File: autoalign_4pcs.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,132 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 30
file content (585 lines) | stat: -rw-r--r-- 20,054 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
#ifndef _AUTOALIGN_4PCS_H_
#define _AUTOALIGN_4PCS_H_

/**
implementation of the 4PCS method from the paper:
"4-Points Congruent Sets for Robust Pairwise Surface Registration"
D.Aiger, N.Mitra D.Cohen-Or, SIGGRAPH 2008
ps: the name of the variables are out of vcg standard but like the one
used in the paper pseudocode.
*/

#include <vcg/complex/complex.h>
#include <vcg/space/point_matching.h>
#include <vcg/complex/algorithms/closest.h>
#include <vcg/complex/algorithms/point_sampling.h>
#include <vcg/math/random_generator.h>
#include <ctime>
namespace vcg{
namespace tri{

template <class MeshType>
class FourPCS {
public:
    /* mesh only for using spatial indexing functions (to remove) */
  class PVertex;    // dummy prototype never used
  class PFace;

  class PUsedTypes: public vcg::UsedTypes < vcg::Use<PVertex>::template AsVertexType,
                                            vcg::Use<PFace  >::template AsFaceType >{};

  class PVertex : public vcg::Vertex< PUsedTypes,vcg::vertex::BitFlags,vcg::vertex::Coord3f,vcg::vertex::Mark>{};
  class PFace   : public vcg::Face<   PUsedTypes> {};
  class PMesh   : public vcg::tri::TriMesh< std::vector<PVertex>, std::vector<PFace> > {};

  typedef typename MeshType::ScalarType ScalarType;
  typedef typename MeshType::CoordType CoordType;
  typedef typename vcg::Matrix44<ScalarType> Matrix44x;
  typedef typename vcg::Box3<ScalarType> Box3x;

  typedef typename MeshType::VertexIterator VertexIterator;
  typedef typename MeshType::VertexPointer VertexPointer;
  typedef typename MeshType::VertexType VertexType;
  typedef vcg::Point4< vcg::Point3<ScalarType> > FourPoints;
  typedef vcg::GridStaticPtr<typename PMesh::VertexType, ScalarType > GridType;

  /* class for Parameters */
  struct Param
  {
    ScalarType overlap;    // overlap estimation as a percentage of overlapping points.

    int sampleNumP;        // number of samples on moving mesh P (it determines the sampling radius to be used to sample Q too)
    float samplingRadius;

    ScalarType deltaPerc;  // Approximation Level (expressed as a percentage of the avg distance between samples)
    ScalarType deltaAbs;   // Approximation Level
    int feetSize;          // how many points in the neighborhood of each of the 4 points
    int scoreFeet;         // how many of the feetsize points must match (max feetsize*4) to try an early interrupt
    ScalarType cosAngle;   // max admittable angle that can be admitted between matching points in alignments (expressed as cos(ang) )
    int seed;              // random seed used. Need for repeatability.

    void Default(){
      overlap = 0.5;
      sampleNumP=500;
      samplingRadius=0;

      deltaPerc = 0.5;
      deltaAbs = 0;
      feetSize = 25;
      scoreFeet = 50;
      seed =0;
      cosAngle = 0; // normals must differ more than 90 degree to be considered bad.
    }
  };

  struct Stat
  {
    Stat() : initTime(0),selectCoplanarBaseTime(0),findCongruentTime(0),testAlignmentTime(0)
    {}
    clock_t initTime;
    clock_t selectCoplanarBaseTime;
    clock_t findCongruentTime;
    clock_t testAlignmentTime;
    float init()   {return 1000.0f*float(initTime)/float(CLOCKS_PER_SEC);}
    float select() {return 1000.0f*float(selectCoplanarBaseTime)/float(CLOCKS_PER_SEC);}
    float findCongruent() {return 1000.0f*float(findCongruentTime)/float(CLOCKS_PER_SEC);}
    float testAlignment() {return 1000.0f*float(testAlignmentTime)/float(CLOCKS_PER_SEC);}
  };

  class Couple
  {
  public:
    VertexPointer p0,p1;
    Couple(VertexPointer i, VertexPointer j, float d) : p0(i),p1(j),dist(d){}
    float dist;
    bool operator < (const   Couple & o) const {return dist < o.dist;}
    VertexPointer operator[](const int &i) const {return (i==0)? this->p0 : this->p1;}
  };

  struct Candidate
  {
    Candidate():score(0){}
    Candidate(FourPoints _p, vcg::Matrix44<ScalarType>_T):p(_p),T(_T){}
    FourPoints  p;
    vcg::Matrix44<ScalarType> T;
    int score;
    inline bool operator <(const Candidate & o) const {return score > o.score;}
  };


  // class for the point  'ei'
  struct EPoint{
    EPoint(vcg::Point3<ScalarType> _p, int _i):pos(_p),pi(_i){}
    vcg::Point3<ScalarType> pos;
    int pi;        //index to R[1|2]
    void GetBBox(vcg::Box3<ScalarType> & b){b.Add(pos);}
  };


  Param par;    /// parameters
  Stat stat;

  MeshType  *P;    // Moving Mesh (from which the coplanar base is selected)
  MeshType  *Q;    // Fixed Mesh  (mesh where to find the correspondences)

  math::MarsenneTwisterRNG rnd;

  std::vector<VertexPointer> subsetQ;  // subset of the vertices in Q
  std::vector<VertexPointer> subsetP; // random selection on P

  ScalarType side;               // side

  PMesh     Invr;                // invariants
  std::vector< Candidate > U;    // the
  int iwinner;                   // winner == U[iwinner]
  std::vector<FourPoints> bases; // used bases
  std::vector<VertexType*> ExtB[4]; // selection of vertices "close" to the four point

  vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType > ugridQ;
  vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType > ugridP;

  /* returns the closest point between to segments x1-x2 and x3-x4.  */
    void IntersectionLineLine(const CoordType & x1,const CoordType & x2,const CoordType & x3,const CoordType & x4, CoordType&x)
    {
      CoordType a = x2-x1, b = x4-x3, c = x3-x1;
      x = x1 + a * ((c^b).dot(a^b)) / (a^b).SquaredNorm();
    }


void Init(MeshType &_movP,MeshType &_fixQ)
{
  clock_t t0= clock();
  P = &_movP;
  Q = &_fixQ;
  tri::UpdateBounding<MeshType>::Box(*P);
  if(par.seed==0) rnd.initialize(time(0));
  else rnd.initialize(par.seed);

  ugridQ.Set(Q->vert.begin(),Q->vert.end());
  ugridP.Set(P->vert.begin(),P->vert.end());

  if(par.samplingRadius==0)
    par.samplingRadius = tri::ComputePoissonDiskRadius(*P,par.sampleNumP);
  tri::PoissonPruning(*P, subsetP, par.samplingRadius, par.seed);
  tri::PoissonPruning(*Q, subsetQ, par.samplingRadius, par.seed);
  par.deltaAbs = par.samplingRadius * par.deltaPerc;
  side = P->bbox.Dim()[P->bbox.MaxDim()]*par.overlap; //rough implementation
  stat.initTime+=clock()-t0;
}


// Try to select four coplanar points such that they are at least side distance and
//
bool SelectCoplanarBase(FourPoints &B, ScalarType &r1, ScalarType &r2)
{
  clock_t t0= clock();

  // choose the inter point distance
  ScalarType dtol = side*0.1; //rough implementation


  // **** first point: random
  B[0] = P->vert[ rnd.generate(P->vert.size())].P();

  // **** second point: a random point at distance side +-dtol
  size_t i;
  for(i = 0; i < P->vert.size(); ++i){
    int id = rnd.generate(P->vert.size());
    ScalarType dd = (P->vert[id].P() - B[0]).Norm();
    if(  ( dd < side + dtol) && (dd > side - dtol)){
      B[1] = P->vert[id].P();
      break;
    }
  }
  if(i ==  P->vert.size()) return false;

  // **** third point: at distance less than side*0.8 from middle way between B[0] and B[1]
  const CoordType middle = (B[0]+B[1])/2.0;
  for(i = 0; i < P->vert.size(); ++i){
    int id = rnd.generate(P->vert.size());
    if( Distance(P->vert[id].P(),middle) < side*0.8 ){
      B[2] = P->vert[id].P();
      break;
    }
  }
  if(i ==  P->vert.size()) return false;

  // **** fourth point:
  ScalarType cpr = rnd.generate01();
  CoordType crossP = B[0] *(1-cpr)+B[1]*cpr;
  CoordType B4 = B[2]+(crossP-B[2]).Normalize()*side;
  CoordType n = ((B[0]-B[1]).normalized() ^ (B[2]-B[1]).normalized()).normalized();
  ScalarType radius = dtol;

  std::vector<typename MeshType::VertexType*> closests;
  std::vector<ScalarType> distances;
  std::vector<CoordType> points;

  vcg::tri::GetInSphereVertex<
      MeshType,
      vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType >,
      std::vector<typename MeshType::VertexType*>,
      std::vector<ScalarType>,
      std::vector<CoordType>
      >(*P,ugridP,B4,radius,closests,distances,points);

  if(closests.empty())
    return false;
  int bestInd = -1;   ScalarType bestv=std::numeric_limits<float>::max();
  for(i = 0; i <closests.size(); ++i){
    ScalarType dist_from_plane = fabs((closests[i]->P() - B[1]).normalized().dot(n));
    if( dist_from_plane < bestv){
      bestv = dist_from_plane;
      bestInd = i;
    }
  }
  if(bestv >dtol)
    return false;
  B[3] =  closests[bestInd]->P();

  //printf("B[3] %d\n", (typename MeshType::VertexType*)closests[best] - &(*P->vert.begin()));

  // compute r1 and r2
  CoordType x;
  //        std::swap(B[1],B[2]);
  IntersectionLineLine(B[0],B[1],B[2],B[3],x);

  r1 = (x - B[0]).dot(B[1]-B[0]) / (B[1]-B[0]).SquaredNorm();
  r2 = (x - B[2]).dot(B[3]-B[2]) / (B[3]-B[2]).SquaredNorm();

  if( ((B[0]+(B[1]-B[0])*r1)-(B[2]+(B[3]-B[2])*r2)).Norm() > par.deltaAbs )
    return false;

  radius  = side*0.5;
  std::vector< CoordType > samples;
  std::vector<ScalarType > dists;

  for(int i  = 0 ; i< 4; ++i){
    vcg::tri::GetKClosestVertex<
        MeshType,
        vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType >,
        std::vector<VertexType*>,
        std::vector<ScalarType>,
        std::vector< CoordType > >(*P,ugridP, par.feetSize ,B[i],radius, ExtB[i], dists, samples);
  }

  //qDebug("ExtB %i",ExtB[0].size()+ExtB[1].size()+ExtB[2].size()+ExtB[3].size());
  stat.selectCoplanarBaseTime+=clock()-t0;
  return true;
}

bool IsTransfCongruent(const FourPoints &B, const FourPoints &fp, vcg::Matrix44<ScalarType> & mat)
{
  std::vector<vcg::Point3<ScalarType> > fix(4);
  std::vector<vcg::Point3<ScalarType> > mov(4);
  for(int i = 0 ; i < 4; ++i) {
    mov[i]=B[i];
    fix[i]=fp[i];
  }

  if(fabs( Distance(fix[0],fix[1]) - Distance(mov[0],mov[1]) ) > par.deltaAbs) return false;
  if(fabs( Distance(fix[0],fix[2]) - Distance(mov[0],mov[2]) ) > par.deltaAbs) return false;
  if(fabs( Distance(fix[0],fix[3]) - Distance(mov[0],mov[3]) ) > par.deltaAbs) return false;
  if(fabs( Distance(fix[1],fix[2]) - Distance(mov[1],mov[2]) ) > par.deltaAbs) return false;
  if(fabs( Distance(fix[1],fix[3]) - Distance(mov[1],mov[3]) ) > par.deltaAbs) return false;
  if(fabs( Distance(fix[2],fix[3]) - Distance(mov[2],mov[3]) ) > par.deltaAbs) return false;

  vcg::ComputeRigidMatchMatrix(fix,mov,mat);

  ScalarType maxSquaredDistance = 0.0;
  for(int i = 0; i < 4; ++i)
    maxSquaredDistance =std::max(maxSquaredDistance, SquaredDistance(mat * mov[i] ,fix[i]));
  return  sqrt(maxSquaredDistance)  < par.deltaAbs;
}

/// Compute the vector R1 of couple of points on FixQ at a given distance.
/// Used by FindCongruent
void ComputeR1(std::vector<Couple > &R1)
{
  R1.clear();
  for(size_t vi = 0; vi  < subsetQ.size(); ++vi)
    for(size_t vj = vi; vj < subsetQ.size(); ++vj){
      ScalarType d = Distance(subsetQ[vi]->P(),subsetQ[vj]->P());
      if( (d < side+par.deltaAbs))
      {
        R1.push_back(Couple(subsetQ[vi],subsetQ[vj], d));
        R1.push_back(Couple(subsetQ[vj],subsetQ[vi], d));
      }
    }

  std::sort(R1.begin(),R1.end());
}

// Find congruent elements of a base B, on Q, with approximation delta
// and put them in the U vector.
bool FindCongruent(const std::vector<Couple > &R1, const FourPoints &B, const ScalarType r1, const ScalarType r2)
{
  clock_t t0=clock();
  int n_base=0;
  bool done = false;
  int n_closests = 0, n_congr = 0;
  int ac =0 ,acf = 0,tr = 0,trf =0;
  ScalarType d1,d2;
  d1 = (B[1]-B[0]).Norm();
  d2 = (B[3]-B[2]).Norm();

  typename std::vector<Couple>::const_iterator bR1,eR1,bR2,eR2,ite;
  bR1 = std::lower_bound(R1.begin(),R1.end(),Couple(0,0,d1-par.deltaAbs));
  eR1 = std::lower_bound(R1.begin(),R1.end(),Couple(0,0,d1+par.deltaAbs));
  bR2 = std::lower_bound(R1.begin(),R1.end(),Couple(0,0,d2-par.deltaAbs));
  eR2 = std::lower_bound(R1.begin(),R1.end(),Couple(0,0,d2+par.deltaAbs));

  // in  [bR1,eR1) there are all the pairs at a distance d1 +- par.delta
  // in  [bR1,eR1) there are all the pairs at a distance d2 +- par.delta

  if(bR1 == R1.end()) return false;// if there are no such pairs return
  if(bR2 == R1.end()) return false; // if there are no such pairs return

  // put [bR1,eR1) in a mesh to have the search operator for free (lazy me)
  Invr.Clear();
  typename PMesh::VertexIterator vii;
  int i = &(*bR1)-&(*R1.begin());
  for(ite = bR1; ite != eR1;++ite){
    vii = vcg::tri::Allocator<PMesh>::AddVertices(Invr,1);
    //      (*vii).P() = Q->vert[R1[i][0]].P() + (Q->vert[R1[i][1]].P()-Q->vert[R1[i][0]].P()) * r1;
    (*vii).P() .Import(         ite->p0->P() + (        ite->p1->P() -       ite->p0->P()) * r1);
    ++i;
  }
  if(Invr.vert.empty() ) return false;

  // per vertex attribute 'index' remaps a vertex of Invr to its corresponding point in R1
  typename PMesh::template PerVertexAttributeHandle<int> id = vcg::tri::Allocator<PMesh>::template AddPerVertexAttribute<int>(Invr,std::string("index"));
  i = &(*bR1)-&(*R1.begin());
  for(vii = Invr.vert.begin(); vii != Invr.vert.end();++vii,++i)  id[vii] = i;

  vcg::tri::UpdateBounding<PMesh>::Box(Invr);


  std::vector<EPoint> R2inv;
  i = &(*bR2)-&(*R1.begin());
  // R2inv contains all the points generated by the couples in R2 (with the reference to remap into R2)
  for(ite = bR2; ite != eR2;++ite){
    //        R2inv.push_back( EPoint( Q->vert[R1[i][0]].P() + (Q->vert[R1[i][1]].P()-Q->vert[R1[i][0]].P()) * r2,i));
    R2inv.push_back( EPoint( R1[i].p0->P() + (R1[i].p1->P() - R1[i].p0->P()) * r2,i));
    ++i;
  }

  GridType ugrid; // griglia
  ugrid.Set(Invr.vert.begin(),Invr.vert.end());
  n_closests = 0; n_congr = 0; ac =0 ; acf = 0; tr = 0; trf = 0;
  printf("R2Inv.size  = %d \n",R2inv.size());
  for(unsigned int i = 0 ; i < R2inv.size() ; ++i)
  {
    std::vector<typename PMesh::VertexType*> closests;

    // for each point in R2inv get all the points in R1 closer than par.delta
    vcg::Matrix44<ScalarType> mat;
    Box3x bb;
    bb.Add(R2inv[i].pos+CoordType(par.deltaAbs,par.deltaAbs, par.deltaAbs));
    bb.Add(R2inv[i].pos-CoordType(par.deltaAbs,par.deltaAbs, par.deltaAbs));

    vcg::tri::GetInBoxVertex<PMesh,GridType,std::vector<typename PMesh::VertexType*> >
        (Invr,ugrid,bb,closests);

    if(closests.size() > 5)
      closests.resize(5);

    n_closests+=closests.size();
    for(unsigned int ip = 0; ip < closests.size(); ++ip)
    {
      FourPoints p;
      p[0] = R1[id[closests[ip]]][0]->cP();
      p[1] = R1[id[closests[ip]]][1]->cP();
      p[2] = R1[ R2inv[i].pi][0]->cP();
      p[3] = R1[ R2inv[i].pi][1]->cP();

      n_base++;
      if(!IsTransfCongruent(B,p,mat)) {
        trf++;
      }
      else{
        tr++;
        n_congr++;
        Candidate c(p,mat);
        EvaluateAlignment(c);

        if( c.score > par.scoreFeet)
          U.push_back(c);
      }
    }
  }

  vcg::tri::Allocator<PMesh>::DeletePerVertexAttribute(Invr,id);
  printf("n_closests %5d = (An %5d ) + ( Tr %5d ) + (OK) %5d\n",n_closests,acf,trf,n_congr);

  stat.findCongruentTime += clock()-t0;
  return done;
}


int EvaluateSample(Candidate & fp, const CoordType & tp, const CoordType & np)
{
  CoordType ttp = fp.T * tp;
  vcg::Point4<ScalarType> np4 = fp.T * vcg::Point4<ScalarType>(np[0],np[1],np[2],0.0);
  CoordType tnp(np4[0],np4[1],np4[2]);

  ScalarType   dist ;
  VertexType* v = vcg::tri::GetClosestVertex(*Q, ugridQ, ttp, par.deltaAbs*2.0,  dist  );

  if(v!=0)
  {
    if( v->N().dot(tnp) > par.cosAngle )  return 1;
    else return -1;
  }
  else return 0;
}

// Check a candidate against the small subset of points ExtB
void EvaluateAlignment(Candidate  & fp){
        int n_delta_close = 0;
        for(int i  = 0 ; i< 4; ++i) {
            for(unsigned int j = 0; j < ExtB[i].size();++j){
                n_delta_close+=EvaluateSample(fp, ExtB[i][j]->P(), ExtB[i][j]->cN());
            }
        }
        fp.score = n_delta_close;
}

void TestAlignment(Candidate  & fp)
{
  clock_t t0 = clock();
  int n_delta_close = 0;
  for(unsigned int j = 0; j < subsetP.size();++j){
    CoordType np = subsetP[j]->N();
    CoordType tp = subsetP[j]->P();
    n_delta_close+=EvaluateSample(fp,tp,np);
  }
  fp.score =  n_delta_close;
  stat.testAlignmentTime += clock()-t0;
}


bool Align(Matrix44x & result, vcg::CallBackPos * cb )
{
  int maxAttempt =100;
  int scoreThr = par.sampleNumP*0.8;

  Candidate bestC;

  std::vector<Couple > R1;
  ComputeR1(R1);
  for(int i  = 0; i  < maxAttempt && bestC.score<scoreThr ; ++i )
  {
    FourPoints B;
    ScalarType r1,r2;
    if(SelectCoplanarBase(B,r1,r2))
    {
      U.clear();
      FindCongruent(R1,B,r1,r2);
      qDebug("Attempt %i found %i candidate best score %i",i,U.size(),bestC.score);
      for(size_t i = 0 ; i <  U.size() ;++i)
      {
        TestAlignment(U[i]);
        if(U[i].score > bestC.score)
          bestC = U[i];
      }
    }
  }
  result = bestC.T;
  return bestC.score >0;
}

bool Align(int L, Matrix44x & result, vcg::CallBackPos * cb )
{
    int bestv = 0;
    bool found;
    int n_tries = 0;
    U.clear();

    if(L==0)
    {
        // overlap is expressed as the probability that a point in P(mov) can be found in Q (fix)
        L = (log(1.0-0.9) / log(1.0-pow((float)par.overlap,3.f)))+1;
        printf("using %d bases\n",L);
    }
    std::vector<Couple > R1;
    ComputeR1(R1);

    for(int t  = 0; t  < L; ++t )
    {
      FourPoints B;
      ScalarType r1,r2;
      do
      {
        n_tries = 0;
        do
        {
          n_tries++;
          found = SelectCoplanarBase(B,r1,r2);
        }
        while(!found && (n_tries < 50));
        if(!found) {
          par.overlap*=0.9;
          side = P->bbox.Dim()[P->bbox.MaxDim()]*par.overlap; //rough implementation
          ComputeR1(R1);
        }
      } while (!found && (par.overlap >0.1));

      if(par.overlap < 0.1) {
        printf("FAILED");
        return false;
      }
      bases.push_back(B);
      if(cb) cb(t*100/L,"Trying bases");
      if(FindCongruent(R1,B,r1,r2))
        break;
    }

    if(U.empty()) return false;

//    std::sort(U.begin(),U.end());
    if(cb) cb(90,"TestAlignment");
    bestv  = -std::numeric_limits<float>::max();
    iwinner = 0;

    for(int i = 0 ; i <  U.size() ;++i)
     {
        TestAlignment(U[i]);
        if(U[i].score > bestv){
            bestv = U[i].score;
            iwinner = i;
            }
    }

    result = U[iwinner].T;
    Invr.Clear();
    return true;
}

}; // end class

} // namespace tri
} // namespace vcg
#endif