File: convex_hull.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,132 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 30
file content (430 lines) | stat: -rw-r--r-- 17,469 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
#ifndef VCG_TRI_CONVEX_HULL_H
#define VCG_TRI_CONVEX_HULL_H

#include <queue>
#include <unordered_map>
#include <vcg/complex/complex.h>
#include <vcg/complex/algorithms/clean.h>

namespace vcg
{

namespace tri
{

template <class InputMesh, class CHMesh>
class ConvexHull
{

public:

  typedef typename InputMesh::ScalarType		ScalarType;
  typedef typename InputMesh::CoordType		CoordType;
  typedef typename InputMesh::VertexPointer	InputVertexPointer;
  typedef typename InputMesh::VertexIterator	InputVertexIterator;
  typedef typename CHMesh::VertexIterator		CHVertexIterator;
  typedef typename CHMesh::VertexPointer		CHVertexPointer;
  typedef typename CHMesh::FaceIterator		CHFaceIterator;
  typedef typename CHMesh::FacePointer		CHFacePointer;

private:

  typedef std::pair<InputVertexPointer, ScalarType> Pair;


  // Initialize the convex hull with the biggest tetraedron created using the vertices of the input mesh
  static void InitConvexHull(InputMesh& mesh, CHMesh& convexHull)
  {
  typename CHMesh:: template PerVertexAttributeHandle<size_t> indexInputVertex = Allocator<CHMesh>::template GetPerVertexAttribute<size_t>(convexHull, std::string("indexInput"));
  InputVertexPointer v[3];
    //Find the 6 points with min/max coordinate values
    InputVertexIterator vi = mesh.vert.begin();
    std::vector<InputVertexPointer> minMax(6, &(*vi));
    for (; vi != mesh.vert.end(); vi++)
    {
      if ((*vi).P().X() < (*minMax[0]).P().X())
        minMax[0] = &(*vi);
      if ((*vi).P().Y() < (*minMax[1]).P().Y())
        minMax[1] = &(*vi);
      if ((*vi).P().Z() < (*minMax[2]).P().Z())
        minMax[2] = &(*vi);
      if ((*vi).P().X() > (*minMax[3]).P().X())
        minMax[3] = &(*vi);
      if ((*vi).P().Y() > (*minMax[4]).P().Y())
        minMax[4] = &(*vi);
      if ((*vi).P().Z() > (*minMax[5]).P().Z())
        minMax[5] = &(*vi);
    }
    //Find the farthest two points
    ScalarType maxDist = 0;
    for (int i = 0; i < 6; i++)
    {
      for (int j = i + 1; j < 6; j++)
      {
        float dist = (minMax[i]->P() - minMax[j]->P()).SquaredNorm();
        if (dist > maxDist)
        {
          maxDist = dist;
          v[0] = minMax[i];
          v[1] = minMax[j];
        }
      }
    }
    //Find the third point to create the base of the tetrahedron
    vcg::Line3<ScalarType> line(v[0]->P(), (v[0]->P() - v[1]->P()));
    maxDist = 0;
    for (vi = mesh.vert.begin(); vi != mesh.vert.end(); vi++)
    {
      ScalarType dist = vcg::Distance(line, (*vi).P());
      if (dist > maxDist)
      {
        maxDist = dist;
        v[2] = &(*vi);
      }
    }
    //Create face in the convex hull
    CHVertexIterator chVi = vcg::tri::Allocator<CHMesh>::AddVertices(convexHull, 3);
    for (int i = 0; i < 3; i++)
    {
      (*chVi).P().Import(v[i]->P());
    v[i]->SetV();
      indexInputVertex[chVi] = vcg::tri::Index(mesh, v[i]);
      chVi++;
    }
    CHFaceIterator fi = vcg::tri::Allocator<CHMesh>::AddFace(convexHull, 0, 1, 2);
    (*fi).N() = vcg::NormalizedTriangleNormal(*fi);

    //Find the fourth point to create the tetrahedron
    InputVertexPointer v4;
    float distance = 0;
    float absDist = -1;
    for (vi = mesh.vert.begin(); vi != mesh.vert.end(); vi++)
    {
      float tempDist = ((*vi).P() - (*fi).P(0)).dot((*fi).N());
      if (fabs(tempDist) > absDist)
      {
        distance = tempDist;
        v4 = &(*vi);
        absDist = fabs(distance);
      }
    }

    //Flip the previous face if the fourth point is above the face
    if (distance > 0)
    {
      (*fi).N() = -(*fi).N();
      CHVertexPointer tempV = (*fi).V(1);
      (*fi).V(1) = (*fi).V(2);
      (*fi).V(2) = tempV;
    }

    //Create the other 3 faces of the tetrahedron
    chVi = vcg::tri::Allocator<CHMesh>::AddVertices(convexHull, 1);
    (*chVi).P().Import(v4->P());
    indexInputVertex[chVi] = vcg::tri::Index(mesh, v4);
    v4->SetV();
    fi = vcg::tri::Allocator<CHMesh>::AddFace(convexHull, &convexHull.vert[3], convexHull.face[0].V0(1), convexHull.face[0].V0(0));
    (*fi).N() = vcg::NormalizedTriangleNormal(*fi);
    fi = vcg::tri::Allocator<CHMesh>::AddFace(convexHull, &convexHull.vert[3], convexHull.face[0].V1(1), convexHull.face[0].V1(0));
    (*fi).N() = vcg::NormalizedTriangleNormal(*fi);
    fi = vcg::tri::Allocator<CHMesh>::AddFace(convexHull, &convexHull.vert[3], convexHull.face[0].V2(1), convexHull.face[0].V2(0));
    (*fi).N() = vcg::NormalizedTriangleNormal(*fi);
    vcg::tri::UpdateTopology<CHMesh>::FaceFace(convexHull);
  }


public:


  /**
    Return the convex hull of the input mesh using the Quickhull algorithm.
    For each vertex of the convex hull the algorithm stores the vertex index
    of the original mesh in attribute "indexInput".

    "The quickhull algorithm for convex hulls" by C. Bradford Barber et al.
    ACM Transactions on Mathematical Software, Volume 22 Issue 4, Dec. 1996
  */
  static bool ComputeConvexHull(InputMesh& mesh, CHMesh& convexHull, ScalarType distTolerance = 0)
  {
	assert(distTolerance >= 0);
    vcg::tri::RequireFFAdjacency(convexHull);
    vcg::tri::RequirePerFaceNormal(convexHull);
    vcg::tri::Allocator<InputMesh>::CompactVertexVector(mesh);
    typename CHMesh:: template PerVertexAttributeHandle<size_t> indexInputVertex = Allocator<CHMesh>::template GetPerVertexAttribute<size_t>(convexHull, std::string("indexInput"));
    if (mesh.vert.size() < 4)
      return false;
    vcg::tri::UpdateFlags<InputMesh>::VertexClearV(mesh);
    InitConvexHull(mesh, convexHull);

    //Build list of visible vertices for each convex hull face and find the furthest vertex for each face
    std::vector<std::vector<InputVertexPointer>> listVertexPerFace(convexHull.face.size());
    std::vector<Pair> furthestVexterPerFace(convexHull.face.size(), std::make_pair((InputVertexPointer)NULL, 0.0f));
    for (size_t i = 0; i < mesh.vert.size(); i++)
    {
    if (!mesh.vert[i].IsV())
    {
      for (size_t j = 0; j < convexHull.face.size(); j++)
      {
        ScalarType dist = (mesh.vert[i].P() - convexHull.face[j].P(0)).dot(convexHull.face[j].N());
        if (dist > distTolerance)
        {
          listVertexPerFace[j].push_back(&mesh.vert[i]);
          if (dist > furthestVexterPerFace[j].second)
          {
            furthestVexterPerFace[j].second = dist;
            furthestVexterPerFace[j].first = &mesh.vert[i];
          }
        }
      }
    }
    }

    for (size_t i = 0; i < listVertexPerFace.size(); i++)
    {
      if (listVertexPerFace[i].size() > 0)
      {
        //Find faces to remove and face on the border where to connect the new fan faces
        InputVertexPointer vertex = furthestVexterPerFace[i].first;
        std::queue<int> queue;
        std::vector<int> visFace;
        std::vector<int> borderFace;
        visFace.push_back(i);
        queue.push(i);
        while (queue.size() > 0)
        {
          CHFacePointer fp = &convexHull.face[queue.front()];
          queue.pop();
          fp->SetV();
          for (int ii = 0; ii < 3; ii++)
          {
            CHFacePointer nextF = fp->FFp(ii);
            if (!nextF->IsV())
            {
              int indexF = vcg::tri::Index(convexHull, nextF);
              ScalarType dist = (vertex->P() - nextF->P(0)).dot(nextF->N());
              if (dist < distTolerance)
              {
                borderFace.push_back(indexF);
                fp->SetB(ii);
                nextF->SetB(fp->FFi(ii));
              }
              else
              {
                visFace.push_back(indexF);
                queue.push(indexF);
              }
            }
          }
        }
        if (borderFace.size() > 0)
        {
          CHVertexIterator vi = vcg::tri::Allocator<CHMesh>::AddVertices(convexHull, 1);
          (*vi).P().Import((*vertex).P());
      vertex->SetV();
          indexInputVertex[vi] = vcg::tri::Index(mesh, vertex);
        }

        //Add a new face for each border
        std::unordered_map< CHVertexPointer, std::pair<int, char> > fanMap;
        for (size_t jj = 0; jj < borderFace.size(); jj++)
        {
          int indexFace = borderFace[jj];
          CHFacePointer f = &convexHull.face[indexFace];
          for (int j = 0; j < 3; j++)
          {
            if (f->IsB(j))
            {
              f->ClearB(j);
              //Add new face
              CHFaceIterator fi = vcg::tri::Allocator<CHMesh>::AddFace(convexHull, &convexHull.vert.back(), f->V1(j), f->V0(j));
              (*fi).N() = vcg::NormalizedTriangleNormal(*fi);
              f = &convexHull.face[indexFace];
              int newFace = vcg::tri::Index(convexHull, *fi);
              //Update convex hull FF topology
              CHVertexPointer vp[] = { f->V1(j), f->V0(j) };
              for (int ii = 0; ii < 2; ii++)
              {
                int indexE = ii * 2;
                typename std::unordered_map< CHVertexPointer, std::pair<int, char> >::iterator vIter = fanMap.find(vp[ii]);
                if (vIter != fanMap.end())
                {
                  CHFacePointer f2 = &convexHull.face[(*vIter).second.first];
                  char edgeIndex = (*vIter).second.second;
                  f2->FFp(edgeIndex) = &convexHull.face.back();
                  f2->FFi(edgeIndex) = indexE;
                  fi->FFp(indexE) = f2;
                  fi->FFi(indexE) = edgeIndex;
                }
                else
                {
                  fanMap[vp[ii]] = std::make_pair(newFace, indexE);
                }
              }
              //Build the visibility list for the new face
              std::vector<InputVertexPointer> tempVect;
              int indices[2] = { indexFace, int(vcg::tri::Index(convexHull, f->FFp(j)) )};
              std::vector<InputVertexPointer> vertexToTest(listVertexPerFace[indices[0]].size() + listVertexPerFace[indices[1]].size());
              typename std::vector<InputVertexPointer>::iterator tempIt = std::set_union(listVertexPerFace[indices[0]].begin(), listVertexPerFace[indices[0]].end(), listVertexPerFace[indices[1]].begin(), listVertexPerFace[indices[1]].end(), vertexToTest.begin());
              vertexToTest.resize(tempIt - vertexToTest.begin());

              Pair newInfo = std::make_pair((InputVertexPointer)NULL , 0.0f);
              for (size_t ii = 0; ii < vertexToTest.size(); ii++)
              {
                if (!(*vertexToTest[ii]).IsV())
                {
                  float dist = ((*vertexToTest[ii]).P() - (*fi).P(0)).dot((*fi).N());
                  if (dist > distTolerance)
                  {
                    tempVect.push_back(vertexToTest[ii]);
                    if (dist > newInfo.second)
                    {
                      newInfo.second = dist;
                      newInfo.first = vertexToTest[ii];
                    }
                  }
                }
              }
              listVertexPerFace.push_back(tempVect);
              furthestVexterPerFace.push_back(newInfo);
              //Update topology of the new face
              CHFacePointer ffp = f->FFp(j);
              int ffi = f->FFi(j);
              ffp->FFp(ffi) = ffp;
              ffp->FFi(ffi) = ffi;
              f->FFp(j) = &convexHull.face.back();
              f->FFi(j) = 1;
              fi->FFp(1) = f;
              fi->FFi(1) = j;
            }
          }
        }
        //Delete the faces inside the updated convex hull
        for (size_t j = 0; j < visFace.size(); j++)
        {
          if (!convexHull.face[visFace[j]].IsD())
          {
            std::vector<InputVertexPointer> emptyVec;
            vcg::tri::Allocator<CHMesh>::DeleteFace(convexHull, convexHull.face[visFace[j]]);
            listVertexPerFace[visFace[j]].swap(emptyVec);
          }
        }
      }
    }

  tri::UpdateTopology<CHMesh>::ClearFaceFace(convexHull);
    vcg::tri::Allocator<CHMesh>::CompactFaceVector(convexHull);
    vcg::tri::Clean<CHMesh>::RemoveUnreferencedVertex(convexHull);
    return true;
  }
  /**
  * @brief ComputePointVisibility
  * Select the <b>visible points</b> in a point cloud, as viewed from a given viewpoint.
  * It uses the Qhull implementation of che convex hull in the vcglibrary
  * The algorithm used (Katz, Tal and Basri 2007) determines visibility without
  * reconstructing a surface or estimating normals.
  * A point is considered visible if its transformed point lies on the convex hull
  * of a transformed points cloud from the original mesh points.
  *
  * @param m         The point cloud
  * @param visible   The mesh that will contain the visible hull
  * @param viewpoint
  * @param logR      Bounds the radius of the sphere used to select visible points.
  *   It is used to adjust the radius of the sphere (calculated as distance between
  *   the center and the farthest point from it) according to the following equation:
  *       radius = radius * pow(10,threshold);
  *   As the radius increases more points are marked as visible.
  *   Use a big threshold for dense point clouds, a small one for sparse clouds.
  */

 static void ComputePointVisibility(InputMesh& m, CHMesh& visible, CoordType viewpoint, ScalarType logR=2)
 {
   visible.Clear();
   tri::RequireCompactness(m);
   InputMesh flipM;

   printf("Input mesh m %i %i\n",m.vn,m.fn);

   tri::Allocator<InputMesh>::AddVertices(flipM,m.vn);
   ScalarType maxDist=0;
   InputVertexIterator ci=flipM.vert.begin();
   for(InputVertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
   {
     ci->P()=vi->P()-viewpoint;
     maxDist = std::max(maxDist,Norm(ci->P()));
     ++ci;
   }
   ScalarType R = maxDist*pow(10,logR);
   printf("Using R = %f logR = %f maxdist=%f \n",R,logR,maxDist);
   for(InputVertexIterator vi=flipM.vert.begin();vi!=flipM.vert.end();++vi)
   {
     ScalarType d = Norm(vi->P());
     vi->P() = vi->P() + vi->P()*ScalarType(2.0*(R - d)/d);
   }

   tri::Allocator<InputMesh>::AddVertex(flipM,CoordType(0,0,0));
   assert(m.vn+1 == flipM.vn);

   ComputeConvexHull(flipM,visible);
   assert(flipM.vert[m.vn].P()==Point3f(0,0,0));
   int vpInd=-1; // Index of the viewpoint in the ConvexHull mesh
   int selCnt=0;
   typename CHMesh:: template PerVertexAttributeHandle<size_t> indexInputVertex = Allocator<InputMesh>::template GetPerVertexAttribute<size_t>(visible, std::string("indexInput"));
   for(int i=0;i<visible.vn;++i)
   {
     size_t ind = indexInputVertex[i];
     if(ind==m.vn) vpInd = i;
     else
     {
       visible.vert[i].P() = m.vert[ind].P();
       m.vert[ind].SetS();
       //m.vert[ind].C() = Color4b::LightBlue;
       selCnt++;
     }
   }
   printf("Selected %i visible points\n",selCnt);

   assert(vpInd != -1);
   // Final pass delete all the faces of the convex hull incident in the viewpoint
   for(int i=0;i<visible.fn;++i)
   {
     if( (Index(visible,visible.face[i].V(0)) == vpInd) ||
         (Index(visible,visible.face[i].V(1)) == vpInd) ||
         (Index(visible,visible.face[i].V(2)) == vpInd) )
       tri::Allocator<CHMesh>::DeleteFace(visible,visible.face[i]);
   }

   tri::Allocator<CHMesh>::CompactEveryVector(visible);
   tri::Clean<CHMesh>::FlipMesh(visible);
   tri::UpdateNormal<CHMesh>::PerFaceNormalized(visible);
   tri::UpdateNormal<CHMesh>::PerVertexNormalized(visible);

 }
};

} // end namespace tri

} // end namespace vcg

#endif //VCG_TRI_CONVEX_HULL_H