__ * xpt_dim1] * xopt[i__];
}
wvec[k + wvec_dim1] = 0.25 * (tempa * tempa + tempb * tempb);
wvec[k + (wvec_dim1 << 1)] = tempa * tempc;
wvec[k + wvec_dim1 * 3] = tempb * tempc;
wvec[k + (wvec_dim1 << 2)] = 0.25 * (tempa * tempa - tempb * tempb);
wvec[k + wvec_dim1 * 5] = 0.5 * tempa * tempb;
}
i__2 = n;
for (i__ = 1; i__ <= i__2; ++i__) {
ip = i__ + npt;
wvec[ip + wvec_dim1] = 0;
wvec[ip + (wvec_dim1 << 1)] = d__[i__];
wvec[ip + wvec_dim1 * 3] = s[i__];
wvec[ip + (wvec_dim1 << 2)] = 0;
wvec[ip + wvec_dim1 * 5] = 0;
}
/* Put the coefficents of THETA*Wcheck in PROD. */
for (jc = 1; jc <= 5; ++jc) {
nw = npt;
if (jc == 2 || jc == 3) nw = *ndim;
i__2 = npt;
for (k = 1; k <= i__2; ++k) prod[k + jc * prod_dim1] = 0;
i__2 = nptm;
for (j = 1; j <= i__2; ++j) {
sum = 0;
i__1 = npt;
for (k = 1; k <= i__1; ++k) sum += zmat[k + j * zmat_dim1] * wvec[k + jc * wvec_dim1];
if (j < *idz) sum = -sum;
i__1 = npt;
for (k = 1; k <= i__1; ++k)
prod[k + jc * prod_dim1] += sum * zmat[k + j * zmat_dim1];
}
if (nw == *ndim) {
i__1 = npt;
for (k = 1; k <= i__1; ++k) {
sum = 0;
i__2 = n;
for (j = 1; j <= i__2; ++j)
sum += bmat[k + j * bmat_dim1] * wvec[npt + j + jc * wvec_dim1];
prod[k + jc * prod_dim1] += sum;
}
}
i__1 = n;
for (j = 1; j <= i__1; ++j) {
sum = 0;
i__2 = nw;
for (i__ = 1; i__ <= i__2; ++i__)
sum += bmat[i__ + j * bmat_dim1] * wvec[i__ + jc * wvec_dim1];
prod[npt + j + jc * prod_dim1] = sum;
}
}
/* Include in DEN the part of BETA that depends on THETA. */
i__1 = *ndim;
for (k = 1; k <= i__1; ++k) {
sum = 0;
for (i__ = 1; i__ <= 5; ++i__) {
par[i__ - 1] = 0.5 * prod[k + i__ * prod_dim1] * wvec[k + i__ * wvec_dim1];
sum += par[i__ - 1];
}
den[0] = den[0] - par[0] - sum;
tempa = prod[k + prod_dim1] * wvec[k + (wvec_dim1 << 1)] + prod[k + (
prod_dim1 << 1)] * wvec[k + wvec_dim1];
tempb = prod[k + (prod_dim1 << 1)] * wvec[k + (wvec_dim1 << 2)] +
prod[k + (prod_dim1 << 2)] * wvec[k + (wvec_dim1 << 1)];
tempc = prod[k + prod_dim1 * 3] * wvec[k + wvec_dim1 * 5] + prod[k +
prod_dim1 * 5] * wvec[k + wvec_dim1 * 3];
den[1] = den[1] - tempa - 0.5 * (tempb + tempc);
den[5] -= 0.5 * (tempb - tempc);
tempa = prod[k + prod_dim1] * wvec[k + wvec_dim1 * 3] + prod[k +
prod_dim1 * 3] * wvec[k + wvec_dim1];
tempb = prod[k + (prod_dim1 << 1)] * wvec[k + wvec_dim1 * 5] + prod[k
+ prod_dim1 * 5] * wvec[k + (wvec_dim1 << 1)];
tempc = prod[k + prod_dim1 * 3] * wvec[k + (wvec_dim1 << 2)] + prod[k
+ (prod_dim1 << 2)] * wvec[k + wvec_dim1 * 3];
den[2] = den[2] - tempa - 0.5 * (tempb - tempc);
den[6] -= 0.5 * (tempb + tempc);
tempa = prod[k + prod_dim1] * wvec[k + (wvec_dim1 << 2)] + prod[k + (
prod_dim1 << 2)] * wvec[k + wvec_dim1];
den[3] = den[3] - tempa - par[1] + par[2];
tempa = prod[k + prod_dim1] * wvec[k + wvec_dim1 * 5] + prod[k +
prod_dim1 * 5] * wvec[k + wvec_dim1];
tempb = prod[k + (prod_dim1 << 1)] * wvec[k + wvec_dim1 * 3] + prod[k
+ prod_dim1 * 3] * wvec[k + (wvec_dim1 << 1)];
den[4] = den[4] - tempa - 0.5 * tempb;
den[7] = den[7] - par[3] + par[4];
tempa = prod[k + (prod_dim1 << 2)] * wvec[k + wvec_dim1 * 5] + prod[k
+ prod_dim1 * 5] * wvec[k + (wvec_dim1 << 2)];
den[8] -= 0.5 * tempa;
}
/* Extend DEN so that it holds all the coefficients of DENOM. */
sum = 0;
for (i__ = 1; i__ <= 5; ++i__) {
/* Computing 2nd power */
d__1 = prod[*knew + i__ * prod_dim1];
par[i__ - 1] = 0.5 * (d__1 * d__1);
sum += par[i__ - 1];
}
denex[0] = alpha * den[0] + par[0] + sum;
tempa = 2.0 * prod[*knew + prod_dim1] * prod[*knew + (prod_dim1 << 1)];
tempb = prod[*knew + (prod_dim1 << 1)] * prod[*knew + (prod_dim1 << 2)];
tempc = prod[*knew + prod_dim1 * 3] * prod[*knew + prod_dim1 * 5];
denex[1] = alpha * den[1] + tempa + tempb + tempc;
denex[5] = alpha * den[5] + tempb - tempc;
tempa = 2.0 * prod[*knew + prod_dim1] * prod[*knew + prod_dim1 * 3];
tempb = prod[*knew + (prod_dim1 << 1)] * prod[*knew + prod_dim1 * 5];
tempc = prod[*knew + prod_dim1 * 3] * prod[*knew + (prod_dim1 << 2)];
denex[2] = alpha * den[2] + tempa + tempb - tempc;
denex[6] = alpha * den[6] + tempb + tempc;
tempa = 2.0 * prod[*knew + prod_dim1] * prod[*knew + (prod_dim1 << 2)];
denex[3] = alpha * den[3] + tempa + par[1] - par[2];
tempa = 2.0 * prod[*knew + prod_dim1] * prod[*knew + prod_dim1 * 5];
denex[4] = alpha * den[4] + tempa + prod[*knew + (prod_dim1 << 1)] * prod[
*knew + prod_dim1 * 3];
denex[7] = alpha * den[7] + par[3] - par[4];
denex[8] = alpha * den[8] + prod[*knew + (prod_dim1 << 2)] * prod[*knew +
prod_dim1 * 5];
/* Seek the value of the angle that maximizes the modulus of DENOM. */
sum = denex[0] + denex[1] + denex[3] + denex[5] + denex[7];
denold = denmax = sum;
isave = 0;
iu = 49;
temp = twopi / (TYPE) (iu + 1);
par[0] = 1.0;
i__1 = iu;
for (i__ = 1; i__ <= i__1; ++i__) {
angle = (TYPE) i__ *temp;
par[1] = cos(angle);
par[2] = sin(angle);
for (j = 4; j <= 8; j += 2) {
par[j - 1] = par[1] * par[j - 3] - par[2] * par[j - 2];
par[j] = par[1] * par[j - 2] + par[2] * par[j - 3];
}
sumold = sum;
sum = 0;
for (j = 1; j <= 9; ++j)
sum += denex[j - 1] * par[j - 1];
if (fabs(sum) > fabs(denmax)) {
denmax = sum;
isave = i__;
tempa = sumold;
} else if (i__ == isave + 1) {
tempb = sum;
}
}
if (isave == 0) tempa = sum;
if (isave == iu) tempb = denold;
step = 0;
if (tempa != tempb) {
tempa -= denmax;
tempb -= denmax;
step = 0.5 * (tempa - tempb) / (tempa + tempb);
}
angle = temp * ((TYPE) isave + step);
/* Calculate the new parameters of the denominator, the new VBDLAG
* vector and the new D. Then test for convergence. */
par[1] = cos(angle);
par[2] = sin(angle);
for (j = 4; j <= 8; j += 2) {
par[j - 1] = par[1] * par[j - 3] - par[2] * par[j - 2];
par[j] = par[1] * par[j - 2] + par[2] * par[j - 3];
}
*beta = 0;
denmax = 0;
for (j = 1; j <= 9; ++j) {
*beta += den[j - 1] * par[j - 1];
denmax += denex[j - 1] * par[j - 1];
}
i__1 = *ndim;
for (k = 1; k <= i__1; ++k) {
vlag[k] = 0;
for (j = 1; j <= 5; ++j)
vlag[k] += prod[k + j * prod_dim1] * par[j - 1];
}
tau = vlag[*knew];
dd = tempa = tempb = 0;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
d__[i__] = par[1] * d__[i__] + par[2] * s[i__];
w[i__] = xopt[i__] + d__[i__];
/* Computing 2nd power */
d__1 = d__[i__];
dd += d__1 * d__1;
tempa += d__[i__] * w[i__];
tempb += w[i__] * w[i__];
}
if (iterc >= n) goto BDL340;
if (iterc > 1) densav = std::max(densav, denold);
if (fabs(denmax) <= fabs(densav) * 1.1) goto BDL340;
densav = denmax;
/* Set S to 0.5 the gradient of the denominator with respect to
* D. Then branch for the next iteration. */
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
temp = tempa * xopt[i__] + tempb * d__[i__] - vlag[npt + i__];
s[i__] = tau * bmat[*knew + i__ * bmat_dim1] + alpha * temp;
}
i__1 = npt;
for (k = 1; k <= i__1; ++k) {
sum = 0;
i__2 = n;
for (j = 1; j <= i__2; ++j)
sum += xpt[k + j * xpt_dim1] * w[j];
temp = (tau * w[n + k] - alpha * vlag[k]) * sum;
i__2 = n;
for (i__ = 1; i__ <= i__2; ++i__)
s[i__] += temp * xpt[k + i__ * xpt_dim1];
}
ss = 0;
ds = 0;
i__2 = n;
for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing 2nd power */
d__1 = s[i__];
ss += d__1 * d__1;
ds += d__[i__] * s[i__];
}
ssden = dd * ss - ds * ds;
if (ssden >= dd * 1e-8 * ss) goto BDL70;
/* Set the vector W before the RETURN from the subroutine. */
BDL340:
i__2 = *ndim;
for (k = 1; k <= i__2; ++k) {
w[k] = 0;
for (j = 1; j <= 5; ++j) w[k] += wvec[k + j * wvec_dim1] * par[j - 1];
}
vlag[*kopt] += 1.0;
return 0;
}
template<class TYPE>
int trsapp_(int n, int npt, TYPE * xopt, TYPE * xpt, TYPE * gq, TYPE * hq, TYPE * pq,
TYPE * delta, TYPE * step, TYPE * d__, TYPE * g, TYPE * hd, TYPE * hs, TYPE * crvmin)
{
/* The arguments NPT, XOPT, XPT, GQ, HQ and PQ have their usual
* meanings, in order to define the current quadratic model Q.
* DETRLTA is the trust region radius, and has to be positive. STEP
* will be set to the calculated trial step. The arrays D, G, HD and
* HS will be used for working space. CRVMIN will be set to the
* least curvature of H aint the conjugate directions that occur,
* except that it is set to 0 if STEP goes all the way to the trust
* region boundary. The calculation of STEP begins with the
* truncated conjugate gradient method. If the boundary of the trust
* region is reached, then further changes to STEP may be made, each
* one being in the 2D space spanned by the current STEP and the
* corresponding gradient of Q. Thus STEP should provide a
* substantial reduction to Q within the trust region. */
int xpt_dim1, xpt_offset, i__1, i__2, i__, j, k, ih, iu, iterc,
isave, itersw, itermax;
TYPE d__1, d__2, dd, cf, dg, gg, ds, sg, ss, dhd, dhs,
cth, sgk, shs, sth, qadd, qbeg, qred, qmin, temp,
qsav, qnew, ggbeg, alpha, angle, reduc, ggsav, delsq,
tempa, tempb, bstep, ratio, twopi, angtest;
/* Parameter adjustments */
tempa = tempb = shs = sg = bstep = ggbeg = gg = qred = dd = 0.0;
xpt_dim1 = npt;
xpt_offset = 1 + xpt_dim1;
xpt -= xpt_offset;
--xopt; --gq; --hq; --pq; --step; --d__; --g; --hd; --hs;
/* Function Body */
twopi = 2.0 * M_PI;
delsq = *delta * *delta;
iterc = 0;
itermax = n;
itersw = itermax;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) d__[i__] = xopt[i__];
goto TRL170;
/* Prepare for the first line search. */
TRL20:
qred = dd = 0;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
step[i__] = 0;
hs[i__] = 0;
g[i__] = gq[i__] + hd[i__];
d__[i__] = -g[i__];
/* Computing 2nd power */
d__1 = d__[i__];
dd += d__1 * d__1;
}
*crvmin = 0;
if (dd == 0) goto TRL160;
ds = ss = 0;
gg = dd;
ggbeg = gg;
/* Calculate the step to the trust region boundary and the product
* HD. */
TRL40:
++iterc;
temp = delsq - ss;
bstep = temp / (ds + sqrt(ds * ds + dd * temp));
goto TRL170;
TRL50:
dhd = 0;
i__1 = n;
for (j = 1; j <= i__1; ++j) dhd += d__[j] * hd[j];
/* Update CRVMIN and set the step-length ATRLPHA. */
alpha = bstep;
if (dhd > 0) {
temp = dhd / dd;
if (iterc == 1) *crvmin = temp;
*crvmin = std::min(*crvmin, temp);
/* Computing MIN */
d__1 = alpha, d__2 = gg / dhd;
alpha = std::min(d__1, d__2);
}
qadd = alpha * (gg - 0.5 * alpha * dhd);
qred += qadd;
/* Update STEP and HS. */
ggsav = gg;
gg = 0;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
step[i__] += alpha * d__[i__];
hs[i__] += alpha * hd[i__];
/* Computing 2nd power */
d__1 = g[i__] + hs[i__];
gg += d__1 * d__1;
}
/* Begin another conjugate direction iteration if required. */
if (alpha < bstep) {
if (qadd <= qred * .01 || gg <= ggbeg * 1e-4 || iterc == itermax) goto TRL160;
temp = gg / ggsav;
dd = ds = ss = 0;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
d__[i__] = temp * d__[i__] - g[i__] - hs[i__];
/* Computing 2nd power */
d__1 = d__[i__];
dd += d__1 * d__1;
ds += d__[i__] * step[i__];
/* Computing 2nd power */
d__1 = step[i__];
ss += d__1 * d__1;
}
if (ds <= 0) goto TRL160;
if (ss < delsq) goto TRL40;
}
*crvmin = 0;
itersw = iterc;
/* Test whether an alternative iteration is required. */
TRL90:
if (gg <= ggbeg * 1e-4) goto TRL160;
sg = 0;
shs = 0;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
sg += step[i__] * g[i__];
shs += step[i__] * hs[i__];
}
sgk = sg + shs;
angtest = sgk / sqrt(gg * delsq);
if (angtest <= -.99) goto TRL160;
/* Begin the alternative iteration by calculating D and HD and some
* scalar products. */
++iterc;
temp = sqrt(delsq * gg - sgk * sgk);
tempa = delsq / temp;
tempb = sgk / temp;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__)
d__[i__] = tempa * (g[i__] + hs[i__]) - tempb * step[i__];
goto TRL170;
TRL120:
dg = dhd = dhs = 0;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
dg += d__[i__] * g[i__];
dhd += hd[i__] * d__[i__];
dhs += hd[i__] * step[i__];
}
/* Seek the value of the angle that minimizes Q. */
cf = 0.5 * (shs - dhd);
qbeg = sg + cf;
qsav = qmin = qbeg;
isave = 0;
iu = 49;
temp = twopi / (TYPE) (iu + 1);
i__1 = iu;
for (i__ = 1; i__ <= i__1; ++i__) {
angle = (TYPE) i__ *temp;
cth = cos(angle);
sth = sin(angle);
qnew = (sg + cf * cth) * cth + (dg + dhs * cth) * sth;
if (qnew < qmin) {
qmin = qnew;
isave = i__;
tempa = qsav;
} else if (i__ == isave + 1) tempb = qnew;
qsav = qnew;
}
if ((TYPE) isave == 0) tempa = qnew;
if (isave == iu) tempb = qbeg;
angle = 0;
if (tempa != tempb) {
tempa -= qmin;
tempb -= qmin;
angle = 0.5 * (tempa - tempb) / (tempa + tempb);
}
angle = temp * ((TYPE) isave + angle);
/* Calculate the new STEP and HS. Then test for convergence. */
cth = cos(angle);
sth = sin(angle);
reduc = qbeg - (sg + cf * cth) * cth - (dg + dhs * cth) * sth;
gg = 0;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
step[i__] = cth * step[i__] + sth * d__[i__];
hs[i__] = cth * hs[i__] + sth * hd[i__];
/* Computing 2nd power */
d__1 = g[i__] + hs[i__];
gg += d__1 * d__1;
}
qred += reduc;
ratio = reduc / qred;
if (iterc < itermax && ratio > .01) goto TRL90;
TRL160:
return 0;
/* The following instructions act as a subroutine for setting the
* vector HD to the vector D multiplied by the second derivative
* matrix of Q. They are called from three different places, which
* are distinguished by the value of ITERC. */
TRL170:
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) hd[i__] = 0;
i__1 = npt;
for (k = 1; k <= i__1; ++k) {
temp = 0;
i__2 = n;
for (j = 1; j <= i__2; ++j)
temp += xpt[k + j * xpt_dim1] * d__[j];
temp *= pq[k];
i__2 = n;
for (i__ = 1; i__ <= i__2; ++i__)
hd[i__] += temp * xpt[k + i__ * xpt_dim1];
}
ih = 0;
i__2 = n;
for (j = 1; j <= i__2; ++j) {
i__1 = j;
for (i__ = 1; i__ <= i__1; ++i__) {
++ih;
if (i__ < j) hd[j] += hq[ih] * d__[i__];
hd[i__] += hq[ih] * d__[j];
}
}
if (iterc == 0) goto TRL20;
if (iterc <= itersw) goto TRL50;
goto TRL120;
}
template<class TYPE>
static int update_(int n, int npt, TYPE *bmat, TYPE *zmat, int *idz, int *ndim, TYPE *vlag,
TYPE *beta, int *knew, TYPE *w)
{
/* The arrays BMAT and ZMAT with IDZ are updated, in order to shift
* the interpolation point that has index KNEW. On entry, VLAG
* contains the components of the vector Theta*Wcheck+e_b of the
* updating formula (6.11), and BETA holds the value of the
* parameter that has this name. The vector W is used for working
* space. */
int bmat_dim1, bmat_offset, zmat_dim1, zmat_offset, i__1, i__2, i__,
j, ja, jb, jl, jp, nptm, iflag;
TYPE d__1, d__2, tau, temp, scala, scalb, alpha, denom, tempa, tempb, tausq;
/* Parameter adjustments */
tempb = 0.0;
zmat_dim1 = npt;
zmat_offset = 1 + zmat_dim1;
zmat -= zmat_offset;
bmat_dim1 = *ndim;
bmat_offset = 1 + bmat_dim1;
bmat -= bmat_offset;
--vlag;
--w;
/* Function Body */
nptm = npt - n - 1;
/* Apply the rotations that put zeros in the KNEW-th row of ZMAT. */
jl = 1;
i__1 = nptm;
for (j = 2; j <= i__1; ++j) {
if (j == *idz) {
jl = *idz;
} else if (zmat[*knew + j * zmat_dim1] != 0) {
/* Computing 2nd power */
d__1 = zmat[*knew + jl * zmat_dim1];
/* Computing 2nd power */
d__2 = zmat[*knew + j * zmat_dim1];
temp = sqrt(d__1 * d__1 + d__2 * d__2);
tempa = zmat[*knew + jl * zmat_dim1] / temp;
tempb = zmat[*knew + j * zmat_dim1] / temp;
i__2 = npt;
for (i__ = 1; i__ <= i__2; ++i__) {
temp = tempa * zmat[i__ + jl * zmat_dim1] + tempb * zmat[i__
+ j * zmat_dim1];
zmat[i__ + j * zmat_dim1] = tempa * zmat[i__ + j * zmat_dim1]
- tempb * zmat[i__ + jl * zmat_dim1];
zmat[i__ + jl * zmat_dim1] = temp;
}
zmat[*knew + j * zmat_dim1] = 0;
}
}
/* Put the first NPT components of the KNEW-th column of HLAG into
* W, and calculate the parameters of the updating formula. */
tempa = zmat[*knew + zmat_dim1];
if (*idz >= 2) tempa = -tempa;
if (jl > 1) tempb = zmat[*knew + jl * zmat_dim1];
i__1 = npt;
for (i__ = 1; i__ <= i__1; ++i__) {
w[i__] = tempa * zmat[i__ + zmat_dim1];
if (jl > 1) w[i__] += tempb * zmat[i__ + jl * zmat_dim1];
}
alpha = w[*knew];
tau = vlag[*knew];
tausq = tau * tau;
denom = alpha * *beta + tausq;
vlag[*knew] -= 1.0;
/* Complete the updating of ZMAT when there is only 1.0 nonzero
* element in the KNEW-th row of the new matrix ZMAT, but, if IFLAG
* is set to 1.0, then the first column of ZMAT will be exchanged
* with another 1.0 later. */
iflag = 0;
if (jl == 1) {
temp = sqrt((fabs(denom)));
tempb = tempa / temp;
tempa = tau / temp;
i__1 = npt;
for (i__ = 1; i__ <= i__1; ++i__)
zmat[i__ + zmat_dim1] = tempa * zmat[i__ + zmat_dim1] - tempb *
vlag[i__];
if (*idz == 1 && temp < 0) *idz = 2;
if (*idz >= 2 && temp >= 0) iflag = 1;
} else {
/* Complete the updating of ZMAT in the alternative case. */
ja = 1;
if (*beta >= 0) {
ja = jl;
}
jb = jl + 1 - ja;
temp = zmat[*knew + jb * zmat_dim1] / denom;
tempa = temp * *beta;
tempb = temp * tau;
temp = zmat[*knew + ja * zmat_dim1];
scala = 1.0 / sqrt(fabs(*beta) * temp * temp + tausq);
scalb = scala * sqrt((fabs(denom)));
i__1 = npt;
for (i__ = 1; i__ <= i__1; ++i__) {
zmat[i__ + ja * zmat_dim1] = scala * (tau * zmat[i__ + ja *
zmat_dim1] - temp * vlag[i__]);
zmat[i__ + jb * zmat_dim1] = scalb * (zmat[i__ + jb * zmat_dim1]
- tempa * w[i__] - tempb * vlag[i__]);
}
if (denom <= 0) {
if (*beta < 0) ++(*idz);
if (*beta >= 0) iflag = 1;
}
}
/* IDZ is reduced in the following case, and usually the first
* column of ZMAT is exchanged with a later 1.0. */
if (iflag == 1) {
--(*idz);
i__1 = npt;
for (i__ = 1; i__ <= i__1; ++i__) {
temp = zmat[i__ + zmat_dim1];
zmat[i__ + zmat_dim1] = zmat[i__ + *idz * zmat_dim1];
zmat[i__ + *idz * zmat_dim1] = temp;
}
}
/* Finally, update the matrix BMAT. */
i__1 = n;
for (j = 1; j <= i__1; ++j) {
jp = npt + j;
w[jp] = bmat[*knew + j * bmat_dim1];
tempa = (alpha * vlag[jp] - tau * w[jp]) / denom;
tempb = (-(*beta) * w[jp] - tau * vlag[jp]) / denom;
i__2 = jp;
for (i__ = 1; i__ <= i__2; ++i__) {
bmat[i__ + j * bmat_dim1] = bmat[i__ + j * bmat_dim1] + tempa *
vlag[i__] + tempb * w[i__];
if (i__ > npt) {
bmat[jp + (i__ - npt) * bmat_dim1] = bmat[i__ + j *
bmat_dim1];
}
}
}
return 0;
}
template<class TYPE, class Func>
static TYPE newuob_(int n, int npt, TYPE *x,
TYPE rhobeg, TYPE rhoend, int *ret_nf, int maxfun,
TYPE *xbase, TYPE *xopt, TYPE *xnew,
TYPE *xpt, TYPE *fval, TYPE *gq, TYPE *hq,
TYPE *pq, TYPE *bmat, TYPE *zmat, int *ndim,
TYPE *d__, TYPE *vlag, TYPE *w, Func &func)
{
/* XBASE will hold a shift of origin that should reduce the
contributions from rounding errors to values of the model and
Lagrange functions.
* XOPT will be set to the displacement from XBASE of the vector of
variables that provides the least calculated F so far.
* XNEW will be set to the displacement from XBASE of the vector of
variables for the current calculation of F.
* XPT will contain the interpolation point coordinates relative to
XBASE.
* FVAL will hold the values of F at the interpolation points.
* GQ will hold the gradient of the quadratic model at XBASE.
* HQ will hold the explicit second derivatives of the quadratic
model.
* PQ will contain the parameters of the implicit second derivatives
of the quadratic model.
* BMAT will hold the last N columns of H.
* ZMAT will hold the factorization of the leading NPT by NPT
submatrix of H, this factorization being ZMAT times Diag(DZ)
times ZMAT^T, where the elements of DZ are plus or minus 1.0, as
specified by IDZ.
* NDIM is the first dimension of BMAT and has the value NPT+N.
* D is reserved for trial steps from XOPT.
* VLAG will contain the values of the Lagrange functions at a new
point X. They are part of a product that requires VLAG to be of
length NDIM.
* The array W will be used for working space. Its length must be at
least 10*NDIM = 10*(NPT+N). Set some constants. */
int xpt_dim1, xpt_offset, bmat_dim1, bmat_offset, zmat_dim1, zmat_offset,
i__1, i__2, i__3, i__, j, k, ih, nf, nh, ip, jp, np, nfm, idz, ipt, jpt,
nfmm, knew, kopt, nptm, ksave, nfsav, itemp, ktemp, itest, nftest;
TYPE d__1, d__2, d__3, f, dx, dsq, rho, sum, fbeg, diff, beta, gisq,
temp, suma, sumb, fopt, bsum, gqsq, xipt, xjpt, sumz, diffa, diffb,
diffc, hdiag, alpha, delta, recip, reciq, fsave, dnorm, ratio, dstep,
vquad, tempq, rhosq, detrat, crvmin, distsq, xoptsq;
/* Parameter adjustments */
diffc = ratio = dnorm = nfsav = diffa = diffb = xoptsq = f = 0.0;
rho = fbeg = fopt = xjpt = xipt = 0.0;
itest = ipt = jpt = 0;
alpha = dstep = 0.0;
zmat_dim1 = npt;
zmat_offset = 1 + zmat_dim1;
zmat -= zmat_offset;
xpt_dim1 = npt;
xpt_offset = 1 + xpt_dim1;
xpt -= xpt_offset;
--x; --xbase; --xopt; --xnew; --fval; --gq; --hq; --pq;
bmat_dim1 = *ndim;
bmat_offset = 1 + bmat_dim1;
bmat -= bmat_offset;
--d__;
--vlag;
--w;
/* Function Body */
np = n + 1;
nh = n * np / 2;
nptm = npt - np;
nftest = (maxfun > 1)? maxfun : 1;
/* Set the initial elements of XPT, BMAT, HQ, PQ and ZMAT to 0. */
i__1 = n;
for (j = 1; j <= i__1; ++j) {
xbase[j] = x[j];
i__2 = npt;
for (k = 1; k <= i__2; ++k)
xpt[k + j * xpt_dim1] = 0;
i__2 = *ndim;
for (i__ = 1; i__ <= i__2; ++i__)
bmat[i__ + j * bmat_dim1] = 0;
}
i__2 = nh;
for (ih = 1; ih <= i__2; ++ih) hq[ih] = 0;
i__2 = npt;
for (k = 1; k <= i__2; ++k) {
pq[k] = 0;
i__1 = nptm;
for (j = 1; j <= i__1; ++j)
zmat[k + j * zmat_dim1] = 0;
}
/* Begin the initialization procedure. NF becomes 1.0 more than the
* number of function values so far. The coordinates of the
* displacement of the next initial interpolation point from XBASE
* are set in XPT(NF,.). */
rhosq = rhobeg * rhobeg;
recip = 1.0 / rhosq;
reciq = sqrt(.5) / rhosq;
nf = 0;
L50:
nfm = nf;
nfmm = nf - n;
++nf;
if (nfm <= n << 1) {
if (nfm >= 1 && nfm <= n) {
xpt[nf + nfm * xpt_dim1] = rhobeg;
} else if (nfm > n) {
xpt[nf + nfmm * xpt_dim1] = -(rhobeg);
}
} else {
itemp = (nfmm - 1) / n;
jpt = nfm - itemp * n - n;
ipt = jpt + itemp;
if (ipt > n) {
itemp = jpt;
jpt = ipt - n;
ipt = itemp;
}
xipt = rhobeg;
if (fval[ipt + np] < fval[ipt + 1]) xipt = -xipt;
xjpt = rhobeg;
if (fval[jpt + np] < fval[jpt + 1]) xjpt = -xjpt;
xpt[nf + ipt * xpt_dim1] = xipt;
xpt[nf + jpt * xpt_dim1] = xjpt;
}
/* Calculate the next value of F, label 70 being reached immediately
* after this calculation. The least function value so far and its
* index are required. */
i__1 = n;
for (j = 1; j <= i__1; ++j)
x[j] = xpt[nf + j * xpt_dim1] + xbase[j];
goto L310;
L70:
fval[nf] = f;
if (nf == 1) {
fbeg = fopt = f;
kopt = 1;
} else if (f < fopt) {
fopt = f;
kopt = nf;
}
/* Set the non0 initial elements of BMAT and the quadratic model
* in the cases when NF is at most 2*N+1. */
if (nfm <= n << 1) {
if (nfm >= 1 && nfm <= n) {
gq[nfm] = (f - fbeg) / rhobeg;
if (npt < nf + n) {
bmat[nfm * bmat_dim1 + 1] = -1.0 / rhobeg;
bmat[nf + nfm * bmat_dim1] = 1.0 / rhobeg;
bmat[npt + nfm + nfm * bmat_dim1] = -.5 * rhosq;
}
} else if (nfm > n) {
bmat[nf - n + nfmm * bmat_dim1] = .5 / rhobeg;
bmat[nf + nfmm * bmat_dim1] = -.5 / rhobeg;
zmat[nfmm * zmat_dim1 + 1] = -reciq - reciq;
zmat[nf - n + nfmm * zmat_dim1] = reciq;
zmat[nf + nfmm * zmat_dim1] = reciq;
ih = nfmm * (nfmm + 1) / 2;
temp = (fbeg - f) / rhobeg;
hq[ih] = (gq[nfmm] - temp) / rhobeg;
gq[nfmm] = .5 * (gq[nfmm] + temp);
}
/* Set the off-diagonal second derivatives of the Lagrange
* functions and the initial quadratic model. */
} else {
ih = ipt * (ipt - 1) / 2 + jpt;
if (xipt < 0) ipt += n;
if (xjpt < 0) jpt += n;
zmat[nfmm * zmat_dim1 + 1] = recip;
zmat[nf + nfmm * zmat_dim1] = recip;
zmat[ipt + 1 + nfmm * zmat_dim1] = -recip;
zmat[jpt + 1 + nfmm * zmat_dim1] = -recip;
hq[ih] = (fbeg - fval[ipt + 1] - fval[jpt + 1] + f) / (xipt * xjpt);
}
if (nf < npt) goto L50;
/* Begin the iterative procedure, because the initial model is
* complete. */
rho = rhobeg;
delta = rho;
idz = 1;
diffa = diffb = itest = xoptsq = 0;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
xopt[i__] = xpt[kopt + i__ * xpt_dim1];
/* Computing 2nd power */
d__1 = xopt[i__];
xoptsq += d__1 * d__1;
}
L90:
nfsav = nf;
/* Generate the next trust region step and test its length. Set KNEW
* to -1 if the purpose of the next F will be to improve the
* model. */
L100:
knew = 0;
trsapp_(n, npt, &xopt[1], &xpt[xpt_offset], &gq[1], &hq[1], &pq[1], &
delta, &d__[1], &w[1], &w[np], &w[np + n], &w[np + (n << 1)], &
crvmin);
dsq = 0;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing 2nd power */
d__1 = d__[i__];
dsq += d__1 * d__1;
}
/* Computing MIN */
d__1 = delta, d__2 = sqrt(dsq);
dnorm = std::min(d__1, d__2);
if (dnorm < .5 * rho) {
knew = -1;
delta = DELTA_DECREASE * delta;
ratio = -1.;
if (delta <= rho * 1.5) delta = rho;
if (nf <= nfsav + 2) goto L460;
temp = crvmin * .125 * rho * rho;
/* Computing MAX */
d__1 = std::max(diffa, diffb);
if (temp <= std::max(d__1, diffc)) goto L460;
goto L490;
}
/* Shift XBASE if XOPT may be too far from XBASE. First make the
* changes to BMAT that do not depend on ZMAT. */
L120:
if (dsq <= xoptsq * .001) {
tempq = xoptsq * .25;
i__1 = npt;
for (k = 1; k <= i__1; ++k) {
sum = 0;
i__2 = n;
for (i__ = 1; i__ <= i__2; ++i__)
sum += xpt[k + i__ * xpt_dim1] * xopt[i__];
temp = pq[k] * sum;
sum -= .5 * xoptsq;
w[npt + k] = sum;
i__2 = n;
for (i__ = 1; i__ <= i__2; ++i__) {
gq[i__] += temp * xpt[k + i__ * xpt_dim1];
xpt[k + i__ * xpt_dim1] -= .5 * xopt[i__];
vlag[i__] = bmat[k + i__ * bmat_dim1];
w[i__] = sum * xpt[k + i__ * xpt_dim1] + tempq * xopt[i__];
ip = npt + i__;
i__3 = i__;
for (j = 1; j <= i__3; ++j)
bmat[ip + j * bmat_dim1] = bmat[ip + j * bmat_dim1] +
vlag[i__] * w[j] + w[i__] * vlag[j];
}
}
/* Then the revisions of BMAT that depend on ZMAT are
* calculated. */
i__3 = nptm;
for (k = 1; k <= i__3; ++k) {
sumz = 0;
i__2 = npt;
for (i__ = 1; i__ <= i__2; ++i__) {
sumz += zmat[i__ + k * zmat_dim1];
w[i__] = w[npt + i__] * zmat[i__ + k * zmat_dim1];
}
i__2 = n;
for (j = 1; j <= i__2; ++j) {
sum = tempq * sumz * xopt[j];
i__1 = npt;
for (i__ = 1; i__ <= i__1; ++i__)
sum += w[i__] * xpt[i__ + j * xpt_dim1];
vlag[j] = sum;
if (k < idz) sum = -sum;
i__1 = npt;
for (i__ = 1; i__ <= i__1; ++i__)
bmat[i__ + j * bmat_dim1] += sum * zmat[i__ + k * zmat_dim1];
}
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
ip = i__ + npt;
temp = vlag[i__];
if (k < idz) temp = -temp;
i__2 = i__;
for (j = 1; j <= i__2; ++j)
bmat[ip + j * bmat_dim1] += temp * vlag[j];
}
}
/* The following instructions complete the shift of XBASE,
* including the changes to the parameters of the quadratic
* model. */
ih = 0;
i__2 = n;
for (j = 1; j <= i__2; ++j) {
w[j] = 0;
i__1 = npt;
for (k = 1; k <= i__1; ++k) {
w[j] += pq[k] * xpt[k + j * xpt_dim1];
xpt[k + j * xpt_dim1] -= .5 * xopt[j];
}
i__1 = j;
for (i__ = 1; i__ <= i__1; ++i__) {
++ih;
if (i__ < j) gq[j] += hq[ih] * xopt[i__];
gq[i__] += hq[ih] * xopt[j];
hq[ih] = hq[ih] + w[i__] * xopt[j] + xopt[i__] * w[j];
bmat[npt + i__ + j * bmat_dim1] = bmat[npt + j + i__ *
bmat_dim1];
}
}
i__1 = n;
for (j = 1; j <= i__1; ++j) {
xbase[j] += xopt[j];
xopt[j] = 0;
}
xoptsq = 0;
}
/* Pick the model step if KNEW is positive. A different choice of D
* may be made later, if the choice of D by BIGLAG causes
* substantial cancellation in DENOM. */
if (knew > 0) {
biglag_(n, npt, &xopt[1], &xpt[xpt_offset], &bmat[bmat_offset], &zmat[zmat_offset], &idz,
ndim, &knew, &dstep, &d__[1], &alpha, &vlag[1], &vlag[npt + 1], &w[1], &w[np], &w[np + n], func);
}
/* Calculate VLAG and BETA for the current choice of D. The first
* NPT components of W_check will be held in W. */
i__1 = npt;
for (k = 1; k <= i__1; ++k) {
suma = 0;
sumb = 0;
sum = 0;
i__2 = n;
for (j = 1; j <= i__2; ++j) {
suma += xpt[k + j * xpt_dim1] * d__[j];
sumb += xpt[k + j * xpt_dim1] * xopt[j];
sum += bmat[k + j * bmat_dim1] * d__[j];
}
w[k] = suma * (.5 * suma + sumb);
vlag[k] = sum;
}
beta = 0;
i__1 = nptm;
for (k = 1; k <= i__1; ++k) {
sum = 0;
i__2 = npt;
for (i__ = 1; i__ <= i__2; ++i__)
sum += zmat[i__ + k * zmat_dim1] * w[i__];
if (k < idz) {
beta += sum * sum;
sum = -sum;
} else beta -= sum * sum;
i__2 = npt;
for (i__ = 1; i__ <= i__2; ++i__)
vlag[i__] += sum * zmat[i__ + k * zmat_dim1];
}
bsum = 0;
dx = 0;
i__2 = n;
for (j = 1; j <= i__2; ++j) {
sum = 0;
i__1 = npt;
for (i__ = 1; i__ <= i__1; ++i__)
sum += w[i__] * bmat[i__ + j * bmat_dim1];
bsum += sum * d__[j];
jp = npt + j;
i__1 = n;
for (k = 1; k <= i__1; ++k)
sum += bmat[jp + k * bmat_dim1] * d__[k];
vlag[jp] = sum;
bsum += sum * d__[j];
dx += d__[j] * xopt[j];
}
beta = dx * dx + dsq * (xoptsq + dx + dx + .5 * dsq) + beta - bsum;
vlag[kopt] += 1.0;
/* If KNEW is positive and if the cancellation in DENOM is
* unacceptable, then BIGDEN calculates an alternative model step,
* XNEW being used for working space. */
if (knew > 0) {
/* Computing 2nd power */
d__1 = vlag[knew];
temp = 1.0 + alpha * beta / (d__1 * d__1);
if (fabs(temp) <= .8) {
bigden_(n, npt, &xopt[1], &xpt[xpt_offset], &bmat[bmat_offset], &
zmat[zmat_offset], &idz, ndim, &kopt, &knew, &d__[1], &w[
1], &vlag[1], &beta, &xnew[1], &w[*ndim + 1], &w[*ndim *
6 + 1]);
}
}
/* Calculate the next value of the objective function. */
L290:
i__2 = n;
for (i__ = 1; i__ <= i__2; ++i__) {
xnew[i__] = xopt[i__] + d__[i__];
x[i__] = xbase[i__] + xnew[i__];
}
++nf;
L310:
if (nf > nftest) {
--nf;
//fprintf(stderr, "++ Return from NEWUOA because CALFUN has been called MAXFUN times.\n");
goto L530;
}
f = func(n, &x[1]);
if (nf <= npt) goto L70;
if (knew == -1) goto L530;
/* Use the quadratic model to predict the change in F due to the
* step D, and set DIFF to the error of this prediction. */
vquad = ih = 0;
i__2 = n;
for (j = 1; j <= i__2; ++j) {
vquad += d__[j] * gq[j];
i__1 = j;
for (i__ = 1; i__ <= i__1; ++i__) {
++ih;
temp = d__[i__] * xnew[j] + d__[j] * xopt[i__];
if (i__ == j) temp = .5 * temp;
vquad += temp * hq[ih];
}
}
i__1 = npt;
for (k = 1; k <= i__1; ++k) vquad += pq[k] * w[k];
diff = f - fopt - vquad;
diffc = diffb;
diffb = diffa;
diffa = fabs(diff);
if (dnorm > rho) nfsav = nf;
/* Update FOPT and XOPT if the new F is the least value of the
* objective function so far. The branch when KNEW is positive
* occurs if D is not a trust region step. */
fsave = fopt;
if (f < fopt) {
fopt = f;
xoptsq = 0;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
xopt[i__] = xnew[i__];
/* Computing 2nd power */
d__1 = xopt[i__];
xoptsq += d__1 * d__1;
}
}
ksave = knew;
if (knew > 0) goto L410;
/* Pick the next value of DELTA after a trust region step. */
if (vquad >= 0) {
fprintf(stderr, "++ Return from NEWUOA because a trust region step has failed to reduce Q.\n");
goto L530;
}
ratio = (f - fsave) / vquad;
if (ratio <= 0.1) {
delta = .5 * dnorm;
} else if (ratio <= .7) {
/* Computing MAX */
d__1 = .5 * delta;
delta = std::max(d__1, dnorm);
} else {
/* Computing MAX */
d__1 = .5 * delta, d__2 = dnorm + dnorm;
delta = std::max(d__1, d__2);
}
if (delta <= rho * 1.5) delta = rho;
/* Set KNEW to the index of the next interpolation point to be
* deleted. */
/* Computing MAX */
d__2 = 0.1 * delta;
/* Computing 2nd power */
d__1 = std::max(d__2, rho);
rhosq = d__1 * d__1;
ktemp = detrat = 0;
if (f >= fsave) {
ktemp = kopt;
detrat = 1.0;
}
i__1 = npt;
for (k = 1; k <= i__1; ++k) {
hdiag = 0;
i__2 = nptm;
for (j = 1; j <= i__2; ++j) {
temp = 1.0;
if (j < idz) temp = -1.0;
/* Computing 2nd power */
d__1 = zmat[k + j * zmat_dim1];
hdiag += temp * (d__1 * d__1);
}
/* Computing 2nd power */
d__2 = vlag[k];
temp = (d__1 = beta * hdiag + d__2 * d__2, fabs(d__1));
distsq = 0;
i__2 = n;
for (j = 1; j <= i__2; ++j) {
/* Computing 2nd power */
d__1 = xpt[k + j * xpt_dim1] - xopt[j];
distsq += d__1 * d__1;
}
if (distsq > rhosq) {
/* Computing 3rd power */
d__1 = distsq / rhosq;
temp *= d__1 * (d__1 * d__1);
}
if (temp > detrat && k != ktemp) {
detrat = temp;
knew = k;
}
}
if (knew == 0) goto L460;
/* Update BMAT, ZMAT and IDZ, so that the KNEW-th interpolation
* point can be moved. Begin the updating of the quadratic model,
* starting with the explicit second derivative term. */
L410:
update_(n, npt, &bmat[bmat_offset], &zmat[zmat_offset], &idz, ndim, &vlag[1], &beta, &knew, &w[1]);
fval[knew] = f;
ih = 0;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
temp = pq[knew] * xpt[knew + i__ * xpt_dim1];
i__2 = i__;
for (j = 1; j <= i__2; ++j) {
++ih;
hq[ih] += temp * xpt[knew + j * xpt_dim1];
}
}
pq[knew] = 0;
/* Update the other second derivative parameters, and then the
* gradient vector of the model. Also include the new interpolation
* point. */
i__2 = nptm;
for (j = 1; j <= i__2; ++j) {
temp = diff * zmat[knew + j * zmat_dim1];
if (j < idz) temp = -temp;
i__1 = npt;
for (k = 1; k <= i__1; ++k) {
pq[k] += temp * zmat[k + j * zmat_dim1];
}
}
gqsq = 0;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
gq[i__] += diff * bmat[knew + i__ * bmat_dim1];
/* Computing 2nd power */
d__1 = gq[i__];
gqsq += d__1 * d__1;
xpt[knew + i__ * xpt_dim1] = xnew[i__];
}
/* If a trust region step makes a small change to the objective
* function, then calculate the gradient of the least Frobenius norm
* interpolant at XBASE, and store it in W, using VLAG for a vector
* of right hand sides. */
if (ksave == 0 && delta == rho) {
if (fabs(ratio) > .01) {
itest = 0;
} else {
i__1 = npt;
for (k = 1; k <= i__1; ++k)
vlag[k] = fval[k] - fval[kopt];
gisq = 0;
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
sum = 0;
i__2 = npt;
for (k = 1; k <= i__2; ++k)
sum += bmat[k + i__ * bmat_dim1] * vlag[k];
gisq += sum * sum;
w[i__] = sum;
}
/* Test whether to replace the new quadratic model by the
* least Frobenius norm interpolant, making the replacement
* if the test is satisfied. */
++itest;
if (gqsq < gisq * 100.) itest = 0;
if (itest >= 3) {
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) gq[i__] = w[i__];
i__1 = nh;
for (ih = 1; ih <= i__1; ++ih) hq[ih] = 0;
i__1 = nptm;
for (j = 1; j <= i__1; ++j) {
w[j] = 0;
i__2 = npt;
for (k = 1; k <= i__2; ++k)
w[j] += vlag[k] * zmat[k + j * zmat_dim1];
if (j < idz) w[j] = -w[j];
}
i__1 = npt;
for (k = 1; k <= i__1; ++k) {
pq[k] = 0;
i__2 = nptm;
for (j = 1; j <= i__2; ++j)
pq[k] += zmat[k + j * zmat_dim1] * w[j];
}
itest = 0;
}
}
}
if (f < fsave) kopt = knew;
/* If a trust region step has provided a sufficient decrease in F,
* then branch for another trust region calculation. The case
* KSAVE>0 occurs when the new function value was calculated by a
* model step. */
if (f <= fsave + 0.1 * vquad) goto L100;
if (ksave > 0) goto L100;
/* Alternatively, find out if the interpolation points are close
* enough to the best point so far. */
knew = 0;
L460:
distsq = delta * 4. * delta;
i__2 = npt;
for (k = 1; k <= i__2; ++k) {
sum = 0;
i__1 = n;
for (j = 1; j <= i__1; ++j) {
/* Computing 2nd power */
d__1 = xpt[k + j * xpt_dim1] - xopt[j];
sum += d__1 * d__1;
}
if (sum > distsq) {
knew = k;
distsq = sum;
}
}
/* If KNEW is positive, then set DSTEP, and branch back for the next
* iteration, which will generate a "model step". */
if (knew > 0) {
/* Computing MAX and MIN*/
d__2 = 0.1 * sqrt(distsq), d__3 = .5 * delta;
d__1 = std::min(d__2, d__3);
dstep = std::max(d__1, rho);
dsq = dstep * dstep;
goto L120;
}
if (ratio > 0) goto L100;
if (std::max(delta, dnorm) > rho) goto L100;
/* The calculations with the current value of RHO are complete. Pick
* the next values of RHO and DELTA. */
L490:
if (rho > rhoend) {
delta = .5 * rho;
ratio = rho / rhoend;
if (ratio <= 16.) rho = rhoend;
else if (ratio <= 250.) rho = sqrt(ratio) * rhoend;
else rho = RHO_DECREASE * rho;
delta = std::max(delta, rho);
goto L90;
}
/* Return from the calculation, after another Newton-Raphson step,
* if it is too short to have been tried before. */
if (knew == -1) goto L290;
L530:
if (fopt <= f) {
i__2 = n;
for (i__ = 1; i__ <= i__2; ++i__)
x[i__] = xbase[i__] + xopt[i__];
f = fopt;
}
*ret_nf = nf;
return f;
}
template<class TYPE, class Func>
static TYPE newuoa_(int n, int npt, TYPE *x, TYPE rhobeg, TYPE rhoend, int *ret_nf, int maxfun, TYPE *w, Func &func)
{
/* This subroutine seeks the least value of a function of many
* variables, by a trust region method that forms quadratic models
* by interpolation. There can be some freedom in the interpolation
* conditions, which is taken up by minimizing the Frobenius norm of
* the change to the second derivative of the quadratic model,
* beginning with a zero matrix. The arguments of the subroutine are
* as follows. */
/* N must be set to the number of variables and must be at least
* two. NPT is the number of interpolation conditions. Its value
* must be in the interval [N+2,(N+1)(N+2)/2]. Initial values of the
* variables must be set in X(1),X(2),...,X(N). They will be changed
* to the values that give the least calculated F. RHOBEG and RHOEND
* must be set to the initial and final values of a trust region
* radius, so both must be positive with RHOEND<=RHOBEG. Typically
* RHOBEG should be about one tenth of the greatest expected change
* to a variable, and RHOEND should indicate the accuracy that is
* required in the final values of the variables. MAXFUN must be set
* to an upper bound on the number of calls of CALFUN. The array W
* will be used for working space. Its length must be at least
* (NPT+13)*(NPT+N)+3*N*(N+3)/2. */
/* SUBROUTINE CALFUN (N,X,F) must be provided by the user. It must
* set F to the value of the objective function for the variables
* X(1),X(2),...,X(N). Partition the working space array, so that
* different parts of it can be treated separately by the subroutine
* that performs the main calculation. */
int id, np, iw, igq, ihq, ixb, ifv, ipq, ivl, ixn,
ixo, ixp, ndim, nptm, ibmat, izmat;
/* Parameter adjustments */
--w; --x;
/* Function Body */
np = n + 1;
nptm = npt - np;
if (npt < n + 2 || npt > (n + 2) * np / 2) {
fprintf(stderr, "** Return from NEWUOA because NPT is not in the required interval.\n");
return 1;
}
ndim = npt + n;
ixb = 1;
ixo = ixb + n;
ixn = ixo + n;
ixp = ixn + n;
ifv = ixp + n * npt;
igq = ifv + npt;
ihq = igq + n;
ipq = ihq + n * np / 2;
ibmat = ipq + npt;
izmat = ibmat + ndim * n;
id = izmat + npt * nptm;
ivl = id + n;
iw = ivl + ndim;
/* The above settings provide a partition of W for subroutine
* NEWUOB. The partition requires the first NPT*(NPT+N)+5*N*(N+3)/2
* elements of W plus the space that is needed by the last array of
* NEWUOB. */
return newuob_(n, npt, &x[1], rhobeg, rhoend, ret_nf, maxfun, &w[ixb], &w[ixo], &w[ixn],
&w[ixp], &w[ifv], &w[igq], &w[ihq], &w[ipq], &w[ibmat], &w[izmat],
&ndim, &w[id], &w[ivl], &w[iw], func);
}
template<class TYPE, class Func>
TYPE min_newuoa(int n, TYPE *x, Func &func, TYPE rb, TYPE tol, int max_iter)
{
int npt = 2 * n + 1, rnf;
TYPE ret;
TYPE *w = (TYPE*)calloc((npt+13)*(npt+n) + 3*n*(n+3)/2 + 11, sizeof(TYPE));
ret = newuoa_(n, 2*n+1, x, rb, tol, &rnf, max_iter, w, func);
free(w);
return ret;
}
#endif
|