File: ball_pivoting.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,132 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 30
file content (432 lines) | stat: -rw-r--r-- 13,987 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
#ifndef BALL_PIVOTING_H
#define BALL_PIVOTING_H

#include "advancing_front.h"
#include <vcg/space/index/kdtree/kdtree.h>

#include <vcg/complex/algorithms/closest.h>

/* Ball pivoting algorithm:
   1) the vertices used in the new mesh are marked as visited
   2) the border vertices of the new mesh are marked as border
   3) the vector nb is used to keep track of the number of borders a vertex belongs to
   4) usedBit flag is used to select the points in the mesh already processed

*/
namespace vcg {
  namespace tri {

template <class MESH> class BallPivoting: public AdvancingFront<MESH> {
 public:
  typedef typename MESH::VertexType     VertexType;
  typedef typename MESH::FaceType       FaceType;
  typedef typename MESH::ScalarType     ScalarType;
  typedef typename MESH::VertexIterator     VertexIterator;
  typedef typename MESH::VertexType::CoordType   Point3x;

  float radius;          //radius of the ball
  float min_edge;        //min length of an edge
  float max_edge;        //min length of an edge
  float max_angle;       //max angle between 2 faces (cos(angle) actually)

 public:

    // if radius ==0 an autoguess for the ball pivoting radius is attempted
    // otherwise the passed value (in absolute mesh units) is used.

  BallPivoting(MESH &_mesh, float _radius = 0,
               float minr = 0.2, float angle = M_PI/2):

    AdvancingFront<MESH>(_mesh), radius(_radius),
    min_edge(minr), max_edge(1.8), max_angle(cos(angle)),
    last_seed(-1) {

    //compute bbox
    baricenter = Point3x(0, 0, 0);
    UpdateBounding<MESH>::Box(_mesh);
        for(VertexIterator vi=this->mesh.vert.begin();vi!=this->mesh.vert.end();++vi)
            if( !(*vi).IsD() )  baricenter += (*vi).P();

    baricenter /= this->mesh.vn;

        assert(this->mesh.vn > 3);
    if(radius == 0) // radius ==0 means that an auto guess should be attempted.
      radius = sqrt((this->mesh.bbox.Diag()*this->mesh.bbox.Diag())/this->mesh.vn);


    min_edge *= radius;
    max_edge *= radius;

    VertexConstDataWrapper<MESH> ww(this->mesh);
    tree = new KdTree<ScalarType>(ww);
//    tree->setMaxNofNeighbors(16);

    usedBit = VertexType::NewBitFlag();
    UpdateFlags<MESH>::VertexClear(this->mesh,usedBit);
    UpdateFlags<MESH>::VertexClearV(this->mesh);

    for(int i = 0; i < (int)this->mesh.face.size(); i++) {
      FaceType &f = this->mesh.face[i];
      if(f.IsD()) continue;
      for(int k = 0; k < 3; k++) {
        Mark(f.V(k));
      }
    }
  }

  ~BallPivoting() {
    VertexType::DeleteBitFlag(usedBit);
    delete tree;
  }

  bool Seed(int &v0, int &v1, int &v2) {
    //get a sphere of neighbours
    while(++last_seed < (int)(this->mesh.vert.size())) {
      std::vector<VertexType *> targets;
      VertexType &seed = this->mesh.vert[last_seed];
      if(seed.IsD() || seed.IsUserBit(usedBit)) continue;

      seed.SetUserBit(usedBit);

      typename KdTree<ScalarType>::PriorityQueue pq;
      tree->doQueryK(seed.P(),16,pq);
      int nn = pq.getNofElements();
      for(int i=0;i<nn;++i)
      {
        VertexType *vp = &this->mesh.vert[pq.getIndex(i)];
        if(Distance(seed.P(),vp->cP()) > 2*radius) continue;
        targets.push_back(vp);
      }

      int n = int(targets.size());
      if(n<3) continue;

      bool success = true;
      //find the closest visited or boundary
      for(int i = 0; i < n; i++) {
        VertexType &v = *(targets[i]);
        if(v.IsV()) {
          success = false;
          break;
        }
      }
      if(!success) continue;

      VertexType *vv0, *vv1, *vv2;
      success = false;
      //find a triplet that does not contains any other point
      Point3x center;
      for(int i = 0; i < n; i++) {
        vv0 = targets[i];
        if(vv0->IsD()) continue;
        Point3x &p0 = vv0->P();

        for(int k = i+1; k < n; k++) {
          vv1 = targets[k];
          if(vv1->IsD()) continue;
          Point3x &p1 = vv1->P();
          float d2 = (p1 - p0).Norm();
          if(d2 < min_edge || d2 > max_edge) continue;

          for(int j = k+1; j < n; j++) {
            vv2 = targets[j];
            if(vv2->IsD()) continue;
            Point3x &p2 = vv2->P();
            float d1 = (p2 - p0).Norm();
            if(d1 < min_edge || d1 > max_edge) continue;
            float d0 = (p2 - p1).Norm();
            if(d0 < min_edge || d0 > max_edge) continue;

            Point3x normal = (p1 - p0)^(p2 - p0);
            if(normal.dot(p0 - baricenter) < 0) continue;
/*            if(use_normals) {
              if(normal * vv0->N() < 0) continue;
              if(normal * vv1->N() < 0) continue;
              if(normal * vv2->N() < 0) continue;
            }*/

            if(!FindSphere(p0, p1, p2, center)) {
              continue;
            }

            //check no other point inside
            int t;
            for(t = 0; t < n; t++) {
              ScalarType rr= Distance(center, targets[t]->P());
              if( rr < radius - min_edge)
                break;
            }
            if(t < n) {
              continue;
            }

            //check on the other side there is not a surface
            Point3x opposite = center + normal*(((center - p0).dot(normal))*2/normal.SquaredNorm());
            for(t = 0; t < n; t++) {
              VertexType &v = *(targets[t]);
              if((v.IsV()) && (opposite - v.P()).Norm() <= radius)
                break;
            }
            if(t < n) {
              continue;
            }
            success = true;
            i = k = j = n;
          }
        }
      }

      if(!success) { //see bad luck above
        continue;
      }
      Mark(vv0);
      Mark(vv1);
      Mark(vv2);

	  v0 = int(tri::Index(this->mesh, vv0));
	  v1 = int(tri::Index(this->mesh, vv1));
	  v2 = int(tri::Index(this->mesh, vv2));
	  return true;
    }
    return false;
  }

  // Given an edge select a new vertex, mark as Visited and mark as usedBit all neighbours (less than min_edge)
  int Place(FrontEdge &edge, typename AdvancingFront<MESH>::ResultIterator &touch) {
    Point3x v0 = this->mesh.vert[edge.v0].P();
    Point3x v1 = this->mesh.vert[edge.v1].P();
    Point3x v2 = this->mesh.vert[edge.v2].P();
    /* TODO why using the face normals everything goes wrong? should be
       exactly the same................................................

       Point3x &normal = mesh.face[edge.face].N(); ?
    */

    Point3x normal = ((v1 - v0)^(v2 - v0)).Normalize();
    Point3x middle = (v0 + v1)/2;
    Point3x center;

    if(!FindSphere(v0, v1, v2, center)) {
//      assert(0);
      return -1;
    }

    Point3x start_pivot = center - middle;
    Point3x axis = (v1 - v0);

    ScalarType axis_len = axis.SquaredNorm();
    if(axis_len > 4*radius*radius) {
      return -1;
    }
    axis.Normalize();

    // r is the radius of the thorus of all possible spheres passing throug v0 and v1
    ScalarType r = sqrt(radius*radius - axis_len/4);


    typename KdTree<ScalarType>::PriorityQueue pq;
    tree->doQueryK(middle,16,pq);
    int nn = pq.getNofElements();
    if(nn==0) return -1;

    VertexType *candidate = NULL;
	ScalarType min_angle = ScalarType(M_PI);
    //
    // Loop over all the nearest vertexes and choose the best one according the ball pivoting strategy.
    //
    for (int i = 0; i < nn; i++) {
      int vInd = pq.getIndex(i);
      VertexType *v = &this->mesh.vert[vInd];
      if(Distance(middle,v->cP()) > r + radius) continue;

      // this should always be true IsB => IsV , IsV => IsU
      if(v->IsB()) assert(v->IsV());
      if(v->IsV()) assert(v->IsUserBit(usedBit));


      if(v->IsUserBit(usedBit) && !(v->IsB())) continue;
      if(vInd == edge.v0 || vInd == edge.v1 || vInd == edge.v2) continue;

      Point3x p = this->mesh.vert[vInd].P();

      /* Find the sphere through v0, p, v1 (store center on end_pivot */
      if(!FindSphere(v0, p, v1, center)) {
        continue;
      }

      /* Angle between old center and new center */
      ScalarType alpha = OrientedAngleRad(start_pivot, center - middle, axis);

      /* adding a small bias to already chosen vertices.
         doesn't solve numerical problems, but helps. */
    //          if(this->mesh.vert[id].IsB()) alpha -= 0.001;

      /* Sometimes alpha might be little less then M_PI while it should be 0,
         by numerical errors: happens for example pivoting
         on the diagonal of a square. */

/*      if(alpha > 2*M_PI - 0.8) {
        // Angle between old center and new *point*
        //TODO is this really overshooting? shouldbe enough to alpha -= 2*M_PI
        Point3x proj = p - axis * (axis * p - axis * middle);
        ScalarType beta = angle(start_pivot, proj - middle, axis);

        if(alpha > beta) alpha -= 2*M_PI;
      } */
      if(candidate == NULL || alpha < min_angle) {
        candidate = v;
        min_angle = alpha;
      }
    }
    if(min_angle >= M_PI - 0.1) {
      return -1;
    }

    if(candidate == NULL) {
      return -1;
    }
    if(!candidate->IsB()) {
      assert((candidate->P() - v0).Norm() > min_edge);
      assert((candidate->P() - v1).Norm() > min_edge);
    }

    int candidateIndex = int(tri::Index(this->mesh,candidate));
    assert(candidateIndex != edge.v0 && candidateIndex != edge.v1);

    Point3x newnormal = ((candidate->P() - v0)^(v1 - v0)).Normalize();
    if(normal.dot(newnormal) < max_angle || this->nb[candidateIndex] >= 2) {
      return -1;
    }

    //test if id is in some border (to return touch
    for(std::list<FrontEdge>::iterator k = this->front.begin(); k != this->front.end(); k++)
    {
      if((*k).v0 == candidateIndex)
      {
        touch.first = AdvancingFront<MESH>::FRONT;
        touch.second = k;
      }
    }
    for(std::list<FrontEdge>::iterator k = this->deads.begin(); k != this->deads.end(); k++)
    {
      if((*k).v0 == candidateIndex)
      {
        touch.first = AdvancingFront<MESH>::DEADS;
        touch.second = k;
      }
    }

    //mark vertices close to candidate
    Mark(candidate);
    return candidateIndex;
  }

 private:
  int last_seed;     //used for new seeds when front is empty
  int usedBit;       //use to detect if a vertex has been already processed.
  Point3x baricenter;//used for the first seed.
  KdTree<ScalarType> *tree;


  /* returns the sphere touching p0, p1, p2 of radius r such that
     the normal of the face points toward the center of the sphere */

  bool FindSphere(const Point3x &p0, const Point3x &p1, const Point3x &p2, Point3x &center) {
    //we want p0 to be always the smallest one.
    Point3x p[3];

    if(p0 < p1 && p0 < p2) {
      p[0] = p0;
      p[1] = p1;
      p[2] = p2;
    } else if(p1 < p0 && p1 < p2) {
      p[0] = p1;
      p[1] = p2;
      p[2] = p0;
    } else {
      p[0] = p2;
      p[1] = p0;
      p[2] = p1;
    }
    Point3x q1 = p[1] - p[0];
    Point3x q2 = p[2] - p[0];

    Point3x up = q1^q2;
    ScalarType uplen = up.Norm();

    //the three points are aligned
    if(uplen < 0.001*q1.Norm()*q2.Norm()) {
      return false;
    }
    up /= uplen;


    ScalarType a11 = q1.dot(q1);
    ScalarType a12 = q1.dot(q2);
    ScalarType a22 = q2.dot(q2);

    ScalarType m = 4*(a11*a22 - a12*a12);
    ScalarType l1 = 2*(a11*a22 - a22*a12)/m;
    ScalarType l2 = 2*(a11*a22 - a12*a11)/m;

    center = q1*l1 + q2*l2;
    ScalarType circle_r = center.Norm();
    if(circle_r > radius) {
      return false; //need too big a sphere
    }

    ScalarType height = sqrt(radius*radius - circle_r*circle_r);
    center += p[0] + up*height;

    return true;
  }

  /* compute angle from p to q, using axis for orientation */
  ScalarType OrientedAngleRad(Point3x p, Point3x q, Point3x &axis) {
    p.Normalize();
    q.Normalize();
    Point3x vec = p^q;
    ScalarType angle = acos(p.dot(q));
    if(vec.dot(axis) < 0) angle = -angle;
    if(angle < 0) angle += 2*M_PI;
    return angle;
  }

  void Mark(VertexType *v) {
    typename KdTree<ScalarType>::PriorityQueue pq;
    tree->doQueryK(v->cP(),16,pq);
    int n = pq.getNofElements();
    for (int i = 0; i < n; i++) {
      VertexType *vp = &this->mesh.vert[pq.getIndex(i)];
      if(Distance(v->cP(),vp->cP())<min_edge)
        vp->SetUserBit(usedBit);
    }
    v->SetV();
  }
};

} //namespace tri
} //namespace vcg
#endif