File: bitquad_optimization.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,132 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 30
file content (426 lines) | stat: -rw-r--r-- 12,051 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
#ifndef _BITQUAD_OPTIMIZATION
#define _BITQUAD_OPTIMIZATION

namespace vcg{namespace tri{

template <class BQ>
class BitQuadOptimization{

typedef typename BQ::MeshType MeshType;
typedef typename BQ::Pos Pos;

typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FaceType* FaceTypeP;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::VertexIterator VertexIterator;

//typedef BitQuad<MeshType> BQ; // static class to make basic quad operatins

public:

// helper function: mark a quadface, setting Q at 0, and neight at .75, 0.5...
static void MarkFace(FaceType* f, MeshType &m){

  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) {
     fi->Q() = 1;
  }

  for (int i=0; i<3; i++) {
    for (int j=0; j<3; j++) f->FFp(i)->FFp(j)->Q() = 0.75;
  }
  for (int i=0; i<3; i++) {
    f->FFp(i)->Q() = 0.50;
  }
  f->Q() = 0;

}

// helper function: mark a quadface, setting Q at 0, and neight at .75, 0.5...
static void MarkVertex(FaceType* f, int wedge, MeshType &m){

  VertexType *v = f->V(wedge);

  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) {
     if (fi->V0(0)==v || fi->V1(0)==v ||fi->V2(0)==v ) fi->Q() = 0;
     // else fi->Q() = 1;
  }

}

static bool MarkSmallestEdge(MeshType &m, bool perform)
{
  ScalarType min = std::numeric_limits<ScalarType>::max();

  FaceType *fa=NULL; int w=0;
  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD())
  for (int k=0; k<3; k++) {
    FaceType *f=&*fi;

    if (f->IsF(k)) continue;
    if (f->FFp(k) == f ) continue; // skip borders

    ScalarType score;

    score = (f->P0(k) - f->P1(k)).Norm();
    if (score<min) {
      min=score;
      fa = f;
      w = k;
    }

  }
  if (fa) {
    if (perform) {
      return BQ::CollapseEdge(*fa,w,m);
    } else {
      fa->Q()=0.0;
      fa->FFp(w)->Q()=0.0;
      return true;
    }
  }
  return false;
}

static ScalarType Importance(const CoordType  &/*p*/){
  //return ::proceduralImportance(p);
    return 1;
}

// returns: 0 if fail. 1 if edge. 2 if diag.
static int MarkSmallestEdgeOrDiag(MeshType &m, ScalarType edgeMult, bool perform, Pos* affected=NULL)
{
  ScalarType min = std::numeric_limits<ScalarType>::max();

  FaceType *fa=NULL; int w=0; bool counterDiag = false;
  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD())
  for (int k=0; k<3; k++) {
    FaceType *f=&*fi;

    if (f->FFp(k) >= f ) continue; // skip borders (==), and do it one per edge

    ScalarType score;

    score = (f->P0(k) - f->P1(k)).Norm();

    ScalarType imp = Importance( (f->P0(k) + f->P1(k))/2 );

    score /= imp;

    if (!f->IsF(k)) score*=edgeMult; // edges are supposed to be smaller!



    if (score<min) {
      min=score;
      fa = f;
      w = k;
      counterDiag=false;
    }

    if (f->IsF(k)) { // for diag faces, test counterdiag too
      score = BQ::CounterDiag(f).Norm();
      score /= imp;

      if (score<min) {
        min=score;
        fa = f;
        w = k;
        counterDiag=true;
      }
    }



  }
  if (fa) {
    if (perform) {
      if (fa->IsF(w)) {
        if (counterDiag) {
          if (BQ::CollapseCounterDiag(*fa, BQ::PosOnDiag(*fa,true), m , affected)) return 2;
        } else {
          if (BQ::CollapseDiag(*fa, BQ::PosOnDiag(*fa,false), m ,affected)) return 2;
        }
      } else {
        if  (BQ::CollapseEdge(*fa,w,m, affected)) return 1;
      }
    } else {
      fa->Q()=0.0;
      fa->FFp(w)->Q()=0.0;
      if (fa->IsF(w)) return 2; else return 1;
    }
  }
  return 0;
}


static void MarkSmallestDiag(MeshType &m)
{
  ScalarType min = std::numeric_limits<ScalarType>::max();

  FaceType *fa=NULL;
  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) {
    FaceType *f=&*fi;

    ScalarType score;

    score = BQ::Diag(f).Norm();
    if (score<min) {
      min=score;
      fa = f;
    }

    score = BQ::CounterDiag(f).Norm();
    if (score<min) {
      min=score;
      fa = f;
    }

  }
  if (fa) {
    fa->Q()=0.0;
    fa->FFp(BQ::FauxIndex(fa))->Q()=0.0;
  }

}



static bool IdentifyAndCollapseSmallestDiag(MeshType &m){
  ScalarType min = std::numeric_limits<ScalarType>::max();

  FaceType *fa=NULL; bool flip;
  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) {
    FaceType *f=&*fi;

    ScalarType score;

    score = BQ::Diag(f).Norm();
    if (score<min) {
      min=score;
      fa = f;
      flip = false;
    }

    score = BQ::CounterDiag(f).Norm();
    if (score<min) {
      min=score;
      fa = f;
      flip = true;
    }

  }
  if (!fa) return false;

  if (BQ::TestAndRemoveDoublet(*fa,0,m)) { return true; }
  if (BQ::TestAndRemoveDoublet(*fa,1,m)) { return true; }
  if (BQ::TestAndRemoveDoublet(*fa,2,m)) { return true; }
  int k = BQ::FauxIndex(fa);
  if (BQ::TestAndRemoveDoublet( *fa->FFp(k),(fa->FFi(k)+2)%3, m )) return true;

  if (flip) {
    if (!BQ::CheckFlipDiag(*fa) ) {
      // I can't collapse (why?)
      MarkFace(fa,m);
      return false;
    } else
    BQ::CollapseCounterDiag(*fa, BQ::PosOnDiag(*fa,true), m );
  }
  else  {
    BQ::CollapseDiag(*fa, BQ::PosOnDiag(*fa,false), m );
  }
  return true;
}



/*
seeks and removes all doublets (a pair of quads sharing two consecutive edges)
by merging them into a single quad (thus removing one vertex and two tri faces)-
Returns number of removed Doublets
*/
static int RemoveDoublets(MeshType &m, Pos *p=NULL)
{
  int res=0;
  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) {
    fi->Q()=1;
    for (int k=0; k<3; k++) {
      if ( BQ::IsDoublet(*fi,k) ){
        res++;
        BQ::RemoveDoublet(*fi,k,m,p);
        if (fi->IsD()) break; // break wedge circle, if face disappeard
        if (p) return res;
      }
    }
  }
  return res;
}

/*
marks (Quality=0) and approx. counts profitable vertex rotations
(vertex rotations which make edge shorter
*/
template <bool perform>
static int MarkVertexRotations(MeshType &m, Pos *affected=NULL)
{
  int res=0;
  for (VertexIterator vi = m.vert.begin();  vi!=m.vert.end(); vi++) if (!vi->IsD()) vi->ClearV();
  if (!perform)
  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) fi->Q()=1.0;

  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) {

    for (int k=0; k<3; k++) {
      if (fi->V(k)->IsV()) continue;
      if (BQ::TestVertexRotation(*fi,k)) {
        res++;
        fi->V(k)->SetV();
        if (!perform) {
          res++; MarkVertex(&*fi, k, m); //fi->Q()=0;
        }
        else {
          if (BQ::RotateVertex(*fi, k, m, affected)) res++; //fi->Q()=0;
          if (affected) return res; // uncomment for only one rotation
        }
      }
    }
  }
  return res;
}

// mark (and count) all edges that are worth rotating
// if perform == true, actually rotate them
template <bool perform>
static int MarkEdgeRotations(MeshType &m, Pos *p=NULL)
{
  int count = 0;

  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) fi->Q()=1;

  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) {
    //if (count>0) break;
    for (int k=0; k<3; k++) {
      if (fi->IsF(k)) continue;
      if (fi->FFp(k)<= &*fi) continue; // only once per real (non faux) edge, and only for non border ones
      int best = BQ::TestEdgeRotation(*fi, k);
      if (perform) {
        if (best==+1) if (BQ::template RotateEdge< true>(*fi, k, m, p)) count++;
        if (best==-1) if (BQ::template RotateEdge<false>(*fi, k, m, p)) count++;
        if (p) if (count>0) return count;
      }
      else {
        if (best!=0) { fi->Q()=0; fi->FFp(k)->Q()=0; count++; }
      }
    }
  }

  return count;
}

/*
marks (Quality=0) and approx. counts doublets (a pair of quads sharing two consecutive edges)
*/
static int MarkDoublets(MeshType &m)
{
  int res=0;
  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) {
    fi->Q()=1;
    for (int k=0; k<3; k++) {
      if ( BQ::IsDoublet(*fi,k) ){
        res++;
        if (fi->IsF((k+1)%3)) res++; // counts for a quad
        fi->Q()=0;
      }
    }
  }
  assert (res%2==0);
  return res/4; // return doublet pairs (approx, as a quad could be a part of many pairs)
}

/*
marks (Quality=0) and counts singlets (vertex B in an A-B-A-C quad)
*/
static int MarkSinglets(MeshType &m)
{
  int res=0;
  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) {
    fi->Q()=1;
    for (int k=0; k<3; k++) {
      if ( BQ::IsSinglet(*fi,k) ){
        res++;
        fi->Q()=0;
      }
    }
  }
  assert (res%2==0);
  return res/2; // return number of  singlet pairs
}

/*
deletes singlets, reutrns number of
*/
static int RemoveSinglets(MeshType &m, Pos *p=NULL)
{
  int res=0;
  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) {
    for (int k=0; k<3; k++) {
      if ( BQ::IsSinglet(*fi,k) ){
        res++;
        BQ::RemoveSinglet(*fi,k,m, p);
        if (p) return res;
        break;
      }
    }
  }
  return res; // return singlet pairs (approx, as a quad could be a part of many pairs)
}


/* returns average quad quality, and assigns it to triangle quality
*/
static ScalarType MeasureQuality(MeshType &m)
{
  assert(MeshType::HasPerFaceFlags());
  ScalarType res = 0;
  int div = 0;
  for (FaceIterator fi = m.face.begin();  fi!=m.face.end(); fi++) if (!fi->IsD()) {
    if (fi->IsAnyF()) {

      ScalarType q = BQ::quadQuality( &*fi, BQ::FauxIndex(&*fi) );

      if (MeshType::HasPerFaceQuality()) fi->Q() = q;
      res += q;
      div++;
    }
  }
  if (!div) return 0; else return res / div;
}

};
}} // end namespace vcg::tri

#endif