1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef _AUTOALIGN_4PCS_H_
#define _AUTOALIGN_4PCS_H_
/**
implementation of the 4PCS method from the paper:
"4-Points Congruent Sets for Robust Pairwise Surface Registration"
D.Aiger, N.Mitra D.Cohen-Or, SIGGRAPH 2008
ps: the name of the variables are out of vcg standard but like the one
used in the paper pseudocode.
*/
#include <vcg/complex/complex.h>
#include <vcg/space/point_matching.h>
#include <vcg/complex/algorithms/closest.h>
#include <vcg/complex/algorithms/point_sampling.h>
#include <vcg/math/random_generator.h>
#include <ctime>
namespace vcg{
namespace tri{
template <class MeshType>
class FourPCS {
public:
/* mesh only for using spatial indexing functions (to remove) */
class PVertex; // dummy prototype never used
class PFace;
class PUsedTypes: public vcg::UsedTypes < vcg::Use<PVertex>::template AsVertexType,
vcg::Use<PFace >::template AsFaceType >{};
class PVertex : public vcg::Vertex< PUsedTypes,vcg::vertex::BitFlags,vcg::vertex::Coord3f,vcg::vertex::Mark>{};
class PFace : public vcg::Face< PUsedTypes> {};
class PMesh : public vcg::tri::TriMesh< std::vector<PVertex>, std::vector<PFace> > {};
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef typename vcg::Matrix44<ScalarType> Matrix44x;
typedef typename vcg::Box3<ScalarType> Box3x;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexType VertexType;
typedef vcg::Point4< vcg::Point3<ScalarType> > FourPoints;
typedef vcg::GridStaticPtr<typename PMesh::VertexType, ScalarType > GridType;
/* class for Parameters */
struct Param
{
ScalarType overlap; // overlap estimation as a percentage of overlapping points.
int sampleNumP; // number of samples on moving mesh P (it determines the sampling radius to be used to sample Q too)
float samplingRadius;
ScalarType deltaPerc; // Approximation Level (expressed as a percentage of the avg distance between samples)
ScalarType deltaAbs; // Approximation Level
int feetSize; // how many points in the neighborhood of each of the 4 points
int scoreFeet; // how many of the feetsize points must match (max feetsize*4) to try an early interrupt
ScalarType cosAngle; // max admittable angle that can be admitted between matching points in alignments (expressed as cos(ang) )
int seed; // random seed used. Need for repeatability.
void Default(){
overlap = 0.5;
sampleNumP=500;
samplingRadius=0;
deltaPerc = 0.5;
deltaAbs = 0;
feetSize = 25;
scoreFeet = 50;
seed =0;
cosAngle = 0; // normals must differ more than 90 degree to be considered bad.
}
};
struct Stat
{
Stat() : initTime(0),selectCoplanarBaseTime(0),findCongruentTime(0),testAlignmentTime(0)
{}
clock_t initTime;
clock_t selectCoplanarBaseTime;
clock_t findCongruentTime;
clock_t testAlignmentTime;
float init() {return 1000.0f*float(initTime)/float(CLOCKS_PER_SEC);}
float select() {return 1000.0f*float(selectCoplanarBaseTime)/float(CLOCKS_PER_SEC);}
float findCongruent() {return 1000.0f*float(findCongruentTime)/float(CLOCKS_PER_SEC);}
float testAlignment() {return 1000.0f*float(testAlignmentTime)/float(CLOCKS_PER_SEC);}
};
class Couple
{
public:
VertexPointer p0,p1;
Couple(VertexPointer i, VertexPointer j, float d) : p0(i),p1(j),dist(d){}
float dist;
bool operator < (const Couple & o) const {return dist < o.dist;}
VertexPointer operator[](const int &i) const {return (i==0)? this->p0 : this->p1;}
};
struct Candidate
{
Candidate():score(0){}
Candidate(FourPoints _p, vcg::Matrix44<ScalarType>_T):p(_p),T(_T){}
FourPoints p;
vcg::Matrix44<ScalarType> T;
int score;
inline bool operator <(const Candidate & o) const {return score > o.score;}
};
// class for the point 'ei'
struct EPoint{
EPoint(vcg::Point3<ScalarType> _p, int _i):pos(_p),pi(_i){}
vcg::Point3<ScalarType> pos;
int pi; //index to R[1|2]
void GetBBox(vcg::Box3<ScalarType> & b){b.Add(pos);}
};
Param par; /// parameters
Stat stat;
MeshType *P; // Moving Mesh (from which the coplanar base is selected)
MeshType *Q; // Fixed Mesh (mesh where to find the correspondences)
math::MarsenneTwisterRNG rnd;
std::vector<VertexPointer> subsetQ; // subset of the vertices in Q
std::vector<VertexPointer> subsetP; // random selection on P
ScalarType side; // side
PMesh Invr; // invariants
std::vector< Candidate > U; // the
int iwinner; // winner == U[iwinner]
std::vector<FourPoints> bases; // used bases
std::vector<VertexType*> ExtB[4]; // selection of vertices "close" to the four point
vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType > ugridQ;
vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType > ugridP;
/* returns the closest point between to segments x1-x2 and x3-x4. */
void IntersectionLineLine(const CoordType & x1,const CoordType & x2,const CoordType & x3,const CoordType & x4, CoordType&x)
{
CoordType a = x2-x1, b = x4-x3, c = x3-x1;
x = x1 + a * ((c^b).dot(a^b)) / (a^b).SquaredNorm();
}
void Init(MeshType &_movP,MeshType &_fixQ)
{
clock_t t0= clock();
P = &_movP;
Q = &_fixQ;
tri::UpdateBounding<MeshType>::Box(*P);
if(par.seed==0) rnd.initialize(time(0));
else rnd.initialize(par.seed);
ugridQ.Set(Q->vert.begin(),Q->vert.end());
ugridP.Set(P->vert.begin(),P->vert.end());
if(par.samplingRadius==0)
par.samplingRadius = tri::ComputePoissonDiskRadius(*P,par.sampleNumP);
tri::PoissonPruning(*P, subsetP, par.samplingRadius, par.seed);
tri::PoissonPruning(*Q, subsetQ, par.samplingRadius, par.seed);
par.deltaAbs = par.samplingRadius * par.deltaPerc;
side = P->bbox.Dim()[P->bbox.MaxDim()]*par.overlap; //rough implementation
stat.initTime+=clock()-t0;
}
// Try to select four coplanar points such that they are at least side distance and
//
bool SelectCoplanarBase(FourPoints &B, ScalarType &r1, ScalarType &r2)
{
clock_t t0= clock();
// choose the inter point distance
ScalarType dtol = side*0.1; //rough implementation
// **** first point: random
B[0] = P->vert[ rnd.generate(P->vert.size())].P();
// **** second point: a random point at distance side +-dtol
size_t i;
for(i = 0; i < P->vert.size(); ++i){
int id = rnd.generate(P->vert.size());
ScalarType dd = (P->vert[id].P() - B[0]).Norm();
if( ( dd < side + dtol) && (dd > side - dtol)){
B[1] = P->vert[id].P();
break;
}
}
if(i == P->vert.size()) return false;
// **** third point: at distance less than side*0.8 from middle way between B[0] and B[1]
const CoordType middle = (B[0]+B[1])/2.0;
for(i = 0; i < P->vert.size(); ++i){
int id = rnd.generate(P->vert.size());
if( Distance(P->vert[id].P(),middle) < side*0.8 ){
B[2] = P->vert[id].P();
break;
}
}
if(i == P->vert.size()) return false;
// **** fourth point:
ScalarType cpr = rnd.generate01();
CoordType crossP = B[0] *(1-cpr)+B[1]*cpr;
CoordType B4 = B[2]+(crossP-B[2]).Normalize()*side;
CoordType n = ((B[0]-B[1]).normalized() ^ (B[2]-B[1]).normalized()).normalized();
ScalarType radius = dtol;
std::vector<typename MeshType::VertexType*> closests;
std::vector<ScalarType> distances;
std::vector<CoordType> points;
vcg::tri::GetInSphereVertex<
MeshType,
vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType >,
std::vector<typename MeshType::VertexType*>,
std::vector<ScalarType>,
std::vector<CoordType>
>(*P,ugridP,B4,radius,closests,distances,points);
if(closests.empty())
return false;
int bestInd = -1; ScalarType bestv=std::numeric_limits<float>::max();
for(i = 0; i <closests.size(); ++i){
ScalarType dist_from_plane = fabs((closests[i]->P() - B[1]).normalized().dot(n));
if( dist_from_plane < bestv){
bestv = dist_from_plane;
bestInd = i;
}
}
if(bestv >dtol)
return false;
B[3] = closests[bestInd]->P();
//printf("B[3] %d\n", (typename MeshType::VertexType*)closests[best] - &(*P->vert.begin()));
// compute r1 and r2
CoordType x;
// std::swap(B[1],B[2]);
IntersectionLineLine(B[0],B[1],B[2],B[3],x);
r1 = (x - B[0]).dot(B[1]-B[0]) / (B[1]-B[0]).SquaredNorm();
r2 = (x - B[2]).dot(B[3]-B[2]) / (B[3]-B[2]).SquaredNorm();
if( ((B[0]+(B[1]-B[0])*r1)-(B[2]+(B[3]-B[2])*r2)).Norm() > par.deltaAbs )
return false;
radius = side*0.5;
std::vector< CoordType > samples;
std::vector<ScalarType > dists;
for(int i = 0 ; i< 4; ++i){
vcg::tri::GetKClosestVertex<
MeshType,
vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType >,
std::vector<VertexType*>,
std::vector<ScalarType>,
std::vector< CoordType > >(*P,ugridP, par.feetSize ,B[i],radius, ExtB[i], dists, samples);
}
//qDebug("ExtB %i",ExtB[0].size()+ExtB[1].size()+ExtB[2].size()+ExtB[3].size());
stat.selectCoplanarBaseTime+=clock()-t0;
return true;
}
bool IsTransfCongruent(const FourPoints &B, const FourPoints &fp, vcg::Matrix44<ScalarType> & mat)
{
std::vector<vcg::Point3<ScalarType> > fix(4);
std::vector<vcg::Point3<ScalarType> > mov(4);
for(int i = 0 ; i < 4; ++i) {
mov[i]=B[i];
fix[i]=fp[i];
}
if(fabs( Distance(fix[0],fix[1]) - Distance(mov[0],mov[1]) ) > par.deltaAbs) return false;
if(fabs( Distance(fix[0],fix[2]) - Distance(mov[0],mov[2]) ) > par.deltaAbs) return false;
if(fabs( Distance(fix[0],fix[3]) - Distance(mov[0],mov[3]) ) > par.deltaAbs) return false;
if(fabs( Distance(fix[1],fix[2]) - Distance(mov[1],mov[2]) ) > par.deltaAbs) return false;
if(fabs( Distance(fix[1],fix[3]) - Distance(mov[1],mov[3]) ) > par.deltaAbs) return false;
if(fabs( Distance(fix[2],fix[3]) - Distance(mov[2],mov[3]) ) > par.deltaAbs) return false;
vcg::ComputeRigidMatchMatrix(fix,mov,mat);
ScalarType maxSquaredDistance = 0.0;
for(int i = 0; i < 4; ++i)
maxSquaredDistance =std::max(maxSquaredDistance, SquaredDistance(mat * mov[i] ,fix[i]));
return sqrt(maxSquaredDistance) < par.deltaAbs;
}
/// Compute the vector R1 of couple of points on FixQ at a given distance.
/// Used by FindCongruent
void ComputeR1(std::vector<Couple > &R1)
{
R1.clear();
for(size_t vi = 0; vi < subsetQ.size(); ++vi)
for(size_t vj = vi; vj < subsetQ.size(); ++vj){
ScalarType d = Distance(subsetQ[vi]->P(),subsetQ[vj]->P());
if( (d < side+par.deltaAbs))
{
R1.push_back(Couple(subsetQ[vi],subsetQ[vj], d));
R1.push_back(Couple(subsetQ[vj],subsetQ[vi], d));
}
}
std::sort(R1.begin(),R1.end());
}
// Find congruent elements of a base B, on Q, with approximation delta
// and put them in the U vector.
bool FindCongruent(const std::vector<Couple > &R1, const FourPoints &B, const ScalarType r1, const ScalarType r2)
{
clock_t t0=clock();
int n_base=0;
bool done = false;
int n_closests = 0, n_congr = 0;
int ac =0 ,acf = 0,tr = 0,trf =0;
ScalarType d1,d2;
d1 = (B[1]-B[0]).Norm();
d2 = (B[3]-B[2]).Norm();
typename std::vector<Couple>::const_iterator bR1,eR1,bR2,eR2,ite;
bR1 = std::lower_bound(R1.begin(),R1.end(),Couple(0,0,d1-par.deltaAbs));
eR1 = std::lower_bound(R1.begin(),R1.end(),Couple(0,0,d1+par.deltaAbs));
bR2 = std::lower_bound(R1.begin(),R1.end(),Couple(0,0,d2-par.deltaAbs));
eR2 = std::lower_bound(R1.begin(),R1.end(),Couple(0,0,d2+par.deltaAbs));
// in [bR1,eR1) there are all the pairs at a distance d1 +- par.delta
// in [bR1,eR1) there are all the pairs at a distance d2 +- par.delta
if(bR1 == R1.end()) return false;// if there are no such pairs return
if(bR2 == R1.end()) return false; // if there are no such pairs return
// put [bR1,eR1) in a mesh to have the search operator for free (lazy me)
Invr.Clear();
typename PMesh::VertexIterator vii;
int i = &(*bR1)-&(*R1.begin());
for(ite = bR1; ite != eR1;++ite){
vii = vcg::tri::Allocator<PMesh>::AddVertices(Invr,1);
// (*vii).P() = Q->vert[R1[i][0]].P() + (Q->vert[R1[i][1]].P()-Q->vert[R1[i][0]].P()) * r1;
(*vii).P() .Import( ite->p0->P() + ( ite->p1->P() - ite->p0->P()) * r1);
++i;
}
if(Invr.vert.empty() ) return false;
// per vertex attribute 'index' remaps a vertex of Invr to its corresponding point in R1
typename PMesh::template PerVertexAttributeHandle<int> id = vcg::tri::Allocator<PMesh>::template AddPerVertexAttribute<int>(Invr,std::string("index"));
i = &(*bR1)-&(*R1.begin());
for(vii = Invr.vert.begin(); vii != Invr.vert.end();++vii,++i) id[vii] = i;
vcg::tri::UpdateBounding<PMesh>::Box(Invr);
std::vector<EPoint> R2inv;
i = &(*bR2)-&(*R1.begin());
// R2inv contains all the points generated by the couples in R2 (with the reference to remap into R2)
for(ite = bR2; ite != eR2;++ite){
// R2inv.push_back( EPoint( Q->vert[R1[i][0]].P() + (Q->vert[R1[i][1]].P()-Q->vert[R1[i][0]].P()) * r2,i));
R2inv.push_back( EPoint( R1[i].p0->P() + (R1[i].p1->P() - R1[i].p0->P()) * r2,i));
++i;
}
GridType ugrid; // griglia
ugrid.Set(Invr.vert.begin(),Invr.vert.end());
n_closests = 0; n_congr = 0; ac =0 ; acf = 0; tr = 0; trf = 0;
printf("R2Inv.size = %d \n",R2inv.size());
for(unsigned int i = 0 ; i < R2inv.size() ; ++i)
{
std::vector<typename PMesh::VertexType*> closests;
// for each point in R2inv get all the points in R1 closer than par.delta
vcg::Matrix44<ScalarType> mat;
Box3x bb;
bb.Add(R2inv[i].pos+CoordType(par.deltaAbs,par.deltaAbs, par.deltaAbs));
bb.Add(R2inv[i].pos-CoordType(par.deltaAbs,par.deltaAbs, par.deltaAbs));
vcg::tri::GetInBoxVertex<PMesh,GridType,std::vector<typename PMesh::VertexType*> >
(Invr,ugrid,bb,closests);
if(closests.size() > 5)
closests.resize(5);
n_closests+=closests.size();
for(unsigned int ip = 0; ip < closests.size(); ++ip)
{
FourPoints p;
p[0] = R1[id[closests[ip]]][0]->cP();
p[1] = R1[id[closests[ip]]][1]->cP();
p[2] = R1[ R2inv[i].pi][0]->cP();
p[3] = R1[ R2inv[i].pi][1]->cP();
n_base++;
if(!IsTransfCongruent(B,p,mat)) {
trf++;
}
else{
tr++;
n_congr++;
Candidate c(p,mat);
EvaluateAlignment(c);
if( c.score > par.scoreFeet)
U.push_back(c);
}
}
}
vcg::tri::Allocator<PMesh>::DeletePerVertexAttribute(Invr,id);
printf("n_closests %5d = (An %5d ) + ( Tr %5d ) + (OK) %5d\n",n_closests,acf,trf,n_congr);
stat.findCongruentTime += clock()-t0;
return done;
}
int EvaluateSample(Candidate & fp, const CoordType & tp, const CoordType & np)
{
CoordType ttp = fp.T * tp;
vcg::Point4<ScalarType> np4 = fp.T * vcg::Point4<ScalarType>(np[0],np[1],np[2],0.0);
CoordType tnp(np4[0],np4[1],np4[2]);
ScalarType dist ;
VertexType* v = vcg::tri::GetClosestVertex(*Q, ugridQ, ttp, par.deltaAbs*2.0, dist );
if(v!=0)
{
if( v->N().dot(tnp) > par.cosAngle ) return 1;
else return -1;
}
else return 0;
}
// Check a candidate against the small subset of points ExtB
void EvaluateAlignment(Candidate & fp){
int n_delta_close = 0;
for(int i = 0 ; i< 4; ++i) {
for(unsigned int j = 0; j < ExtB[i].size();++j){
n_delta_close+=EvaluateSample(fp, ExtB[i][j]->P(), ExtB[i][j]->cN());
}
}
fp.score = n_delta_close;
}
void TestAlignment(Candidate & fp)
{
clock_t t0 = clock();
int n_delta_close = 0;
for(unsigned int j = 0; j < subsetP.size();++j){
CoordType np = subsetP[j]->N();
CoordType tp = subsetP[j]->P();
n_delta_close+=EvaluateSample(fp,tp,np);
}
fp.score = n_delta_close;
stat.testAlignmentTime += clock()-t0;
}
bool Align(Matrix44x & result, vcg::CallBackPos * cb )
{
int maxAttempt =100;
int scoreThr = par.sampleNumP*0.8;
Candidate bestC;
std::vector<Couple > R1;
ComputeR1(R1);
for(int i = 0; i < maxAttempt && bestC.score<scoreThr ; ++i )
{
FourPoints B;
ScalarType r1,r2;
if(SelectCoplanarBase(B,r1,r2))
{
U.clear();
FindCongruent(R1,B,r1,r2);
qDebug("Attempt %i found %i candidate best score %i",i,U.size(),bestC.score);
for(size_t i = 0 ; i < U.size() ;++i)
{
TestAlignment(U[i]);
if(U[i].score > bestC.score)
bestC = U[i];
}
}
}
result = bestC.T;
return bestC.score >0;
}
bool Align(int L, Matrix44x & result, vcg::CallBackPos * cb )
{
int bestv = 0;
bool found;
int n_tries = 0;
U.clear();
if(L==0)
{
// overlap is expressed as the probability that a point in P(mov) can be found in Q (fix)
L = (log(1.0-0.9) / log(1.0-pow((float)par.overlap,3.f)))+1;
printf("using %d bases\n",L);
}
std::vector<Couple > R1;
ComputeR1(R1);
for(int t = 0; t < L; ++t )
{
FourPoints B;
ScalarType r1,r2;
do
{
n_tries = 0;
do
{
n_tries++;
found = SelectCoplanarBase(B,r1,r2);
}
while(!found && (n_tries < 50));
if(!found) {
par.overlap*=0.9;
side = P->bbox.Dim()[P->bbox.MaxDim()]*par.overlap; //rough implementation
ComputeR1(R1);
}
} while (!found && (par.overlap >0.1));
if(par.overlap < 0.1) {
printf("FAILED");
return false;
}
bases.push_back(B);
if(cb) cb(t*100/L,"Trying bases");
if(FindCongruent(R1,B,r1,r2))
break;
}
if(U.empty()) return false;
// std::sort(U.begin(),U.end());
if(cb) cb(90,"TestAlignment");
bestv = -std::numeric_limits<float>::max();
iwinner = 0;
for(int i = 0 ; i < U.size() ;++i)
{
TestAlignment(U[i]);
if(U[i].score > bestv){
bestv = U[i].score;
iwinner = i;
}
}
result = U[iwinner].T;
Invr.Clear();
return true;
}
}; // end class
} // namespace tri
} // namespace vcg
#endif
|