File: bitquad_creation.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,132 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 30
file content (870 lines) | stat: -rw-r--r-- 28,276 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
#include <vcg/complex/algorithms/bitquad_support.h>

/** BIT-QUAD creation support:
    a collection of methods that,
    starting from a triangular mesh, will create your quad-pure or quad-domainant mesh.

    They all require:
      - per face Q, and FF connectivity, 2-manyfold meshes,
      - and tri- or quad- meshes (no penta, etc) (if in need, use MakeBitTriOnly)


[ list of available methods: ]

void MakePureByRefine(Mesh &m)
   - adds a vertex for each tri or quad present
   - thus, miminal complexity increase is the mesh is quad-dominant already
   - old non-border edges are made faux
   - never fails

void MakePureByCatmullClark(MeshType &m)
   - adds a vertex in each (non-faux) edge.
   - twice complexity increase w.r.t. "ByRefine" method.
   - preserves edges: old edges are still edges
   - never fails

bool MakePureByFlip(MeshType &m [, int maxdist] )
   - does not increase # vertices, just flips edges
   - call in a loop until it returns true  (temporary hack)
   - fails if number of triangle is odd (only happens in open meshes)
   - add "StepByStep" to method name if you want it to make a single step (debugging purposes)

bool MakeTriEvenBySplit(MeshType& m)
bool MakeTriEvenByDelete(MeshType& m)
   - two simple variants that either delete or split *at most one* border face
     so that the number of tris will be made even. Return true if it did it.
   - useful to use the previous method, when mesh is still all triangle

void MakeDominant(MeshType &m, int level)
   - just merges traingle pairs into quads, trying its best
   - various heuristic available, see descr. for parameter "level"
   - provides good starting point for make-Quad-Only methods
   - uses an ad-hoc measure for "quad quality" (which is hard-wired, for now)

void MakeBitTriOnly(MeshType &m)
   - inverse process: returns to tri-only mesh

int SplitNonFlatQuads(MeshType &m, ScalarType toleranceDeg=0){
   - as above, but splits only non flat quads

TESTING METHODS:

bool IsTriOnly(const MeshType &m);  // only triangles
bool IsQuadOnly(const MeshType &m); // only quads
bool IsTriQuadOnly(const MeshType &m); // only quads or triangles

(more info in comments before each method)

*/
#ifndef VCG_BITQUAD_CRE
#define VCG_BITQUAD_CRE

namespace vcg{namespace tri{

template <class _MeshType,
          class Interpolator = GeometricInterpolator<typename _MeshType::VertexType> >
class BitQuadCreation{

public:

typedef _MeshType MeshType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FaceType* FaceTypeP;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::ConstFaceIterator ConstFaceIterator;

typedef BitQuad<MeshType> BQ; // static class to make basic quad operations

// helper function:
// given a triangle, merge it with its best neightboord to form a quad
template <bool override>
static void selectBestDiag(FaceType *fi){

  if (!override) {
    if (fi->IsAnyF()) return;
  }

  // select which edge to make faux (if any)...
  int whichEdge = -1;
  ScalarType bestScore = fi->Q();

  whichEdge=-1;

  for (int k=0; k<3; k++){

    // todo: check creases? (continue if edge k is a crease)

    if (!override) {
      if (fi->FFp(k)->IsAnyF()) continue;
    }
    if (fi->FFp(k)==fi) continue; // never make a border faux

    ScalarType score = BQ::quadQuality( &*fi, k );
    if (override) {
      // don't override anyway iff other face has a better match
      if (score < fi->FFp(k)->Q()) continue;
    }
    if (score>bestScore) {
      bestScore = score;
      whichEdge = k;
    }
  }

  // ...and make it faux
  if (whichEdge>=0) {
    //if (override && fi->FFp(whichEdge)->IsAnyF()) {
      // new score is the average of both scores
    //  fi->Q() = fi->FFp(whichEdge)->Q() = ( bestScore + fi->FFp(whichEdge)->Q() ) /2;
    //} else {
    //}

    if (override) {
      // clear any faux edge of the other face
      for (int k=0; k<3; k++)
      if (fi->FFp(whichEdge)->IsF(k)) {
        fi->FFp(whichEdge)->ClearF(k);
        fi->FFp(whichEdge)->FFp(k)->ClearF( fi->FFp(whichEdge)->FFi(k) );
        fi->FFp(whichEdge)->FFp(k)->Q()=0.0; // other face's ex-buddy is now single and sad :(
      }

      // clear all faux edges of this face...
      for (int k=0; k<3; k++)
      if (fi->IsF(k)) {
        fi->ClearF(k);
        fi->FFp(k)->ClearF( fi->FFi(k) );
        fi->FFp(k)->Q()= 0.0; // my ex-buddy is now sad
      }
    }
    // set (new?) quad
    fi->SetF(whichEdge);
    fi->FFp(whichEdge)->SetF( fi->FFi(whichEdge) );
    fi->Q() = fi->FFp(whichEdge)->Q() = bestScore;

  }


}



// helper funcion:
// a pass though all triangles to merge triangle pairs into quads
template <bool override> // override previous decisions?
static void MakeDominantPass(MeshType &m){

  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) {
    selectBestDiag<override>(&(*fi));
  }

}
/**
 * This function split a face along the specified border edge it does not compute any property of the new vertex. It only do the topological work.
 * @param edge Index of the edge
 */
//                                  sideF
//          sideF         V2(e) ------------- v2
//  V0 -------------V2 V2(e)  \               /
//  |             /     |  \    \  newF     /
//  |           /       |    \    \       / e
//  |   f     /         |      \    \   /
//  |       / e         | f   V1(e)=newV =
//  |     /             |      /
//  |   /               |    /
//  | /                 |  /
//  V1                  V0(e)
//

static std::pair<typename MeshType::FaceType *, typename MeshType::VertexType *> FaceSplitBorderEdge(MeshType &m, typename MeshType::FaceType &f, int edge, typename MeshType::FaceType *newFace, typename MeshType::VertexType *newVert )
{

    typename MeshType::FaceType *sideFFp;
    int sideFFi;

    assert(tri::HasFFAdjacency(m));
    assert(face::IsBorder(f,edge));
    //qDebug("OldFacePRE  %i %i %i",tri::Index(m,f.V(0)),tri::Index(m,f.V(1)),tri::Index(m,f.V(2)));
    if(newFace==0) newFace=&*tri::Allocator<MeshType>::AddFaces(m,1);
    if(newVert==0) {
        newVert=&*tri::Allocator<MeshType>::AddVertices(m,1);
        newVert->P()=(f.P0(edge)+f.P1(edge))/2.0;
    }
    newFace->V0(edge)=newVert;
    newFace->V1(edge)=f.V1(edge);
    newFace->V2(edge)=f.V2(edge);

    f.V1(edge)=newVert;

    //qDebug("NewFace %i %i %i",tri::Index(m,newFace->V(0)),tri::Index(m,newFace->V(1)),tri::Index(m,newFace->V(2)));
    //qDebug("OldFace %i %i %i",tri::Index(m,f.V(0)),tri::Index(m,f.V(1)),tri::Index(m,f.V(2)));

   // Topology

    newFace->FFp((edge+2)%3) = &f;
    newFace->FFi((edge+2)%3) = (edge+1)%3;

    newFace->FFp((edge+0)%3) = newFace;
    newFace->FFi((edge+0)%3) = (edge+0)%3;

    newFace->FFp((edge+1)%3) = f.FFp((edge+1)%3);
    newFace->FFi((edge+1)%3) = f.FFi((edge+1)%3);

    sideFFp = f.FFp((edge+1)%3);
    sideFFi = f.FFi((edge+1)%3);

    f.FFp((edge+1)%3) = newFace;
    f.FFi((edge+1)%3) = (edge+2)%3;

    sideFFp->FFp(sideFFi)=newFace;
    sideFFp->FFi(sideFFi)=(edge+1)%3;

    assert(face::IsBorder(f,edge));
    assert(face::IsBorder(*newFace,edge));

    return std::make_pair(newFace,newVert);
}
// make tri count even by splitting a single triangle...
//
//  V0 -------V2    V0 --------V2
//  |       /       |  \ Fnew /
//  |     /         |    Vnew
//  |   /           |    /
//  | /             |  /
//  V1              V1
//

static bool MakeTriEvenBySplit(MeshType& m){
  if (m.fn%2==0) return false; // it's already Even
  // Search for a triangle on the border
  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++)
  {
      if(!(*fi).IsD())
      {
          for (int k=0; k<3; k++) {
              if (face::IsBorder(*fi,k)){
                  // We have found a face with a border
                  int index=tri::Index(m,*fi);
                  VertexIterator vnew=tri::Allocator<MeshType>::AddVertices(m,1);
                  (*vnew).P()=((*fi).P0(k)+(*fi).P1(k))/2.0;

                  FaceIterator fnew=tri::Allocator<MeshType>::AddFaces(m,1);

                  FaceSplitBorderEdge(m,m.face[index],k,&*fnew,&*vnew);
                     return true;
              }
          }
      }

  }
     return true;
}

// make tri count even by delete...
static bool MakeTriEvenByDelete(MeshType& m)
{
  if (m.fn%2==0) return false; // it's already Even

  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) {
    for (int k=0; k<3; k++) {
      if (face::IsBorder(*fi,k) ) {
        FFDetachManifold(*fi,(k+1)%3);
        FFDetachManifold(*fi,(k+2)%3);
        Allocator<MeshType>::DeleteFace(m,*fi);
        return true;
      }
    }
  }
  assert(0); // no border face found? then how could the number of tri be Odd?
  return true;
}


/*
  Splits any quad that makes an angle steeper than given degrees
*/
static int SplitNonFlatQuads(MeshType &m, ScalarType deg=0){
  int res=0;
  float th = math::Cos(math::ToRad(deg));
  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) {
    if (fi->IsAnyF()) {
      int faux = BQ::FauxIndex(&*fi);
      FaceType *fb = fi->FFp(faux);
      if (fb->N()*fi->N()<th) {
        fi->ClearF(faux);
        fb->ClearF(fi->FFi(faux));
        res++;
      }
    }
  }
  return res;
}


/**
  Given a mesh, makes it bit trianglular (makes all edges NOT faux)
*/
static void MakeBitTriOnly(MeshType &m){
  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) {
    fi->ClearAllF();
  }
}

/** given a quad-and-tree mesh, enforces the "faux edge is 2nd edge" convention.
 * Requires (and updates): FV and FF structure
 * Updates: faux flags
 * Updates: per wedge attributes, if any
 * Other connectivity structures, and per edge and per wedge flags are ignored
 */
static bool MakeBitTriQuadConventional(MeshType &/*m*/){
  assert(0); // todo
  return false;
}

/* returns true if mesh is a "conventional" quad mesh.
   I.e. if it is all quads, with third edge faux for all triangles*/
static bool IsBitTriQuadConventional(const MeshType &m){
  for (ConstFaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) {
    if (fi->IsAnyF())
    if ( (fi->Flags() & FaceType::FAUX012 ) != FaceType::FAUX2 ) {
      return false;
    }
  }
  return true;
}

/* returns true if mesh is a pure tri-mesh. (no faux edges) */
static bool IsTriOnly(const MeshType &m){
  for (ConstFaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) {
    if (fi->IsAnyF()) return false;
  }
  return true;
}

/* returns true if mesh is a pure quad-mesh.  */
static bool IsQuadOnly(const MeshType &m){
  for (ConstFaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) {
        int count = 0;
        if (fi->IsF(0)) count++;
        if (fi->IsF(1)) count++;
        if (fi->IsF(2)) count++;
        if (count!=1) return false;
  }
  return true;
}

/* returns true if mesh has only tris and quads (no penta etc) */
static bool IsTriQuadOnly(const MeshType &m){
  for (ConstFaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) {
        int count = 0;
        if (fi->IsF(0)) count++;
        if (fi->IsF(1)) count++;
        if (fi->IsF(2)) count++;
        if (count>1) return false;
  }
  return true;
}


static void CopyTopology(FaceType *fnew, FaceType * fold)
{
    fnew->FFp(0)=fold->FFp(0); fnew->FFi(0)=fold->FFi(0);
    fnew->FFp(1)=fold->FFp(1); fnew->FFi(1)=fold->FFi(1);
    fnew->FFp(2)=fold->FFp(2); fnew->FFi(2)=fold->FFi(2);
    fnew->V(0) = fold->V(0);
    fnew->V(1) = fold->V(1);
    fnew->V(2) = fold->V(2);
}
/**
 makes any mesh quad only by refining it so that a quad is created over all
 previous diags
 requires that the mesh is made only of quads and tris.
*/
static void MakePureByRefine(MeshType &m){

  // todo: update VF connectivity if present


  int ev = 0; // EXTRA vertices (times 2)
  int ef = 0; // EXTRA faces

  // first pass: count triangles to be added
  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) {
    int k=0;
     if (face::IsBorder(*fi,0)) k++;
      if (face::IsBorder(*fi,1)) k++;
      if (face::IsBorder(*fi,2)) k++;
    if (!fi->IsAnyF()) {
      // it's a triangle
      if (k==0) // add a vertex in the center of the face, splitting it in 3
       { ev+=2; ef+=2; }
      if (k==1) // add a vertex in the border edge, splitting it in 2
       { }
      if (k==2) // do nothing, just mark the non border edge as faux
       { }
      if (k==3) // disconnected single triangle (all borders): make one edge as faus
       { }
    }
    else {
      // assuming is a quad (not a penta, etc), i.e. only one faux
      // add a vertex in the center of the faux edge, splitting the face in 2
      ev+=1; ef+=1;
      assert(k!=3);
    }
  }
  assert(ev%2==0); // should be even by now
  ev/=2; // I was counting each of them twice

  //int originalFaceNum = m.fn;
  FaceIterator nfi = tri::Allocator<MeshType>::AddFaces(m,ef);
  VertexIterator nvi = tri::Allocator<MeshType>::AddVertices(m,ev);

  tri::UpdateFlags<MeshType>::FaceClearV(m);

  // second pass: add faces and vertices
  int nsplit=0; // spits to be done on border in the third pass
  for (FaceIterator fi = m.face.begin(), fend = nfi;  fi!=fend; fi++) if (!fi->IsD() && !fi->IsV() ) {

    fi->SetV();

    if (!fi->IsAnyF()) {
      // it's a triangle

      int k=0; // number of borders
      if (face::IsBorder(*fi,0)) k++;
      if (face::IsBorder(*fi,1)) k++;
      if (face::IsBorder(*fi,2)) k++;

      if (k==0) // add a vertex in the center of the face, splitting it in 3
      {
        assert(nvi!=m.vert.end());
        VertexType *nv = &*nvi; nvi++;
        //*nv = *fi->V0( 0 ); // lazy: copy everything from the old vertex
                nv->ImportData(*(fi->V0( 0 ))); // lazy: copy everything from the old vertex

        nv->P() = ( fi->V(0)->P() + fi->V(1)->P() + fi->V(2)->P() )  /3.0;
        FaceType *fa = &*fi;
        FaceType *fb = &*nfi; nfi++;
        FaceType *fc = &*nfi; nfi++;

                fb->ImportData(*fa); CopyTopology(fb,fa);
                fc->ImportData(*fa); CopyTopology(fc,fa);

        fa->V(0) = nv;
        fb->V(1) = nv;
        fc->V(2) = nv;

        fb->FFp(2)=fa->FFp(2); fb->FFi(2)=fa->FFi(2);
                fc->FFp(0)=fa->FFp(0); fc->FFi(0)=fa->FFi(0);

        assert( fa->FFp(1)->FFp(fa->FFi(1)) == fa );
        /*    */fb->FFp(2)->FFp(fb->FFi(2)) =  fb;
        /*    */fc->FFp(0)->FFp(fc->FFi(0)) =  fc;

        fa->FFp(0) = fc; fa->FFp(2) = fb; fa->FFi(0) = fa->FFi(2) = 1;
        fb->FFp(1) = fa; fb->FFp(0) = fc; fb->FFi(0) = fb->FFi(1) = 2;
        fc->FFp(1) = fa; fc->FFp(2) = fb; fc->FFi(1) = fc->FFi(2) = 0;

        if (fb->FFp(2)==fa) fb->FFp(2)=fb; // recover border status
        if (fc->FFp(0)==fa) fc->FFp(0)=fc;

        fa->ClearAllF();
        fb->ClearAllF();
        fc->ClearAllF();
        fa->SetF(1);
        fb->SetF(2);
        fc->SetF(0);

        fa->SetV();fb->SetV();fc->SetV();
      }
      if (k==1) { // make a border face faux, anf other two as well
        fi->SetF(0);
        fi->SetF(1);
        fi->SetF(2);
        nsplit++;
      }
      if (k==2) // do nothing, just mark the non border edge as faux
      {
        fi->ClearAllF();
        for (int w=0; w<3; w++) if (fi->FFp(w) != &*fi) fi->SetF(w);
      }
      if (k==3) // disconnected single triangle (all borders): use catmull-clark (tree vertices, split it in 6
      {
        fi->ClearAllF();
        fi->SetF(2);
        nsplit++;
      }
    }
    else {
      // assuming is a part of quad (not a penta, etc), i.e. only one faux
      FaceType *fa = &*fi;
      int ea2 = BQ::FauxIndex(fa); // index of the only faux edge
      FaceType *fb = fa->FFp(ea2);
      int eb2 = fa->FFi(ea2);
      assert(fb->FFp(eb2)==fa) ;
      assert(fa->IsF(ea2));
      //assert(fb->IsF(eb2)); // reciprocal faux edge

      int ea0 = (ea2+1) %3;
      int ea1 = (ea2+2) %3;
      int eb0 = (eb2+1) %3;
      int eb1 = (eb2+2) %3;

      // create new vert in center of faux edge
      assert(nvi!=m.vert.end());
      VertexType *nv = &*nvi; nvi++;
      // *nv = * fa->V0( ea2 );
            nv->ImportData(*(fa->V0( ea2 ) )); // lazy: copy everything from the old vertex
      //nv->P() = ( fa->V(ea2)->P() + fa->V(ea0)->P() ) /2.0;
      Interpolator::Apply(*(fa->V(ea2)),*(fa->V(ea0)),0.5,*nv);
      // split faces: add 2 faces (one per side)
      assert(nfi!=m.face.end());
      FaceType *fc = &*nfi; nfi++;
      assert(nfi!=m.face.end());
      FaceType *fd = &*nfi; nfi++;

            fc->ImportData(*fa ); CopyTopology(fc,fa); // lazy: copy everything from the old vertex
            fd->ImportData(*fb ); CopyTopology(fd,fb);// lazy: copy everything from the old vertex

      fa->V(ea2) = fc->V(ea0) =
      fb->V(eb2) = fd->V(eb0) = nv ;

      fa->FFp(ea1)->FFp( fa->FFi(ea1) ) = fc;
      fb->FFp(eb1)->FFp( fb->FFi(eb1) ) = fd;

      fa->FFp(ea1) = fc ;  fa->FFp(ea2) = fd;
      fa->FFi(ea1) = ea0;  fa->FFi(ea2) = eb2;
      fb->FFp(eb1) = fd ;  fb->FFp(eb2) = fc;
      fb->FFi(eb1) = eb0;  fb->FFi(eb2) = ea2;
      fc->FFp(ea0) = fa ;  fc->FFp(ea2) = fb;
      fc->FFi(ea0) = ea1;  fc->FFi(ea2) = eb2;
      fd->FFp(eb0) = fb ;  fd->FFp(eb2) = fa;
      fd->FFi(eb0) = eb1;  fd->FFi(eb2) = ea2;

      // detect boundaries
      bool ba = fa->FFp(ea0)==fa;
      bool bc = fc->FFp(ea1)==fa;
      bool bb = fb->FFp(eb0)==fb;
      bool bd = fd->FFp(eb1)==fb;

      if (bc) fc->FFp(ea1)=fc; // repristinate boundary status
      if (bd) fd->FFp(eb1)=fd; // of new faces

      fa->SetV();
      fb->SetV();
      fc->SetV();
      fd->SetV();

      fa->ClearAllF();
      fb->ClearAllF();
      fc->ClearAllF();
      fd->ClearAllF();

      fa->SetF( ea0 );
      fb->SetF( eb0 );
      fc->SetF( ea1 );
      fd->SetF( eb1 );

      // fix faux mesh boundary... if two any consecutive, merge it in a quad
      if (ba&&bc) {
        fa->ClearAllF(); fa->SetF(ea1);
        fc->ClearAllF(); fc->SetF(ea0);
        ba = bc = false;
      }
      if (bc&&bb) {
        fc->ClearAllF(); fc->SetF(ea2);
        fb->ClearAllF(); fb->SetF(eb2);
        bc = bb = false;
      }
      if (bb&&bd) {
        fb->ClearAllF(); fb->SetF(eb1);
        fd->ClearAllF(); fd->SetF(eb0);
        bb = bd = false;
      }
      if (bd&&ba) {
        fd->ClearAllF(); fd->SetF(eb2);
        fa->ClearAllF(); fa->SetF(ea2);
        bd = ba = false;
      }
      // remaninig boudaries will be fixed by splitting in the last pass
      if (ba) nsplit++;
      if (bb) nsplit++;
      if (bc) nsplit++;
      if (bd) nsplit++;
    }
  }
  assert(nfi==m.face.end());
  assert(nvi==m.vert.end());

  // now and there are no tris left, but there can be faces with ONE edge border & faux ()


  // last pass: add vertex on faux border faces... (if any)
  if (nsplit>0) {
    FaceIterator nfi = tri::Allocator<MeshType>::AddFaces(m,nsplit);
    VertexIterator nvi = tri::Allocator<MeshType>::AddVertices(m,nsplit);
    for (FaceIterator fi = m.face.begin(), fend = nfi;  fi!=fend; fi++) if (!fi->IsD()) {
      FaceType* fa = &*fi;
      int ea2 = -1; // border and faux face (if any)
      if (fa->FFp(0)==fa &&  fa->IsF(0) ) ea2=0;
      if (fa->FFp(1)==fa &&  fa->IsF(1) ) ea2=1;
      if (fa->FFp(2)==fa &&  fa->IsF(2) ) ea2=2;

      if (ea2 != -1) { // ea2 edge is naughty (border AND faux)

        int ea0 = (ea2+1) %3;
        int ea1 = (ea2+2) %3;

        // create new vert in center of faux edge
        VertexType *nv = &*nvi; nvi++;
        //*nv = * fa->V0( ea2 );
                nv->ImportData(*(fa->V0( ea2 ) )); // lazy: copy everything from the old vertex
        nv->P() = ( fa->V(ea2)->P() + fa->V(ea0)->P() ) /2.0;
        Interpolator::Apply(*(fa->V(ea2)),*(fa->V(ea0)),0.5,*nv);
        // split face: add 1 face
        FaceType *fc = &*nfi; nfi++;

                fc->ImportData(*fa);CopyTopology(fc,fa); // lazy: copy everything from the old vertex

        fa->V(ea2) = fc->V(ea0) = nv ;

        fc->FFp(ea2) = fc;

        fa->FFp(ea1)->FFp( fa->FFi(ea1) ) = fc;

        fa->FFp(ea1) = fc ;
        fa->FFi(ea1) = ea0;
        fc->FFp(ea0) = fa ;  fc->FFp(ea2) = fc;
        fc->FFi(ea0) = ea1;

        if (fc->FFp(ea1)==fa) fc->FFp(ea1)=fc; // recover border status

        assert(fa->IsF(ea0) == fa->IsF(ea1) );
        bool b = fa->IsF(ea1);

        fa->ClearAllF();
        fc->ClearAllF();

        if (b) {
          fa->SetF( ea0 );
          fc->SetF( ea1 );
        } else {
          fa->SetF( ea1 );
          fc->SetF( ea0 );
        }
      }
    }
  }


}


// uses Catmull Clark to enforce quad only meshes
// each old edge (but not faux) is split in two.
static void MakePureByCatmullClark(MeshType &m){
  MakePureByRefine(m);
  MakePureByRefine(m);
  // done
}

// Helper funcion:
// marks edge distance froma a given face.
// Stops at maxDist or at the distance when a triangle is found
static FaceType * MarkEdgeDistance(MeshType &m, FaceType *startF, int maxDist){
    assert(tri::HasPerFaceQuality(m));

  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++)  if (!fi->IsD()) {
    fi->Q()=maxDist;
  }

  FaceType * firstTriangleFound = NULL;

  startF->Q() =  0;
  std::vector<FaceType*> stack;
  int stackPos=0;
  stack.push_back(startF);

  while ( stackPos<int(stack.size())) {
    FaceType *f = stack[stackPos++];
    for (int k=0; k<3; k++) {
      assert(FFCorrectness(*f,k));
      FaceType *fk = f->FFp(k);
      int fq = int(f->Q()) + ( ! f->IsF(k) );
      if (fk->Q()> fq && fq <= maxDist) {
        if (!fk->IsAnyF()) { firstTriangleFound = fk; maxDist = fq;}
        fk->Q() = fq;
        stack.push_back(fk);
      }
    }
  }
  return firstTriangleFound;
}


/*
  given a tri-quad mesh,
  uses edge rotates to make a tri move toward another tri and to merges them into a quad.

  Retunrs number of surviving triangles (0, or 1), or -1 if not done yet.
  StepbyStep: makes just one step!
  use it in a loop as long as it returns 0 or 1.

  maxdist is the maximal edge distance where to look for a companion triangle
*/
static int MakePureByFlipStepByStep(MeshType &m, int maxdist=10000, int restart=false){

  static FaceType *ta, *tb; // faces to be matched into a quad

  static int step = 0; // hack

  if (restart) { step=0; return false; }
if (step==0) {

  // find a triangular face ta
  ta = NULL;
  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) {
    if (!fi->IsAnyF()) { ta=&*fi; break; }
  }
  if (!ta) return 0; // success: no triangle left (done?)


  tb = MarkEdgeDistance(m,ta,maxdist);
  if (!tb) return 1; // fail: no matching triagle found (increase maxdist?)

  step=1;

} else {
  int marriageEdge=-1;
  bool done = false;
  while (!done) {

    int bestScore = int(tb->Q());
    int edge = -1;
    bool mustDoFlip;

    // select which edge to use
    for (int k=0; k<3; k++) {
      if (tb->FFp(k) == tb) continue; // border

      FaceType* tbk = tb->FFp(k);

      if (!tbk->IsAnyF()) {done=true; marriageEdge=k; break; } // found my match

      int back = tb->FFi(k);
      int faux = BQ::FauxIndex(tbk);
      int other = 3-back-faux;

      int scoreA = int(tbk->FFp(other)->Q());

      FaceType* tbh = tbk->FFp(faux);
      int fauxh = BQ::FauxIndex(tbh);

      int scoreB = int(tbh->FFp( (fauxh+1)%3 )->Q());
      int scoreC = int(tbh->FFp( (fauxh+2)%3 )->Q());

      int scoreABC = std::min( scoreC, std::min( scoreA, scoreB ) );
      if (scoreABC<bestScore) {
        bestScore = scoreABC;
        edge = k;
        mustDoFlip = !(scoreB == scoreABC || scoreC == scoreABC);
      }
    }

    if (done) break;

    // use that edge to proceed
    if (mustDoFlip) {
      BQ::FlipDiag( *(tb->FFp(edge)) );
    }

    FaceType* next = tb->FFp(edge)->FFp( BQ::FauxIndex(tb->FFp(edge))  );

    // create new edge
    next->ClearAllF();
    tb->FFp(edge)->ClearAllF();

    // dissolve old edge
    tb->SetF(edge);
    tb->FFp(edge)->SetF( tb->FFi(edge) );
    tb->FFp(edge)->Q() = tb->Q();

    tb = next;
break;
  }

  if (marriageEdge!=-1) {
    // consume the marriage (two tris = one quad)
    assert(!(tb->IsAnyF()));
    assert(!(tb->FFp(marriageEdge)->IsAnyF()));
    tb->SetF(marriageEdge);
    tb->FFp(marriageEdge)->SetF(tb->FFi(marriageEdge));

    step=0;
  }
}
  return -1; // not done yet
}

/*
  given a tri-quad mesh,
  uses edge rotates to make a tri move toward another tri and to merges them into a quad.
  - maxdist is the maximal edge distance where to look for a companion triangle
  - retunrs true if all triangles are merged (always, unless they are odd, or maxdist not enough).
*/
static bool MakePureByFlip(MeshType &m, int maxdist=10000)
{
  MakePureByFlipStepByStep(m, maxdist, true); // restart
  int res=-1;
  while (res==-1) res = MakePureByFlipStepByStep(m, maxdist);
  return res==0;
}

/**
  given a triangle mesh, makes it quad dominant by merging triangle pairs into quads
  various euristics:
      level = 0: maximally greedy. Leaves fewest triangles
      level = 1: smarter: leaves more triangles, but makes better quality quads
      level = 2: even more so (marginally)
*/
static void MakeDominant(MeshType &m, int level){

  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) {
    fi->ClearAllF();
    fi->Q() = 0;
  }


  MakeDominantPass<false> (m);
  if (level>0)  MakeDominantPass<true> (m);
  if (level>1)  MakeDominantPass<true> (m);
  if (level>0)  MakeDominantPass<false> (m);
}

};
}} // end namespace vcg::tri
#endif