1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __PLYMC_H__
#define __PLYMC_H__
#ifndef WIN32
#define _int64 long long
#define __int64 long long
#define __cdecl
#endif
#include <cstdio>
#include <time.h>
#include <float.h>
#include <math.h>
#include <vcg/complex/complex.h>
#include <vcg/math/histogram.h>
#include <vcg/complex/algorithms/geodesic.h>
#include <wrap/io_trimesh/import.h>
#include <wrap/io_trimesh/export_ply.h>
//#include <wrap/ply/plystuff.h>
#include <vcg/complex/algorithms/create/marching_cubes.h>
#include <vcg/complex/algorithms/create/mc_trivial_walker.h>
// local optimization
#include <vcg/complex/algorithms/local_optimization.h>
#include <vcg/complex/algorithms/local_optimization/tri_edge_collapse.h>
#include <vcg/complex/algorithms/local_optimization/tri_edge_collapse_quadric.h>
#include <stdarg.h>
#include "volume.h"
#include "tri_edge_collapse_mc.h"
namespace vcg {
namespace tri {
// Simple prototype for later use...
template<class MeshType>
int MCSimplify( MeshType &m, float perc, bool preserveBB=true, vcg::CallBackPos *cb=0);
/** Surface Reconstruction
*
* To allow the managment of a very large set of meshes to be merged,
* it is templated on a MeshProvider class that is able to provide the meshes to be merged.
* IT is the surface reconstrction algorithm that have been used for a long time inside the ISTI-Visual Computer Lab.
* It is mostly a variant of the Curless et al. e.g. a volumetric approach with some original weighting schemes,"
* a different expansion rule, and another approach to hole filling through volume dilation/relaxations.
*/
template < class SMesh, class MeshProvider>
class PlyMC
{
public:
typedef typename SMesh::FaceIterator SFaceIterator;
typedef typename SMesh::VertexIterator SVertexIterator;
class MCVertex;
class MCEdge;
class MCFace;
class MCUsedTypes: public vcg::UsedTypes < vcg::Use<MCVertex>::template AsVertexType,
vcg::Use<MCEdge >::template AsEdgeType,
vcg::Use<MCFace >::template AsFaceType >{};
class MCVertex : public Vertex< MCUsedTypes, vertex::Coord3f, vertex::Color4b, vertex::Mark, vertex::VFAdj, vertex::BitFlags, vertex::Qualityf>{};
class MCEdge : public Edge<MCUsedTypes,edge::VertexRef>{};
class MCFace : public Face< MCUsedTypes, face::InfoOcf, face::VertexRef, face::FFAdjOcf, face::VFAdjOcf, face::BitFlags> {};
class MCMesh : public vcg::tri::TriMesh< std::vector< MCVertex>, face::vector_ocf< MCFace > > {};
//******************************************
//typedef Voxel<float> Voxelf;
typedef Voxelfc Voxelf;
//******************************************
class Parameter
{
public:
Parameter()
{
NCell=10000;
WideNum= 3;
WideSize=0;
VoxSize=0;
IPosS=Point3i(0,0,0); // SubVolume Start
IPosE=Point3i(0,0,0); // SubVolume End
IPosB=Point3i(0,0,0); // SubVolume to restart from in lexicographic order (useful for crashes)
IPos=Point3i(0,0,0);
IDiv=Point3i(1,1,1);
VerboseLevel=0;
SliceNum=1;
FillThr=12;
ExpAngleDeg=30;
SmoothNum=1;
RefillNum=1;
IntraSmoothFlag = false;
QualitySmoothAbs = 0.0f; // 0 means un-setted value.
QualitySmoothVox = 3.0f; // expressed in voxel
OffsetFlag=false;
OffsetThr=-3;
GeodesicQualityFlag=true;
PLYFileQualityFlag=false;
FullyPreprocessedFlag=false;
SaveVolumeFlag=false;
SafeBorder=1;
CleaningFlag=false;
SimplificationFlag=false;
VertSplatFlag=false;
MergeColor=false;
basename = "plymcout";
}
int NCell;
int WideNum;
float WideSize;
float VoxSize;
Point3i IPosS; // SubVolume Start
Point3i IPosE; // SubVolume End
Point3i IPosB; // SubVolume to restart from in lexicographic order (useful for crashes)
Point3i IPos;
Point3i IDiv;
int VerboseLevel;
int SliceNum;
int FillThr;
float ExpAngleDeg;
int SmoothNum;
int RefillNum;
bool IntraSmoothFlag;
float QualitySmoothAbs; // 0 means un-setted value.
float QualitySmoothVox; // expressed in voxel
bool OffsetFlag;
float OffsetThr;
bool GeodesicQualityFlag;
bool PLYFileQualityFlag;
bool FullyPreprocessedFlag;
bool CleaningFlag;
bool SaveVolumeFlag;
int SafeBorder;
bool SimplificationFlag;
bool VertSplatFlag;
bool MergeColor;
std::string basename;
std::vector<std::string> OutNameVec;
std::vector<std::string> OutNameSimpVec;
}; //end Parameter class
/// PLYMC Data
MeshProvider MP;
Parameter p;
Volume<Voxelf> VV;
char errorMessage[1024];
/// PLYMC Methods
bool InitMesh(SMesh &m, const char *filename, Matrix44f Tr)
{
int loadmask;
int ret = tri::io::Importer<SMesh>::Open(m,filename,loadmask);
if(ret)
{
printf("Error: unabe to open mesh '%s'",filename);
return false;
}
if(p.VertSplatFlag)
{
if(!(loadmask & tri::io::Mask::IOM_VERTNORMAL))
{
if(m.FN()==0)
{
sprintf(errorMessage,"%sError: mesh has not per vertex normals\n",errorMessage);
return false;
}
else
{
tri::Clean<SMesh>::RemoveUnreferencedVertex(m);
tri::Allocator<SMesh>::CompactEveryVector(m);
tri::UpdateNormal<SMesh>::PerVertexNormalizedPerFaceNormalized(m);
}
}
tri::UpdateNormal<SMesh>::NormalizePerVertex(m);
int badNormalCnt=0;
for(SVertexIterator vi=m.vert.begin(); vi!=m.vert.end();++vi)
if(math::Abs(SquaredNorm((*vi).N())-1.0)>0.0001)
{
badNormalCnt++;
tri::Allocator<SMesh>::DeleteVertex(m,*vi);
}
tri::Allocator<SMesh>::CompactEveryVector(m);
if(badNormalCnt > m.VN()/10)
{
sprintf(errorMessage,"%sError: mesh has null normals\n",errorMessage);
return false;
}
if(!(loadmask & tri::io::Mask::IOM_VERTQUALITY))
tri::UpdateQuality<SMesh>::VertexConstant(m,0);
tri::UpdateNormal<SMesh>::PerVertexMatrix(m,Tr);
}
else // processing for triangle meshes
{
if(!p.FullyPreprocessedFlag)
{
if(p.CleaningFlag){
int dup = tri::Clean<SMesh>::RemoveDuplicateVertex(m);
int unref = tri::Clean<SMesh>::RemoveUnreferencedVertex(m);
printf("Removed %i duplicates and %i unref",dup,unref);
}
tri::UpdateNormal<SMesh>::PerVertexNormalizedPerFaceNormalized(m);
if(p.GeodesicQualityFlag) {
tri::UpdateTopology<SMesh>::VertexFace(m);
tri::UpdateFlags<SMesh>::FaceBorderFromVF(m);
tri::Geodesic<SMesh>::DistanceFromBorder(m);
}
}
tri::UpdatePosition<SMesh>::Matrix(m,Tr,true);
tri::UpdateBounding<SMesh>::Box(m);
printf("Init Mesh %s (%ivn,%ifn)\n",filename,m.vn,m.fn);
}
for(SVertexIterator vi=m.vert.begin(); vi!=m.vert.end();++vi)
VV.Interize((*vi).P());
return true;
}
// This function add a mesh (or a point cloud to the volume)
// the point cloud MUST have normalized vertex normals.
bool AddMeshToVolumeM(SMesh &m, std::string meshname, const double w )
{
tri::RequireCompactness(m);
if(!m.bbox.Collide(VV.SubBoxSafe)) return false;
size_t found =meshname.find_last_of("/\\");
std::string shortname = meshname.substr(found+1);
Volume <Voxelf> B;
B.Init(VV);
bool res=false;
double quality=0;
// Now add the mesh to the volume
if(!p.VertSplatFlag)
{
float minq=std::numeric_limits<float>::max(), maxq=-std::numeric_limits<float>::max();
// Calcolo range qualita geodesica PER FACCIA come media di quelle per vertice
for(SFaceIterator fi=m.face.begin(); fi!=m.face.end();++fi){
(*fi).Q()=((*fi).V(0)->Q()+(*fi).V(1)->Q()+(*fi).V(2)->Q())/3.0f;
minq=std::min((*fi).Q(),minq);
maxq=std::max((*fi).Q(),maxq);
}
// La qualita' e' inizialmente espressa come distanza assoluta dal bordo della mesh
printf("Q [%4.2f %4.2f] \n",minq,maxq);
bool closed=false;
if(minq==maxq) closed=true; // se la mesh e' chiusa la ComputeGeodesicQuality mette la qualita a zero ovunque
// Classical approach: scan each face
int tt0=clock();
printf("---- Face Rasterization");
for(SFaceIterator fi=m.face.begin(); fi!=m.face.end();++fi)
{
if(closed || (p.PLYFileQualityFlag==false && p.GeodesicQualityFlag==false)) quality=1.0;
else quality=w*(*fi).Q();
if(quality)
res |= B.ScanFace((*fi).V(0)->P(),(*fi).V(1)->P(),(*fi).V(2)->P(),quality,(*fi).N());
}
printf(" : %li\n",clock()-tt0);
} else
{ // Splat approach add only the vertices to the volume
printf("Vertex Splatting\n");
for(SVertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
{
if(p.PLYFileQualityFlag==false) quality=1.0;
else quality=w*(*vi).Q();
if(quality)
res |= B.SplatVert((*vi).P(),quality,(*vi).N(),(*vi).C());
}
}
if(!res) return false;
int vstp=0;
if(p.VerboseLevel>0) {
B.SlicedPPM(shortname.c_str(),std::string(SFormat("%02i",vstp)).c_str(),p.SliceNum );
B.SlicedPPMQ(shortname.c_str(),std::string(SFormat("%02i",vstp)).c_str(),p.SliceNum );
vstp++;
}
for(int i=0;i<p.WideNum;++i) {
B.Expand(math::ToRad(p.ExpAngleDeg));
if(p.VerboseLevel>1) B.SlicedPPM(shortname.c_str(),SFormat("%02ie",vstp++),p.SliceNum );
B.Refill(p.FillThr);
if(p.VerboseLevel>1) B.SlicedPPM(shortname.c_str(),SFormat("%02if",vstp++),p.SliceNum );
if(p.IntraSmoothFlag)
{
Volume <Voxelf> SM;
SM.Init(VV);
SM.CopySmooth(B,1,p.QualitySmoothAbs);
B=SM;
if(p.VerboseLevel>1) B.SlicedPPM(shortname.c_str(),SFormat("%02is",vstp++),p.SliceNum );
// if(VerboseLevel>1) B.SlicedPPMQ(shortname,SFormat("%02is",vstp),SliceNum );
}
}
if(p.SmoothNum>0)
{
Volume <Voxelf> SM;
SM.Init(VV);
SM.CopySmooth(B,1,p.QualitySmoothAbs);
B=SM;
if(p.VerboseLevel>1) B.SlicedPPM(shortname.c_str(),SFormat("%02isf",vstp++),p.SliceNum );
}
VV.Merge(B);
if(p.VerboseLevel>0) VV.SlicedPPMQ(std::string("merge_").c_str(),shortname.c_str(),p.SliceNum );
return true;
}
bool Process(vcg::CallBackPos *cb=0)
{
sprintf(errorMessage,"");
printf("bbox scanning...\n"); fflush(stdout);
Matrix44f Id; Id.SetIdentity();
MP.InitBBox();
printf("Completed BBox Scanning \n");
Box3f fullb = MP.fullBB();
assert (!fullb.IsNull());
assert (!fullb.IsEmpty());
// Calcolo gridsize
Point3f voxdim;
fullb.Offset(fullb.Diag() * 0.1 );
int saveMask=0;
saveMask|=tri::io::Mask::IOM_VERTQUALITY;
if(p.MergeColor) saveMask |= tri::io::Mask::IOM_VERTCOLOR ;
voxdim = fullb.max - fullb.min;
// if kcell==0 the number of cells is computed starting from required voxel size;
__int64 cells;
if(p.NCell>0) cells = (__int64)(p.NCell)*(__int64)(1000);
else cells = (__int64)(voxdim[0]/p.VoxSize) * (__int64)(voxdim[1]/p.VoxSize) *(__int64)(voxdim[2]/p.VoxSize) ;
{
Volume<Voxelf> B; // local to this small block
Box3f fullbf; fullbf.Import(fullb);
B.Init(cells,fullbf,p.IDiv,p.IPosS);
B.Dump(stdout);
if(p.WideSize>0) p.WideNum=p.WideSize/B.voxel.Norm();
// Now the volume has been determined; the quality threshold in absolute units can be computed
if(p.QualitySmoothAbs==0)
p.QualitySmoothAbs= p.QualitySmoothVox * B.voxel.Norm();
}
int TotAdd=0,TotMC=0,TotSav=0; // partial timings counter
for(p.IPos[0]=p.IPosS[0];p.IPos[0]<=p.IPosE[0];++p.IPos[0])
for(p.IPos[1]=p.IPosS[1];p.IPos[1]<=p.IPosE[1];++p.IPos[1])
for(p.IPos[2]=p.IPosS[2];p.IPos[2]<=p.IPosE[2];++p.IPos[2])
if((p.IPos[2]+(p.IPos[1]*p.IDiv[2])+(p.IPos[0]*p.IDiv[2]*p.IDiv[1])) >=
(p.IPosB[2]+(p.IPosB[1]*p.IDiv[2])+(p.IPosB[0]*p.IDiv[2]*p.IDiv[1]))) // skip until IPos >= IPosB
{
printf("----------- SubBlock %2i %2i %2i ----------\n",p.IPos[0],p.IPos[1],p.IPos[2]);
//Volume<Voxelf> B;
int t0=clock();
Box3f fullbf; fullbf.Import(fullb);
VV.Init(cells,fullbf,p.IDiv,p.IPos);
printf("\n\n --------------- Allocated subcells. %i\n",VV.Allocated());
std::string filename=p.basename;
if(p.IDiv!=Point3i(1,1,1))
{
std::string subvoltag;
VV.GetSubVolumeTag(subvoltag);
filename+=subvoltag;
}
/********** Grande loop di scansione di tutte le mesh *********/
bool res=false;
if(!cb) printf("Step 1: Converting meshes into volume\n");
for(int i=0;i<MP.size();++i)
{
Box3f bbb= MP.bb(i);
/**********************/
if(cb) cb((i+1)/MP.size(),"Step 1: Converting meshes into volume");
/**********************/
// if bbox of mesh #i is part of the subblock, then process it
if(bbb.Collide(VV.SubBoxSafe))
{
SMesh *sm;
if(!MP.Find(i,sm) )
{
res = InitMesh(*sm,MP.MeshName(i).c_str(),MP.Tr(i));
if(!res)
{
sprintf(errorMessage,"%sFailed Init of mesh %s\n",errorMessage,MP.MeshName(i).c_str());
return false ;
}
}
res |= AddMeshToVolumeM(*sm, MP.MeshName(i),MP.W(i));
}
}
//B.Normalize(1);
printf("End Scanning\n");
if(p.OffsetFlag)
{
VV.Offset(p.OffsetThr);
if (p.VerboseLevel>0)
{
VV.SlicedPPM("finaloff","__",p.SliceNum);
VV.SlicedPPMQ("finaloff","__",p.SliceNum);
}
}
//if(p.VerboseLevel>1) VV.SlicedPPM(filename.c_str(),SFormat("_%02im",i),p.SliceNum );
for(int i=0;i<p.RefillNum;++i)
{
VV.Refill(3,6);
if(p.VerboseLevel>1) VV.SlicedPPM(filename.c_str(),SFormat("_%02imsr",i),p.SliceNum );
//if(VerboseLevel>1) VV.SlicedPPMQ(filename,SFormat("_%02ips",i++),SliceNum );
}
for(int i=0;i<p.SmoothNum;++i)
{
Volume <Voxelf> SM;
SM.Init(VV);
printf("%2i/%2i: ",i,p.SmoothNum);
SM.CopySmooth(VV,1,p.QualitySmoothAbs);
VV=SM;
VV.Refill(3,6);
if(p.VerboseLevel>1) VV.SlicedPPM(filename.c_str(),SFormat("_%02ims",i),p.SliceNum );
}
int t1=clock(); //--------
TotAdd+=t1-t0;
printf("Extracting surface...\r");
if (p.VerboseLevel>0)
{
VV.SlicedPPM("final","__",p.SliceNum);
VV.SlicedPPMQ("final","__",p.SliceNum);
}
MCMesh me;
if(res)
{
typedef vcg::tri::TrivialWalker<MCMesh, Volume <Voxelf> > Walker;
typedef vcg::tri::MarchingCubes<MCMesh, Walker> MarchingCubes;
Walker walker;
MarchingCubes mc(me, walker);
/**********************/
if(cb) cb(50,"Step 2: Marching Cube...");
else printf("Step 2: Marching Cube...\n");
/**********************/
walker.SetExtractionBox(VV.SubPartSafe);
walker.BuildMesh(me,VV,mc,0);
typename MCMesh::VertexIterator vi;
Box3f bbb; bbb.Import(VV.SubPart);
for(vi=me.vert.begin();vi!=me.vert.end();++vi)
{
if(!bbb.IsIn((*vi).P()))
vcg::tri::Allocator< MCMesh >::DeleteVertex(me,*vi);
VV.DeInterize((*vi).P());
}
for (typename MCMesh::FaceIterator fi = me.face.begin(); fi != me.face.end(); ++fi)
{
if((*fi).V(0)->IsD() || (*fi).V(1)->IsD() || (*fi).V(2)->IsD() )
vcg::tri::Allocator< MCMesh >::DeleteFace(me,*fi);
else std::swap((*fi).V1(0), (*fi).V2(0));
}
int t2=clock(); //--------
TotMC+=t2-t1;
if(me.vn >0 || me.fn >0)
{
p.OutNameVec.push_back(filename+std::string(".ply"));
tri::io::ExporterPLY<MCMesh>::Save(me,p.OutNameVec.back().c_str(),saveMask);
if(p.SimplificationFlag)
{
/**********************/
if(cb) cb(50,"Step 3: Simplify mesh...");
else printf("Step 3: Simplify mesh...\n");
/**********************/
p.OutNameSimpVec.push_back(filename+std::string(".d.ply"));
me.face.EnableVFAdjacency();
MCSimplify<MCMesh>(me, VV.voxel[0]/4.0);
tri::Allocator<MCMesh>::CompactFaceVector(me);
me.face.EnableFFAdjacency();
tri::Clean<MCMesh>::RemoveTVertexByFlip(me,20,true);
tri::Clean<MCMesh>::RemoveFaceFoldByFlip(me);
tri::io::ExporterPLY<MCMesh>::Save(me,p.OutNameSimpVec.back().c_str(),saveMask);
}
}
int t3=clock(); //--------
TotSav+=t3-t2;
}
printf("Mesh Saved '%s': %8d vertices, %8d faces \n",(filename+std::string(".ply")).c_str(),me.vn,me.fn);
printf("Adding Meshes %8i\n",TotAdd);
printf("MC %8i\n",TotMC);
printf("Saving %8i\n",TotSav);
printf("Total %8i\n",TotAdd+TotMC+TotSav);
}
else
{
printf("----------- skipping SubBlock %2i %2i %2i ----------\n",p.IPos[0],p.IPos[1],p.IPos[2]);
}
return true;
}
}; //end PlyMC class
template < class MeshType, class VertexPair>
class PlyMCTriEdgeCollapse: public MCTriEdgeCollapse< MeshType, VertexPair, PlyMCTriEdgeCollapse<MeshType,VertexPair> > {
public:
typedef MCTriEdgeCollapse< MeshType, VertexPair, PlyMCTriEdgeCollapse > MCTEC;
inline PlyMCTriEdgeCollapse( const VertexPair &p, int i, BaseParameterClass *pp) :MCTEC(p,i,pp){}
};
template< class MeshType>
int MCSimplify( MeshType &m, float absoluteError, bool preserveBB, vcg::CallBackPos *cb)
{
typedef PlyMCTriEdgeCollapse<MeshType,BasicVertexPair<typename MeshType::VertexType> > MyColl;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::CoordType CoordType;
tri::UpdateBounding<MeshType>::Box(m);
tri::UpdateTopology<MeshType>::VertexFace(m);
TriEdgeCollapseMCParameter pp;
pp.bb.Import(m.bbox);
pp.preserveBBox=preserveBB;
vcg::LocalOptimization<MeshType> DeciSession(m,&pp);
if(absoluteError==0)
{
// guess the mc side.
// In a MC mesh the vertices are on the egdes of the cells. and the edges are (mostly) on face of the cells.
// If you have 2 vert over the same face xy they share z
std::vector<float> ZSet;
for(FaceIterator fi = m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
CoordType v0=(*fi).V(0)->P();
CoordType v1=(*fi).V(1)->P();
CoordType v2=(*fi).V(2)->P();
if(v0[2]==v1[2] && v0[1]!=v1[1] && v0[0]!=v1[0]) ZSet.push_back(v0[2]);
if(v0[2]==v2[2] && v0[1]!=v2[1] && v0[0]!=v2[0]) ZSet.push_back(v0[2]);
if(v1[2]==v2[2] && v1[1]!=v2[1] && v1[0]!=v2[0]) ZSet.push_back(v1[2]);
if(ZSet.size()>100) break;
}
if (ZSet.size() == 0) return -1; //no straight edges found. exit with error
std::sort(ZSet.begin(),ZSet.end());
std::vector<float>::iterator lastV = std::unique(ZSet.begin(),ZSet.end());
ZSet.resize(lastV-ZSet.begin());
float Delta=0;
for(size_t i = 0; i< ZSet.size()-1;++i)
{
Delta = std::max(ZSet[i+1]-ZSet[i],Delta);
//qDebug("%f",Delta);
}
absoluteError= Delta/4.0f;
}
//qDebug("Simplifying at absoluteError=%f",absoluteError);
float TargetError = absoluteError;
char buf[1024];
DeciSession.template Init< MyColl > ();
pp.areaThr=TargetError*TargetError;
DeciSession.SetTimeBudget(1.0f);
if(TargetError < std::numeric_limits<float>::max() ) DeciSession.SetTargetMetric(TargetError);
while(DeciSession.DoOptimization() && DeciSession.currMetric < TargetError)
{
sprintf(buf,"Simplyfing %7i err %9g \r",m.fn,DeciSession.currMetric);
if (cb) cb(int(100.0f*DeciSession.currMetric/TargetError),buf);
}
return 1; //success
}
} // end namespace tri
} // end namespace vcg
#endif
|