1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
#ifndef IMG_CS_BASE_H_
#define IMG_CS_BASE_H_
// warning: temporary name/location, will change in near future
#include "img/img.h"
namespace img {
// RGB: GAMMA -> LINEAR
template<int Channels, typename ScalarType1, bool Safe1,typename ScalarType2, bool Safe2>
inline void convert_gamma_precompensated_rgb_to_linear_rgb(const img::Image<Channels,ScalarType1,Safe1> &gamma_precompensated_rgb_image, img::Image<Channels,ScalarType2,Safe2> &linear_rgb_image)
{
assert(gamma_precompensated_rgb_image.isValid());
assert(!gamma_precompensated_rgb_image.attributes.hasColorspace(SRGB));
assert(gamma_precompensated_rgb_image.attributes.hasRange(0.0,1.0));
ScalarType2 old_gamma;
gamma_precompensated_rgb_image.attributes.getGamma(old_gamma);
assert((old_gamma>0.0)&&(old_gamma<1.0));
if(Safe1 || Safe2){
if(!gamma_precompensated_rgb_image.isValid()) throw ImageException("Invalid rgb image");
if(gamma_precompensated_rgb_image.attributes.hasColorspace(SRGB)) throw ImageException("Invalid colorspace attribute");
if(!gamma_precompensated_rgb_image.attributes.hasRange(0,1)) throw ImageException("Invalid range attribute");
if(!((old_gamma>0.0)&&(old_gamma<1.0))) throw ImageException("Invalid gamma attribute");
}
linear_rgb_image.setZero(gamma_precompensated_rgb_image.width(),gamma_precompensated_rgb_image.height());
linear_rgb_image.attributes=gamma_precompensated_rgb_image.attributes;
for(int channel=0; channel<Channels; ++channel)
for(int x_coord=0; x_coord<gamma_precompensated_rgb_image.width(); ++x_coord)
for(int y_coord=0; y_coord<gamma_precompensated_rgb_image.height(); ++y_coord){
linear_rgb_image.setValue(x_coord,y_coord,channel, pow(ScalarType2(gamma_precompensated_rgb_image.getValue(x_coord,y_coord,channel)),ScalarType2(1.0)/old_gamma));
}
linear_rgb_image.attributes.setGamma(ScalarType2(1.0));
}
// RGB: LINEAR -> GAMMA
// when converting from linear to gamma precompensated the gamma parameter mus be in range (0.0,1.0)
template<int Channels, typename ScalarType1, bool Safe1,typename ScalarType2, bool Safe2>
inline void convert_linear_rgb_to_gamma_precompensated_rgb(const img::Image<Channels,ScalarType1,Safe1> &linear_rgb_image, img::Image<Channels,ScalarType2,Safe2> &gamma_precompensated_rgb_image, ScalarType2 gamma=ScalarType2(1.0/2.2))
{
assert(linear_rgb_image.isValid());
assert(!linear_rgb_image.attributes.hasColorspace(SRGB));
assert(linear_rgb_image.attributes.hasRange(0.0,1.0));
assert(linear_rgb_image.attributes.hasGamma(1.0));
assert((gamma>0.0)&&(gamma<1.0));
if(Safe1 || Safe2){
if(!linear_rgb_image.isValid()) throw img::ImageException("Invalid rgb image");
if(linear_rgb_image.attributes.hasColorspace(SRGB)) throw ImageException("Invalid colorspace attribute");
if(!linear_rgb_image.attributes.hasRange(0.0,1.0)) throw ImageException("Invalid range attribute");
if(!linear_rgb_image.attributes.hasGamma(1.0)) throw ImageException("Invalid gamma attribute");
if(!((gamma>0.0)&&(gamma<1.0))) throw ImageException("Invalid gamma parameter");
}
gamma_precompensated_rgb_image.setZero(linear_rgb_image.width(),linear_rgb_image.height());
gamma_precompensated_rgb_image.attributes=linear_rgb_image.attributes;
for(int channel=0; channel<Channels; ++channel)
for(int x_coord=0; x_coord<linear_rgb_image.width(); ++x_coord)
for(int y_coord=0; y_coord<linear_rgb_image.height(); ++y_coord){
gamma_precompensated_rgb_image.setValue(x_coord,y_coord,channel, pow(ScalarType2(linear_rgb_image.getValue(x_coord,y_coord,channel)),gamma));
}
gamma_precompensated_rgb_image.attributes.setGamma(gamma);
}
// SRGB: GAMMA -> LINEAR
template<int Channels, typename ScalarType1, bool Safe1,typename ScalarType2, bool Safe2>
inline void convert_gamma_precompensated_srgb_to_linear_srgb(const img::Image<Channels,ScalarType1,Safe1> &gamma_precompensated_srgb_image, img::Image<Channels,ScalarType2,Safe2> &linear_srgb_image)
{
assert(gamma_precompensated_srgb_image.isValid());
assert(gamma_precompensated_srgb_image.attributes.hasColorspace(SRGB));
assert(gamma_precompensated_srgb_image.attributes.hasRange(0.0,1.0));
assert(!gamma_precompensated_srgb_image.attributes.hasGamma(1.0));
if(Safe1 || Safe2){
if(!gamma_precompensated_srgb_image.isValid()) throw ImageException("Invalid rgb image");
if(!gamma_precompensated_srgb_image.attributes.hasColorspace(SRGB)) throw ImageException("Invalid colorspace attribute");
if(!gamma_precompensated_srgb_image.attributes.hasRange(0,1)) throw ImageException("Invalid range attribute");
if(gamma_precompensated_srgb_image.attributes.hasGamma(1.0)) throw ImageException("Invalid gamma attribute");
}
linear_srgb_image.setZero(gamma_precompensated_srgb_image.width(),gamma_precompensated_srgb_image.height());
linear_srgb_image.attributes=gamma_precompensated_srgb_image.attributes;
for(int channel=0; channel<Channels; ++channel)
for(int x_coord=0; x_coord<gamma_precompensated_srgb_image.width(); ++x_coord)
for(int y_coord=0; y_coord<gamma_precompensated_srgb_image.height(); ++y_coord){
ScalarType2 value = ScalarType2(gamma_precompensated_srgb_image.getValue(x_coord,y_coord,channel));
if(value<=ScalarType2(0.04045))
value = value / ScalarType2(12.92);
else
value = pow( (value+ScalarType2(0.055)) / ScalarType2(1.055), ScalarType2(2.4) );
linear_srgb_image.setValue(x_coord, y_coord, channel, value);
}
linear_srgb_image.attributes.setGamma(ScalarType2(1.0));
}
// SRGB: LINEAR -> GAMMA
template<int Channels, typename ScalarType1, bool Safe1,typename ScalarType2, bool Safe2>
inline void convert_linear_srgb_to_gamma_precompensated_srgb(const img::Image<Channels,ScalarType1,Safe1> &linear_srgb_image, img::Image<Channels,ScalarType2,Safe2> &gamma_precompensated_srgb_image)
{
assert(linear_srgb_image.isValid());
assert(linear_srgb_image.attributes.hasColorspace(SRGB));
assert(linear_srgb_image.attributes.hasRange(0.0,1.0));
assert(linear_srgb_image.attributes.hasGamma(1.0));
if(Safe1 || Safe2){
if(!linear_srgb_image.isValid()) throw img::ImageException("Invalid rgb image");
if(!linear_srgb_image.attributes.hasColorspace(SRGB)) throw ImageException("Invalid colorspace attribute");
if(!linear_srgb_image.attributes.hasRange(0.0,1.0)) throw ImageException("Invalid range attribute");
if(!linear_srgb_image.attributes.hasGamma(1.0)) throw ImageException("Invalid gamma attribute");
}
gamma_precompensated_srgb_image.setZero(linear_srgb_image.width(),linear_srgb_image.height());
gamma_precompensated_srgb_image.attributes=linear_srgb_image.attributes;
for(int channel=0; channel<Channels; ++channel)
for(int x_coord=0; x_coord<linear_srgb_image.width(); ++x_coord)
for(int y_coord=0; y_coord<linear_srgb_image.height(); ++y_coord){
ScalarType2 value = ScalarType2(linear_srgb_image.getValue(x_coord,y_coord,channel));
if(value<=ScalarType2(0.0031308))
value = value * ScalarType2(12.92);
else
value = (ScalarType2(1.055) * pow(value, ScalarType2(1.0/2.4))) - ScalarType2(0.055);
gamma_precompensated_srgb_image.setValue(x_coord, y_coord, channel, value);
}
gamma_precompensated_srgb_image.attributes.setGamma(ScalarType2(2.2)); // approssimation
}
// SRGB -> XYZ
template<typename ScalarType1, bool Safe1,typename ScalarType2, bool Safe2>
inline void convert_srgb_to_xyz(const img::Image<3,ScalarType1,Safe1> &rgb_image, img::Image<3,ScalarType2,Safe2> &xyz_image)
{
assert( rgb_image.isValid());
assert( rgb_image.attributes.hasRange(0.0,1.0));
assert( rgb_image.attributes.hasGamma(1.0));
assert( rgb_image.attributes.hasColorspace(img::RGB) );
if(Safe1 || Safe2){
if(!rgb_image.isValid()) throw img::ImageException("Invalid rgb image");
if(!rgb_image.attributes.hasRange(0.0,1.0)) throw img::ImageException("Invalid range attribute");
if(!rgb_image.attributes.hasGamma(1.0)) throw img::ImageException("Invalid gamma attribute");
if(!rgb_image.attributes.hasColorspace(img::RGB)) throw img::ImageException("Invalid colorspace attribute");
}
xyz_image.setZero(rgb_image.width(),rgb_image.height());
xyz_image.attributes=rgb_image.attributes;
for(int x_coord=0; x_coord<rgb_image.width(); ++x_coord)
for(int y_coord=0; y_coord<rgb_image.height(); ++y_coord){
const ScalarType2 R = static_cast<ScalarType2>(rgb_image.getValue(x_coord,y_coord,0));
const ScalarType2 G = static_cast<ScalarType2>(rgb_image.getValue(x_coord,y_coord,1));
const ScalarType2 B = static_cast<ScalarType2>(rgb_image.getValue(x_coord,y_coord,2));
xyz_image.setValue(x_coord,y_coord,0, ( 0.412453f*R + 0.357580f*G + 0.180423f*B ) );
xyz_image.setValue(x_coord,y_coord,1, ( 0.212671f*R + 0.715160f*G + 0.072169f*B ) );
xyz_image.setValue(x_coord,y_coord,2, ( 0.019334f*R + 0.119193f*G + 0.950227f*B ) );
}
xyz_image.setColorspace(img::CIE_XYZ);
}
// XYZ -> SRGB
template<typename ScalarType1, bool Safe1,typename ScalarType2, bool Safe2>
inline void convert_xyz_to_rgb(const img::Image<3,ScalarType1,Safe1> &xyz_image, img::Image<3,ScalarType2,Safe2> &rgb_image)
{
assert( xyz_image.isValid());
assert( xyz_image.attributes.hasRange(0.0,1.0));
assert( xyz_image.attributes.hasGamma(1.0));
assert( xyz_image.attributes.hasColorspace(img::CIE_XYZ) );
if(Safe1 || Safe2){
if(!xyz_image.isValid()) throw img::ImageException("Invalid xyz image");
if(!xyz_image.attributes.hasRange(0.0,1.0)) throw img::ImageException("Invalid range attribute");
if(!xyz_image.attributes.hasGamma(1.0)) throw img::ImageException("Invalid gamma attribute");
if(!rgb_image.attributes.hasColorspace(img::CIE_XYZ)) throw img::ImageException("Invalid colorspace attribute");
}
rgb_image.setZero(xyz_image.width(),xyz_image.height());
rgb_image.attributes=xyz_image.attributes;
for(int x=0; x<xyz_image.width(); ++x)
for(int y=0; y<xyz_image.height(); ++y){
const ScalarType2 X = static_cast<ScalarType2>(xyz_image.getValue(x,y,0));
const ScalarType2 Y = static_cast<ScalarType2>(xyz_image.getValue(x,y,1));
const ScalarType2 Z = static_cast<ScalarType2>(xyz_image.getValue(x,y,2));
const ScalarType2 R = 3.240479f*X + -1.537150f*Y + -0.498535f*Z;
const ScalarType2 G = -0.969256f*X + 1.875992f*Y + 0.041556f*Z;
const ScalarType2 B = 0.055648f*X + -0.204043f*Y + 1.057311f*Z;
rgb_image.setValue(x,y,0, ( R<0.0f?0.0f:(R>1.0f?1.0f:R) ) );
rgb_image.setValue(x,y,1, ( G<0.0f?0.0f:(G>1.0f?1.0f:G) ) );
rgb_image.setValue(x,y,2, ( B<0.0f?0.0f:(B>1.0f?1.0f:B) ) );
}
rgb_image.setColorspace(img::RGB);
}
///ora nn ho tempo:
//// AltriRGB -> XYZ
//// XYZ -> AltriRGB
//// XYZ -> LAB
//// LAB -> XYZ
//template<typename ScalarType1, bool Safe1,typename ScalarType2, bool Safe2>
//inline void convert_xyz_to_lab(const img::Image<3,ScalarType1,Safe1> &xyz_image, img::Image<3,ScalarType2,Safe2> &lab_image)
//{
// assert(xyz_image.isValid());
// if(Safe1 || Safe2){
// if(!xyz_image.isValid()) throw img::ImageException("Invalid xyz image");
// }
// lab_image.setZero(xyz_image.width(),xyz_image.height());
//
// const ScalarType2 one_third=0.33333333333333333333333333333333333333333333333333333333333333f;
// const ScalarType2 Xn = 0.9513f;
// const ScalarType2 Yn = 1.000f;
// const ScalarType2 Zn = 1.0886f;
//
// for(int x=0; x<xyz_image.width(); ++x)
// for(int y=0; y<xyz_image.height(); ++y){
// const ScalarType2 X_third = pow(static_cast<ScalarType2>(xyz_image.getValue(x,y,0))/Xn,one_third);
// const ScalarType2 Y = static_cast<ScalarType2>(xyz_image.getValue(x,y,1))/Yn;
// const ScalarType2 Y_third = pow(Y,one_third);
// const ScalarType2 Z_third = pow(static_cast<ScalarType2>(xyz_image.getValue(x,y,2))/Zn,one_third);
//
// lab_image.setValue(x,y,0, (Y > 0.008856f)?((116.0f*(Y_third)) - 16.0f):(903.3f*Y) );
// lab_image.setValue(x,y,1, 500.0f * ((X_third) - (Y_third)) );
// lab_image.setValue(x,y,2, 200.0f * ((Y_third) - (Z_third)) );
// }
//}
//
//template<typename ScalarType1, bool Safe1,typename ScalarType2, bool Safe2>
//inline void convert_lab_to_xyz(const img::Image<3,ScalarType1,Safe1> &lab_image, img::Image<3,ScalarType2,Safe2> &xyz_image)
//{
// assert(0); // sistemare attributi
// assert(lab_image.isValid());
// if(Safe1 || Safe2){
// if(!lab_image.isValid()) throw img::ImageException("Invalid lab image");
// }
// xyz_image.setZero(lab_image.width(),lab_image.height());
//
// const ScalarType2 Xn = 0.9513f;
// const ScalarType2 Yn = 1.000f;
// const ScalarType2 Zn = 1.0886f;
//
// for(int x=0; x<lab_image.width(); ++x)
// for(int y=0; y<lab_image.height(); ++y){
// const ScalarType2 P = (static_cast<ScalarType2>(lab_image.getValue(x,y,0))+16.0f)/116.0f;
//
// xyz_image.setValue(x,y,0, Xn * pow(P + (lab_image.getValue(x,y,1)/500.0f), 3.0f) );
// xyz_image.setValue(x,y,1, Yn * pow(P, 3.0f) );
// xyz_image.setValue(x,y,2, Zn * pow(P - (lab_image.getValue(x,y,2)/200.0f), 3.0f) );
// }
//}
} // end namespace img
#endif /*IMG_CS_BASE_H_*/
|