File: zonohedron.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,132 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 30
file content (309 lines) | stat: -rw-r--r-- 10,358 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/

#ifndef __VCGLIB_ZONOHEDRON
#define __VCGLIB_ZONOHEDRON

namespace vcg {
namespace tri {
/** \addtogroup trimesh */
//@{
    /**
                A class to build a Zonohedron.

                Given a set of input vectors, a zonohedron is defined
                as the convex hull of all the points which can be costructed by summing
                together any subset of input vectors.
                The surface closing this solid is composed only of flat parallelograms,
                (which have the input vectors as sides).
                It is always point-symmetric.

                Mesh created by this class are pure-quad meshes (triangular bit-quad),
                (when coplanar vectors are fed, then planar groups of quads can be seen as
                forming planar faces with more than 4 vertices).

                USAGE:
                    1) Instantiate a Zonohedron.
                    2) Add input vectors at will to it, with addVector(s)
                    3) When you are done, call createMesh.

    */


template <class Scalar>
class Zonohedron{
public:

    typedef Point3<Scalar> Vec3;

    Zonohedron(){}

    void addVector(Scalar x, Scalar y, Scalar z);
    void addVector(Vec3 v);
    void addVectors(const std::vector< Vec3 > );

    const std::vector< Vec3 >& vectors() const {
        return vec;
    }

    template<class MeshType>
    void createMesh( MeshType& output );

private:

    /* classes for internal use */
    /****************************/

    typedef int VecIndex; //  a number in [0..n)

    /* the signature of a vertex (a 0 or 1 per input vector) */
    struct Signature {
        std::vector< bool > v;
        Signature(){}
        Signature(int n){ v.resize(n,false); }

        bool operator == (const Signature & b) const {
            return (b.v == v);
        }
        bool operator < (const Signature & b) const {
            return (b.v < v);
        }
        Signature& set(VecIndex i, bool value){
            v[i] = value;
            return *this;
        }
        Signature& set(VecIndex i, bool valueI, VecIndex j, bool valueJ){
            v[i] = valueI;
            v[j] = valueJ;
            return *this;
        }
    };

    struct Face {
        int vert[4]; // index to vertex array
    };

    /* precomputed cross products for all pairs of vectors */
    std::vector< Vec3 > precomputedCross;

    void precompteAllCrosses(){
        precomputedCross.resize(n*n);
        for (int i=0; i<n; i++) for (int j=0; j<n; j++) {
            precomputedCross[i*n+j] =  vec[i] ^ vec[j] ;
        }
    }

    Vec3 cross(VecIndex i, VecIndex j){
        return precomputedCross[i*n+j];
    }

    // given a vector, returns a copy pointing a unique verse
    static Vec3 uniqueVerse(Vec3 v){
        if (v.X()>0) return v;
        else if (v.X()<0) return -v;
        else if (v.Y()>0) return v;
        else if (v.Y()<0) return -v;
        else if (v.Z()>0) return v;
        return -v;
    }

    static Vec3 altVec(int i) {
        return Vec3(1, i, i*i);
    }

    static Scalar tripleProduct( const Vec3 &a, const Vec3 &b, const Vec3 & c){
        return ( a ^ b ) * c;
    }

    // returns signof:  (i x j) * k
    bool signOf_IxJoK(VecIndex i, VecIndex j, VecIndex k){
        const float EPSILON_SQUARED = 1e-12;
        bool invert = false;
        // sort i,j,k
        if (i<j) { std::swap(i,j); invert = !invert; }
        if (j<k) { std::swap(j,k); invert = !invert;
            if (i<j) { std::swap(i,j); invert = !invert; }
        }

        //Scalar res = Vec3::dot( Vec3::cross( vec[i] , vec[j] ) , vec[k] );
        Scalar res =  cross( i , j ) * vec[k] ;

        if (res*res<=EPSILON_SQUARED) {
            // three coplanar vectors!
            // use derivative...
            //res =  uniqueVerse( cross(i,j) ) * cross(j,k) ;
            res =  tripleProduct( altVec(i), vec[j], vec[k]) +
                   tripleProduct( vec[i], altVec(j), vec[k]) +
                   tripleProduct( vec[i], vec[j], altVec(k)) ;
            if (res*res<=EPSILON_SQUARED) {
                // zero derivative (happens, if three colinear vectors, or...)
                res =  tripleProduct( vec[i], altVec(j), altVec(k)) +
                       tripleProduct( altVec(i), vec[j], altVec(k)) +
                       tripleProduct( altVec(i), altVec(j), vec[k]) ;
            }
            if (res*res<=EPSILON_SQUARED) {
                // zero second derivative (happens if three zero-vectors, i.e. never? or...)
                res = tripleProduct( altVec(i), altVec(j), altVec(k) );
            }
        }

        return ( (res>=0) != invert ); // XOR
    }

    int n; // number of input vectors
    std::vector<Vec3> vec; // input vectors

    int vertCount;
    std::vector<Face> _face;

    typedef std::map< Signature, int > VertexMap;
    VertexMap vertexMap;

    // given a vertex signature, returns index of vert (newly created or not)
    VecIndex vertexIndex(const Signature &s){
        typename VertexMap::iterator i;
        //Vec3 pos = s; //toPos(s);
        i = vertexMap.find( s );
        if (i!= vertexMap.end() ) return i->second;
        else {
            int newVertex = vertCount++;
            //vertexMap.insert(s)
            vertexMap[s] = newVertex;
            return newVertex;
        }
    }

    // given two index of vectors, returns face
    Face& face(VecIndex i, VecIndex j){
        assert(i!=j);
        assert( i*n + j < (int) _face.size() );
        return _face[i*n + j];
    }

    Vec3 toPos(const Signature &s) const{
        Vec3 res(0,0,0);
        for (int i=0; i<n; i++)
            if (s.v[i]) res += vec[i];
        return res;
    }

    void createInternalMesh() {

        n = vec.size();
        precompteAllCrosses();

        // allocate faces
        _face.resize( n*n );

        vertCount = 0;
        vertexMap.clear();

        for (int i=0; i<n; i++) {
            //::showProgress(i,n);
            for (int j=0; j<n; j++) if(i!=j)  {
                Signature s(n);
                for (int k=0; k<n; k++) if ((k!=j) && (k!=i))
                {
                    s.set( k , signOf_IxJoK( i,j,k ) );
                }
                face(i,j).vert[0] = vertexIndex( s.set(i,false, j,false) );
                face(i,j).vert[1] = vertexIndex( s.set(i,false, j,true ) );
                face(i,j).vert[2] = vertexIndex( s.set(i,true,  j,true ) );
                face(i,j).vert[3] = vertexIndex( s.set(i,true,  j,false) );
            }
        }
    }


};


template<class Scalar>
void Zonohedron<Scalar>::addVectors(std::vector< Zonohedron<Scalar>::Vec3 > input){
    for (size_t i=0; i<input.size(); i++) {
        addVector( input[i]);
    }
}

template<class Scalar>
void Zonohedron<Scalar>::addVector(Scalar x, Scalar y, Scalar z) {
    addVector( Vec3(x,y,z) );
}


template<class Scalar>
void Zonohedron<Scalar>::addVector(Zonohedron<Scalar>::Vec3 v){
    vec.push_back(v);
}


template<class Scalar>
template<class MeshType>
void Zonohedron<Scalar>::createMesh(MeshType &m){
    typedef MeshType Mesh;
    typedef typename Mesh::VertexIterator MeshVertexIterator;
    typedef typename Mesh::FaceIterator   MeshFaceIterator;
    
    createInternalMesh();

    m.Clear();
    Allocator<MeshType>::AddVertices(m,vertexMap.size());
  Allocator<MeshType>::AddFaces(m,n*(n-1) * 2);

    // assign vertex positions
    MeshVertexIterator vi=m.vert.begin();
    for (typename VertexMap::iterator i=vertexMap.begin(); i!=vertexMap.end(); i++){
        (vi + i->second )->P() = toPos( i->first );
    }

    // assegn FV connectivity
  MeshFaceIterator fi=m.face.begin();

    for (int i=0; i<n; i++) {
        for (int j=0; j<n; j++) if (i!=j) {
            const Face &f( face(i,j) );
            for (int k=0; k<2; k++) { // two tri faces per quad
                for (int w=0; w<3; w++) {
                    fi->V(w) = &* (vi + f.vert[(w+k*2)%4] );
                }
                if (tri::HasPerFaceNormal(m)) {
                    fi->N() = cross(i,j).normalized();
                }
                if (tri::HasPerFaceFlags(m)) {
                    fi->SetF(2); // quad diagonals are faux
                }
                fi++;
            }
        }
    }


}


//@}

} // End Namespace TriMesh
} // End Namespace vcg

#endif // __VCGLIB_ZONOHEDRON