File: mc_trivial_walker.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,132 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 30
file content (361 lines) | stat: -rw-r--r-- 12,987 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
#ifndef __VCG_TRIVIAL_WALKER
#define __VCG_TRIVIAL_WALKER

#include<vcg/space/index/grid_util.h>

namespace vcg {

// Very simple volume class.
// just an example of the interface that the trivial walker expects

template <class VOX_TYPE>
class SimpleVolume : public BasicGrid<typename VOX_TYPE::ScalarType>
{
public:
  typedef VOX_TYPE VoxelType;
  typedef typename VoxelType::ScalarType ScalarType;
  typedef typename BasicGrid<typename VOX_TYPE::ScalarType>::Box3x Box3x;

  const Point3i &ISize() {return this->siz;}   /// Dimensioni griglia come numero di celle per lato

  ScalarType Val(const int &x,const int &y,const int &z) const {
    return cV(x,y,z).V();
    //else return numeric_limits<float>::quiet_NaN( );
  }

  ScalarType &Val(const int &x,const int &y,const int &z) {
    return V(x,y,z).V();
    //else return numeric_limits<float>::quiet_NaN( );
  }

  VOX_TYPE &V(const int &x,const int &y,const int &z) {
    return Vol[x+y*this->siz[0]+z*this->siz[0]*this->siz[1]];
  }

  VOX_TYPE &V(const Point3i &pi) {
    return Vol[ pi[0] + pi[1]*this->siz[0] + pi[2]*this->siz[0]*this->siz[1] ];
  }

  const VOX_TYPE &cV(const int &x,const int &y,const int &z) const {
    return Vol[x+y*this->siz[0]+z*this->siz[0]*this->siz[1]];
  }

  bool ValidCell(const Point3i & /*p0*/, const Point3i & /*p1*/) const { return true;}

  template < class VertexPointerType >
  void GetXIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointerType &v, const float thr)
  { GetIntercept<VertexPointerType,XAxis>(p1,p2,v,thr); }

  template < class VertexPointerType >
  void GetYIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointerType &v, const float thr)
  { GetIntercept<VertexPointerType,YAxis>(p1,p2,v,thr); }

  template < class VertexPointerType >
  void GetZIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointerType &v, const float thr)
  { GetIntercept<VertexPointerType,ZAxis>(p1,p2,v,thr); }

  /// The following members/methods are just for this particular case.
  /// The above one are the one required by the marching cube interface.

  std::vector<VoxelType> Vol;

  typedef enum { XAxis=0,YAxis=1,ZAxis=2} VolumeAxis;

  template < class VertexPointerType,  VolumeAxis AxisVal >
  void GetIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointerType &v, const float thr)
  {
    float f1 = V(p1).V()-thr;
    float f2 = V(p2).V()-thr;
    float u = (float) f1/(f1-f2);
    if(AxisVal==XAxis) v->P().X() = (float) p1.X()*(1-u) + u*p2.X();
    else v->P().X() = (float) p1.X();
    if(AxisVal==YAxis) v->P().Y() = (float) p1.Y()*(1-u) + u*p2.Y();
    else v->P().Y() = (float) p1.Y();
    if(AxisVal==ZAxis) v->P().Z() = (float) p1.Z()*(1-u) + u*p2.Z();
    else v->P().Z() = (float) p1.Z();
    this->IPfToPf(v->P(),v->P());
    if(VoxelType::HasNormal()) v->N().Import(V(p1).N()*(1-u) + V(p2).N()*u);
  }



  void Init(Point3i _sz, Box3x bb)
  {
    this->siz=_sz;
    this->bbox = bb;
    Vol.resize(this->siz[0]*this->siz[1]*this->siz[2]);
    this->ComputeDimAndVoxel();
  }
};

template <class _ScalarType=float>
class SimpleVoxel
{
private:
  _ScalarType _v;
public:
  typedef _ScalarType ScalarType;
  ScalarType &V() {return _v;}
  ScalarType V() const {return _v;}
  static bool HasNormal() {return false;}
  vcg::Point3<ScalarType> N() const {return Point3<ScalarType>(0,0,0);}
  vcg::Point3<ScalarType> &N()  { static Point3<ScalarType> _p(0,0,0); return _p;}
};

template <class _ScalarType=float>
class SimpleVoxelWithNormal
{
private:
  _ScalarType _v;
  vcg::Point3<_ScalarType> _n;
public:
  typedef _ScalarType ScalarType;
  ScalarType &V() {return _v;}
  ScalarType V() const {return _v;}
  vcg::Point3<ScalarType> &N() {return _n;}
  vcg::Point3<ScalarType> N() const {return _n;}
  static bool HasNormal() {return true;}

};


namespace tri {


// La classe Walker implementa la politica di visita del volume; conoscendo l'ordine di visita del volume
// Ë conveniente che il Walker stesso si faccia carico del caching dei dati utilizzati durante l'esecuzione
// degli algoritmi MarchingCubes ed ExtendedMarchingCubes, in particolare il calcolo del volume ai vertici
// delle celle e delle intersezioni della superficie con le celle. In questo esempio il volume da processare
// viene suddiviso in fette; in questo modo se il volume ha dimensione h*l*w (rispettivamente altezza,
// larghezza e profondit‡), lo spazio richiesto per il caching dei vertici gi‡ allocati passa da O(h*l*w)
// a O(h*l).

template <class MeshType, class VolumeType>
class TrivialWalker
{
private:
    typedef int VertexIndex;
  typedef typename MeshType::ScalarType ScalarType;
  typedef typename MeshType::VertexPointer VertexPointer;
    public:

  // SetExtractionBox set the portion of the volume to be traversed
  void SetExtractionBox(Box3i subbox)
    {
        _bbox = subbox;
        _slice_dimension = _bbox.DimX()*_bbox.DimZ();

        _x_cs = new VertexIndex[ _slice_dimension ];
        _y_cs = new VertexIndex[ _slice_dimension ];
        _z_cs = new VertexIndex[ _slice_dimension ];
        _x_ns = new VertexIndex[ _slice_dimension ];
        _z_ns = new VertexIndex[ _slice_dimension ];
    }
   
    TrivialWalker()
    { 
      _bbox.SetNull();
      _slice_dimension=0;
    }

    template<class EXTRACTOR_TYPE>
  void BuildMesh(MeshType &mesh, VolumeType &volume, EXTRACTOR_TYPE &extractor, const float threshold, vcg::CallBackPos * cb=0)
  {
    if(_bbox.IsNull() || _slice_dimension==0)
      SetExtractionBox(Box3i(Point3i(0,0,0),volume.ISize()));
    _volume = &volume;
    _mesh		= &mesh;
    _mesh->Clear();
    _thr=threshold;
    Begin();
    extractor.Initialize();
    for (int j=_bbox.min.Y(); j<(_bbox.max.Y()-1)-1; j+=1)
    {
      if(cb && ((j%10)==0) ) 	cb(j*_bbox.DimY()/100.0,"Marching volume");
      for (int i=_bbox.min.X(); i<(_bbox.max.X()-1)-1; i+=1)
      {
        for (int k=_bbox.min.Z(); k<(_bbox.max.Z()-1)-1; k+=1)
        {
          Point3i p1(i,j,k);
          Point3i p2(i+1,j+1,k+1);
          if(volume.ValidCell(p1,p2))
            extractor.ProcessCell(p1, p2);
        }
      }
      NextYSlice();
    }
    extractor.Finalize();
    _volume = NULL;
    _mesh		= NULL;
  }

    float V(int pi, int pj, int pk)
    {
    return _volume->Val(pi, pj, pk)-_thr;
    }

    bool Exist(const vcg::Point3i &p0, const vcg::Point3i &p1, VertexPointer &v)
    {
        int pos = p0.X()+p0.Z()*_bbox.DimX();
        int vidx;

        if (p0.X()!=p1.X()) // punti allineati lungo l'asse X
            vidx = (p0.Y()==_current_slice) ? _x_cs[pos] : _x_ns[pos];
        else if (p0.Y()!=p1.Y()) // punti allineati lungo l'asse Y
            vidx = _y_cs[pos];
        else if (p0.Z()!=p1.Z()) // punti allineati lungo l'asse Z
            vidx = (p0.Y()==_current_slice)? _z_cs[pos] : _z_ns[pos];
        else
            assert(false);

        v = (vidx!=-1)? &_mesh->vert[vidx] : NULL;
        return v!=NULL;
    }

    void GetXIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
    {
        int i = p1.X() - _bbox.min.X();
        int z = p1.Z() - _bbox.min.Z();
        VertexIndex index = i+z*_bbox.DimX();
        VertexIndex pos=-1;
        if (p1.Y()==_current_slice)
        {
            if ((pos=_x_cs[index])==-1)
            {
                _x_cs[index] = (VertexIndex) _mesh->vert.size();
                pos = _x_cs[index];
                Allocator<MeshType>::AddVertices( *_mesh, 1 );
                v = &_mesh->vert[pos];
                _volume->GetXIntercept(p1, p2, v, _thr);
                return;
            }
        }
        if (p1.Y()==_current_slice+1)
        {
            if ((pos=_x_ns[index])==-1)
            {
                _x_ns[index] = (VertexIndex) _mesh->vert.size();
                pos = _x_ns[index];
                Allocator<MeshType>::AddVertices( *_mesh, 1 );
                v = &_mesh->vert[pos];
                _volume->GetXIntercept(p1, p2, v,_thr);
                return;
            }
        }
    assert(pos >=0 && size_t(pos)< _mesh->vert.size());
        v = &_mesh->vert[pos];
    }
    void GetYIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
    {
        int i = p1.X() - _bbox.min.X();
        int z = p1.Z() - _bbox.min.Z();
        VertexIndex index = i+z*_bbox.DimX();
        VertexIndex pos;
        if ((pos=_y_cs[index])==-1)
        {
            _y_cs[index] = (VertexIndex) _mesh->vert.size();
            pos = _y_cs[index];
            Allocator<MeshType>::AddVertices( *_mesh, 1);
            v = &_mesh->vert[ pos ];
            _volume->GetYIntercept(p1, p2, v,_thr);
        }
        v = &_mesh->vert[pos];
    }
    void GetZIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
    {
        int i = p1.X() - _bbox.min.X();
        int z = p1.Z() - _bbox.min.Z();
        VertexIndex index = i+z*_bbox.DimX();
        VertexIndex pos;
        if (p1.Y()==_current_slice)
        {
            if ((pos=_z_cs[index])==-1)
            {
                _z_cs[index] = (VertexIndex) _mesh->vert.size();
                pos = _z_cs[index];
                Allocator<MeshType>::AddVertices( *_mesh, 1 );
                v = &_mesh->vert[pos];
                _volume->GetZIntercept(p1, p2, v,_thr);
                return;
            }
        }
        if (p1.Y()==_current_slice+1)
        {
            if ((pos=_z_ns[index])==-1)
            {
                _z_ns[index] = (VertexIndex) _mesh->vert.size();
                pos = _z_ns[index];
                Allocator<MeshType>::AddVertices( *_mesh, 1 );
                v = &_mesh->vert[pos];
                _volume->GetZIntercept(p1, p2, v,_thr);
                return;
            }
        }
        v = &_mesh->vert[pos];
    }

protected:
    Box3i		_bbox;

    int _slice_dimension;
    int	_current_slice;

    VertexIndex *_x_cs; // indici dell'intersezioni della superficie lungo gli Xedge della fetta corrente
    VertexIndex	*_y_cs; // indici dell'intersezioni della superficie lungo gli Yedge della fetta corrente
    VertexIndex *_z_cs; // indici dell'intersezioni della superficie lungo gli Zedge della fetta corrente
    VertexIndex *_x_ns; // indici dell'intersezioni della superficie lungo gli Xedge della prossima fetta
    VertexIndex *_z_ns; // indici dell'intersezioni della superficie lungo gli Zedge della prossima fetta

    MeshType		*_mesh;
    VolumeType	*_volume;

  float _thr;
    void NextYSlice()
    {
        memset(_x_cs, -1, _slice_dimension*sizeof(VertexIndex));
        memset(_y_cs,	-1, _slice_dimension*sizeof(VertexIndex));
        memset(_z_cs, -1, _slice_dimension*sizeof(VertexIndex));

        std::swap(_x_cs, _x_ns);
        std::swap(_z_cs, _z_ns);

        _current_slice += 1;
    }

    void Begin()
    {
        _current_slice = _bbox.min.Y();

        memset(_x_cs, -1, _slice_dimension*sizeof(VertexIndex));
        memset(_y_cs, -1, _slice_dimension*sizeof(VertexIndex));
        memset(_z_cs, -1, _slice_dimension*sizeof(VertexIndex));
        memset(_x_ns, -1, _slice_dimension*sizeof(VertexIndex));
        memset(_z_ns, -1, _slice_dimension*sizeof(VertexIndex));

    }
};
} // end namespace tri
} // end namespace vcg
#endif // __VCGTEST_WALKER