1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCGLIB_CURVE_ON_SURF_H
#define __VCGLIB_CURVE_ON_SURF_H
#include<vcg/complex/complex.h>
#include<vcg/simplex/face/topology.h>
#include<vcg/complex/algorithms/update/topology.h>
#include<vcg/complex/algorithms/update/color.h>
#include<vcg/complex/algorithms/update/normal.h>
#include<vcg/complex/algorithms/update/quality.h>
#include<vcg/complex/algorithms/clean.h>
#include<vcg/complex/algorithms/refine.h>
#include<vcg/complex/algorithms/create/platonic.h>
#include<vcg/complex/algorithms/point_sampling.h>
#include <vcg/space/index/grid_static_ptr.h>
#include <vcg/space/index/kdtree/kdtree.h>
#include <vcg/math/histogram.h>
#include<vcg/space/distance3.h>
#include <vcg/complex/algorithms/attribute_seam.h>
#include <wrap/io_trimesh/export_ply.h>
namespace vcg {
namespace tri {
/// \ingroup trimesh
/// \brief A class for managing curves on a 2manifold.
/**
This class is used to project/simplify/smooth polylines over a triangulated surface.
*/
template <class MeshType>
class CoM
{
public:
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef Box3<ScalarType> Box3Type;
typedef Segment3<ScalarType> Segment3Type;
typedef typename vcg::GridStaticPtr<FaceType, ScalarType> MeshGrid;
typedef typename vcg::GridStaticPtr<EdgeType, ScalarType> EdgeGrid;
typedef typename face::Pos<FaceType> PosType;
typedef typename tri::UpdateTopology<MeshType>::PEdge PEdge;
class Param
{
public:
ScalarType surfDistThr; // Distance between surface and curve; used in simplify and refine
ScalarType polyDistThr; // Distance between the
ScalarType minRefEdgeLen; // Minimal admitted Edge Lenght (used in refine: never make edge shorther than this value)
ScalarType maxSimpEdgeLen; // Maximal admitted Edge Lenght (used in simplify: never make edges longer than this value)
ScalarType maxSmoothDelta; // The maximum movement that is admitted during smoothing.
ScalarType maxSnapThr; // The maximum distance allowed when snapping a vertex of the polyline onto a mesh vertex
ScalarType gridBailout; // The maximum distance bailout used in grid sampling
ScalarType barycentricSnapThr; // The maximum distance bailout used in grid sampling
Param(MeshType &m) { Default(m);}
void Default(MeshType &m)
{
surfDistThr = m.bbox.Diag()/1000.0;
polyDistThr = m.bbox.Diag()/5000.0;
minRefEdgeLen = m.bbox.Diag()/16000.0;
maxSimpEdgeLen = m.bbox.Diag()/100.0;
maxSmoothDelta = m.bbox.Diag()/100.0;
maxSnapThr = m.bbox.Diag()/1000.0;
gridBailout = m.bbox.Diag()/20.0;
barycentricSnapThr = 0.05;
}
void Dump() const
{
printf("surfDistThr = %6.4f\n",surfDistThr );
printf("polyDistThr = %6.4f\n",polyDistThr );
printf("minRefEdgeLen = %6.4f\n",minRefEdgeLen );
printf("maxSimpEdgeLen = %6.4f\n",maxSimpEdgeLen );
printf("maxSmoothDelta = %6.4f\n",maxSmoothDelta);
}
};
// The Data Members
MeshType &base;
MeshGrid uniformGrid;
Param par;
CoM(MeshType &_m) :base(_m),par(_m){}
FaceType *GetClosestFace(const CoordType &p)
{
ScalarType closestDist;
CoordType closestP;
return vcg::tri::GetClosestFaceBase(base,uniformGrid,p, this->par.gridBailout, closestDist, closestP);
}
FaceType *GetClosestFaceIP(const CoordType &p, CoordType &ip)
{
ScalarType closestDist;
CoordType closestP,closestN;
return vcg::tri::GetClosestFaceBase(base,uniformGrid,p, this->par.gridBailout, closestDist, closestP,closestN,ip);
}
FaceType *GetClosestFaceIP(const CoordType &p, CoordType &ip, CoordType &in)
{
ScalarType closestDist;
CoordType closestP;
return vcg::tri::GetClosestFaceBase(base,uniformGrid,p, this->par.gridBailout, closestDist, closestP,in,ip);
}
FaceType *GetClosestFacePoint(const CoordType &p, CoordType &closestP)
{
ScalarType closestDist;
return vcg::tri::GetClosestFaceBase(base,uniformGrid,p, this->par.gridBailout, closestDist, closestP);
}
bool IsSnappedEdge(CoordType &ip, int &ei)
{
for(int i=0;i<3;++i)
if(ip[i]>0.0 && ip[(i+1)%3]>0.0 && ip[(i+2)%3]==0.0 ) {
ei=i;
return true;
}
ei=-1;
return false;
}
// Given a baricentric coordinate finds that we assume that snaps onto an edge, it finds the vertex on which it is snapping
bool IsSnappedVertex(CoordType &ip, int &vi)
{
for(int i=0;i<3;++i)
if(ip[i]==1.0 && ip[(i+1)%3]==0.0 && ip[(i+2)%3]==0.0 ) {
vi=i;
return true;
}
vi=-1;
return false;
}
// Given a baricentric coordinate finds that we assume that snaps onto an edge, it finds the vertex on which it is snapping
VertexPointer FindVertexSnap(FacePointer fp, CoordType &ip)
{
for(int i=0;i<3;++i)
if(ip[i]==1.0 && ip[(i+1)%3]==0.0 && ip[(i+2)%3]==0.0 ) return fp->V(i);
return 0;
}
/**
* @brief TagFaceEdgeSelWithPolyLine selects edges of basemesh when they coincide with the polyline ones *
* @param poly
* @return true if all the edges of the polyline are snapped onto the mesh.
*
* Use this function together with the CutMeshAlongCrease function to actually cut the mesh with a snapped polyline.
*
*/
bool TagFaceEdgeSelWithPolyLine(MeshType &poly,bool markFlag=true)
{
if (markFlag)
tri::UpdateFlags<MeshType>::FaceClearFaceEdgeS(base);
tri::UpdateTopology<MeshType>::VertexFace(base);
tri::UpdateTopology<MeshType>::FaceFace(base);
for(EdgeIterator ei=poly.edge.begin(); ei!=poly.edge.end();++ei)
{
CoordType ip0,ip1;
FaceType *f0 = GetClosestFaceIP(ei->cP(0),ip0);
FaceType *f1 = GetClosestFaceIP(ei->cP(1),ip1);
if(BarycentricSnap(ip0) && BarycentricSnap(ip1))
{
VertexPointer v0 = FindVertexSnap(f0,ip0);
VertexPointer v1 = FindVertexSnap(f1,ip1);
if(v0==0 || v1==0)
return false;
if(v0==v1)
return false;
FacePointer ff0,ff1;
int e0,e1;
bool ret=face::FindSharedFaces<FaceType>(v0,v1,ff0,ff1,e0,e1);
if(ret)
{
assert(ret);
assert(ff0->V(e0)==v0 || ff0->V(e0)==v1);
ff0->SetFaceEdgeS(e0);
ff1->SetFaceEdgeS(e1);
} else {
return false;
}
}
else {
return false;
}
}
return true;
}
ScalarType MinDistOnEdge(CoordType samplePnt, EdgeGrid &edgeGrid, MeshType &poly, CoordType &closestPoint)
{
ScalarType polyDist;
EdgeType *cep = vcg::tri::GetClosestEdgeBase(poly,edgeGrid,samplePnt,par.gridBailout,polyDist,closestPoint);
return polyDist;
}
// Given an edge of a mesh, supposedly intersecting the polyline,
// we search on it the closest point to the polyline
static ScalarType MinDistOnEdge(VertexType *v0,VertexType *v1, EdgeGrid &edgeGrid, MeshType &poly, CoordType &closestPoint)
{
ScalarType minPolyDist = std::numeric_limits<ScalarType>::max();
const ScalarType sampleNum = 50;
const ScalarType maxDist = poly.bbox.Diag()/10.0;
for(ScalarType k = 0;k<sampleNum+1;++k)
{
ScalarType polyDist;
CoordType closestPPoly;
CoordType samplePnt = (v0->P()*k +v1->P()*(sampleNum-k))/sampleNum;
EdgeType *cep = vcg::tri::GetClosestEdgeBase(poly,edgeGrid,samplePnt,maxDist,polyDist,closestPPoly);
if(polyDist < minPolyDist)
{
minPolyDist = polyDist;
closestPoint = samplePnt;
// closestPoint = closestPPoly;
}
}
return minPolyDist;
}
/**
* @brief ExtractVertex
* must extract an unambiguous representation of a vertex
* to be used with attribute_seam.h
*
*/
static inline void ExtractVertex(const MeshType & srcMesh, const FaceType & f, int whichWedge, const MeshType & dstMesh, VertexType & v)
{
(void)srcMesh;
(void)dstMesh;
// This is done to preserve every single perVertex property
// perVextex Texture Coordinate is instead obtained from perWedge one.
v.ImportData(*f.cV(whichWedge));
v.C() = f.cC();
}
static inline bool CompareVertex(const MeshType & m, const VertexType & vA, const VertexType & vB)
{
(void)m;
if(vA.C() == Color4b(Color4b::Red) && vB.C() == Color4b(Color4b::Blue) ) return false;
if(vA.C() == Color4b(Color4b::Blue) && vB.C() == Color4b(Color4b::Red) ) return false;
return true;
}
static CoordType QLerp(VertexType *v0, VertexType *v1)
{
ScalarType qSum = fabs(v0->Q())+fabs(v1->Q());
ScalarType w0 = (qSum - fabs(v0->Q()))/qSum;
ScalarType w1 = (qSum - fabs(v1->Q()))/qSum;
return v0->P()*w0 + v1->P()*w1;
}
/**
* @brief SnapPolyline snaps the vertexes of a polyline onto the base mesh
* @param poly
* @param newVertVec the vector of the indexes of the snapped vertices
*
* Polyline vertices can be snapped either on vertexes or on edges.
* Usually the only points that we should allow to not be snapped are the endpoints and non manifold points.
* Vertexes are colored according to their snapping state
*/
void SnapPolyline(MeshType &poly)
{
tri::Allocator<MeshType>::CompactEveryVector(poly);
tri::UpdateTopology<MeshType>::VertexEdge(poly);
int vertSnapCnt=0;
int edgeSnapCnt=0;
int borderCnt=0,midCnt=0,nonmanifCnt=0;
for(VertexIterator vi=poly.vert.begin(); vi!=poly.vert.end();++vi)
{
CoordType ip;
FaceType *f = GetClosestFaceIP(vi->cP(),ip);
if(BarycentricSnap(ip))
{
if(ip[0]>0 && ip[1]>0) { vi->P() = f->P(0)*ip[0]+f->P(1)*ip[1]; edgeSnapCnt++; assert(ip[2]==0); vi->C()=Color4b::White;}
if(ip[0]>0 && ip[2]>0) { vi->P() = f->P(0)*ip[0]+f->P(2)*ip[2]; edgeSnapCnt++; assert(ip[1]==0); vi->C()=Color4b::White;}
if(ip[1]>0 && ip[2]>0) { vi->P() = f->P(1)*ip[1]+f->P(2)*ip[2]; edgeSnapCnt++; assert(ip[0]==0); vi->C()=Color4b::White;}
if(ip[0]==1.0) { vi->P() = f->P(0); vertSnapCnt++; assert(ip[1]==0 && ip[2]==0); vi->C()=Color4b::Black; }
if(ip[1]==1.0) { vi->P() = f->P(1); vertSnapCnt++; assert(ip[0]==0 && ip[2]==0); vi->C()=Color4b::Black;}
if(ip[2]==1.0) { vi->P() = f->P(2); vertSnapCnt++; assert(ip[0]==0 && ip[1]==0); vi->C()=Color4b::Black;}
}
else
{
int deg = edge::VEDegree<EdgeType>(&*vi);
if (deg > 2) { nonmanifCnt++; vi->C()=Color4b::Magenta; }
if (deg < 2) { borderCnt++; vi->C()=Color4b::Green;}
if (deg== 2) { midCnt++; vi->C()=Color4b::Blue;}
}
}
printf("SnapPolyline %i vertices: snapped %i onto vert and %i onto edges %i nonmanif, %i border, %i mid\n",
poly.vn, vertSnapCnt, edgeSnapCnt, nonmanifCnt,borderCnt,midCnt); fflush(stdout);
int dupCnt=tri::Clean<MeshType>::RemoveDuplicateVertex(poly);
tri::Allocator<MeshType>::CompactEveryVector(poly);
if(dupCnt) printf("SnapPolyline: Removed %i Duplicated vertices\n",dupCnt);
}
void SelectBoundaryVertex(MeshType &poly)
{
tri::UpdateSelection<MeshType>::VertexClear(poly);
tri::UpdateTopology<MeshType>::VertexEdge(poly);
ForEachVertex(poly, [&](VertexType &v){
if(edge::VEDegree<EdgeType>(&v)==1) v.SetS();
});
}
void SelectUniformlyDistributed(MeshType &poly, int k)
{
tri::TrivialPointerSampler<MeshType> tps;
ScalarType samplingRadius = tri::Stat<MeshType>::ComputeEdgeLengthSum(poly)/ScalarType(k);
tri::SurfaceSampling<MeshType, typename tri::TrivialPointerSampler<MeshType> >::EdgeMeshUniform(poly,tps,samplingRadius);
for(int i=0;i<tps.sampleVec.size();++i)
tps.sampleVec[i]->SetS();
}
/*
* Make an edge mesh 1-manifold by splitting all the
* vertexes that have more than two incident edges
*
* It performs the split in three steps.
* - First it collects and counts the vertices to be splitten.
* - Then it adds the vertices to the mesh and
* - lastly it updates the poly with the newly added vertices.
*
* singSplitFlag allows to ubersplit each singularity in a number of vertex of the same order of its degree.
* This is not really necessary but helps the management of sharp turns in the poly mesh.
* \todo add corner detection and split.
*/
void DecomposeNonManifoldPolyline(MeshType &poly, bool singSplitFlag = true)
{
tri::Allocator<MeshType>::CompactEveryVector(poly);
std::vector<int> degreeVec(poly.vn, 0);
tri::UpdateTopology<MeshType>::VertexEdge(poly);
int neededVert=0;
int delta;
if(singSplitFlag) delta = 1;
else delta = 2;
for(VertexIterator vi=poly.vert.begin(); vi!=poly.vert.end();++vi)
{
std::vector<EdgeType *> starVec;
edge::VEStarVE(&*vi,starVec);
degreeVec[tri::Index(poly, *vi)] = starVec.size();
if(starVec.size()>2)
neededVert += starVec.size()-delta;
}
printf("DecomposeNonManifold Adding %i vert to a polyline of %i vert\n",neededVert,poly.vn);
VertexIterator firstVi = tri::Allocator<MeshType>::AddVertices(poly,neededVert);
for(size_t i=0;i<degreeVec.size();++i)
{
if(degreeVec[i]>2)
{
std::vector<EdgeType *> edgeStarVec;
edge::VEStarVE(&(poly.vert[i]),edgeStarVec);
assert(edgeStarVec.size() == degreeVec[i]);
for(size_t j=delta;j<edgeStarVec.size();++j)
{
EdgeType *ep = edgeStarVec[j];
int ind; // index of the vertex to be changed
if(tri::Index(poly,ep->V(0)) == i) ind = 0;
else ind = 1;
ep->V(ind) = &*firstVi;
ep->V(ind)->P() = poly.vert[i].P();
ep->V(ind)->N() = poly.vert[i].N();
++firstVi;
}
}
}
assert(firstVi == poly.vert.end());
}
/**
* @brief SplitMeshWithPolyline
* @param poly
*
* First it splits the base mesh with all the non snapped points doing a standard 1 to 3 split;
*
*/
void SplitMeshWithPolyline(MeshType &poly)
{
std::vector< std::pair<int,VertexPointer> > toSplitVec; // the index of the face to be split and the poly vertex to be used
for(VertexIterator vi=poly.vert.begin(); vi!=poly.vert.end();++vi)
{
CoordType ip;
FaceType *f = GetClosestFaceIP(vi->cP(),ip);
if(!BarycentricSnap(ip))
toSplitVec.push_back(std::make_pair(tri::Index(base,f),&*vi));
}
printf("SplitMeshWithPolyline found %lu non snapped points\n",toSplitVec.size());fflush(stdout);
FaceIterator newFi = tri::Allocator<MeshType>::AddFaces(base,toSplitVec.size()*2);
VertexIterator newVi = tri::Allocator<MeshType>::AddVertices(base,toSplitVec.size());
tri::UpdateColor<MeshType>::PerVertexConstant(base,Color4b::White);
for(size_t i =0; i<toSplitVec.size();++i)
{
newVi->P() = toSplitVec[i].second->P();
newVi->C()=Color4b::Green;
face::TriSplit(&base.face[toSplitVec[i].first],&*(newFi++),&*(newFi++),&*(newVi++));
}
Init(); // need to reset everthing
SnapPolyline(poly);
// Second loop to perform the face-face Edge split **********************
std::map<std::pair<CoordType,CoordType>, VertexPointer> edgeToPolyVertMap;
for(VertexIterator vi=poly.vert.begin(); vi!=poly.vert.end();++vi)
{
CoordType ip;
FaceType *f = GetClosestFaceIP(vi->cP(),ip);
if(!BarycentricSnap(ip)) { assert(0); }
for(int i=0;i<3;++i)
{
if(ip[i]>0 && ip[(i+1)%3]>0 && ip[(i+2)%3]==0 )
{
CoordType p0=f->P0(i);
CoordType p1=f->P1(i);
if (p0>p1) std::swap(p0,p1);
if(edgeToPolyVertMap[make_pair(p0,p1)]) printf("Found an already used Edge %lu - %lu %lu!!!\n", tri::Index(base,f->V0(i)),tri::Index(base,f->V1(i)),tri::Index(poly,&*vi));
edgeToPolyVertMap[make_pair(p0,p1)]=&*vi;
}
}
}
printf("SplitMeshWithPolyline: Created a map of %lu edges to be split\n",edgeToPolyVertMap.size());
EdgePointPred ePred(edgeToPolyVertMap);
EdgePointSplit eSplit(edgeToPolyVertMap);
tri::UpdateTopology<MeshType>::FaceFace(base);
tri::RefineE(base,eSplit,ePred);
Init(); // need to reset everthing
}
void Init()
{
// Construction of the uniform grid
UpdateNormal<MeshType>::PerFaceNormalized(base);
UpdateTopology<MeshType>::FaceFace(base);
uniformGrid.Set(base.face.begin(), base.face.end());
}
void SimplifyMidEdge(MeshType &poly)
{
int startVn;
int midEdgeCollapseCnt=0;
tri::Allocator<MeshType>::CompactEveryVector(poly);
do
{
startVn = poly.vn;
for(int ei =0; ei<poly.en; ++ei)
{
VertexType *v0=poly.edge[ei].V(0);
VertexType *v1=poly.edge[ei].V(1);
CoordType ip0,ip1;
FaceType *f0=GetClosestFaceIP(v0->P(),ip0);
FaceType *f1=GetClosestFaceIP(v1->P(),ip1);
bool snap0=BarycentricSnap(ip0);
bool snap1=BarycentricSnap(ip1);
int e0i,e1i;
bool e0 = IsSnappedEdge(ip0,e0i);
bool e1 = IsSnappedEdge(ip1,e1i);
if(e0 && e1)
if( ( f0 == f1 && e0i == e1i) ||
( f0 == f1->FFp(e1i) && e0i == f1->FFi(e1i)) ||
(f0->FFp(e0i) == f1 && f0->FFi(e0i) == e1i) ||
(f0->FFp(e0i) == f1->FFp(e1i) && f0->FFi(e0i) == f1->FFi(e1i)) )
{
CoordType newp = (v0->P()+v1->P())/2.0;
v0->P()=newp;
v1->P()=newp;
midEdgeCollapseCnt++;
}
}
tri::Clean<MeshType>::RemoveDuplicateVertex(poly);
tri::Allocator<MeshType>::CompactEveryVector(poly);
// printf("SimplifyMidEdge %5i -> %5i %i mid %i ve \n",startVn,poly.vn,midEdgeCollapseCnt);
} while(startVn>poly.vn);
}
/**
* @brief SimplifyMidFace remove all the vertices that in the mid of a face
* and between two of the points snapped onto the edges of the same face
* @param poly
*
* It assumes that the mesh has been snapped and refined by the BaseMesh
*
*/
void SimplifyMidFace(MeshType &poly)
{
int startVn= poly.vn;;
int midFaceCollapseCnt=0;
int vertexEdgeCollapseCnt=0;
int curVn;
do
{
tri::Allocator<MeshType>::CompactEveryVector(poly);
curVn = poly.vn;
UpdateTopology<MeshType>::VertexEdge(poly);
for(int i =0; i<poly.vn;++i)
{
std::vector<VertexPointer> starVecVp;
edge::VVStarVE(&(poly.vert[i]),starVecVp);
if( (starVecVp.size()==2) )
{
CoordType ipP, ipN, ipI;
FacePointer fpP = GetClosestFaceIP(starVecVp[0]->P(),ipP);
FacePointer fpN = GetClosestFaceIP(starVecVp[1]->P(),ipN);
FacePointer fpI = GetClosestFaceIP(poly.vert[i].P(), ipI);
bool snapP = (BarycentricSnap(ipP));
bool snapN = (BarycentricSnap(ipN));
bool snapI = (BarycentricSnap(ipI));
VertexPointer vertexSnapP = 0;
VertexPointer vertexSnapN = 0;
VertexPointer vertexSnapI = 0;
for(int j=0;j<3;++j)
{
if(ipP[j]==1.0) vertexSnapP=fpP->V(j);
if(ipN[j]==1.0) vertexSnapN=fpN->V(j);
if(ipI[j]==1.0) vertexSnapI=fpI->V(j);
}
bool collapseFlag=false;
if((!snapI && snapP && snapN) || // First case a vertex that is not snapped between two snapped vertexes
(!snapI && !snapP && fpI==fpP) || // Or a two vertex not snapped but on the same face
(!snapI && !snapN && fpI==fpN) )
{
collapseFlag=true;
midFaceCollapseCnt++;
}
else // case 2) a vertex snap and edge snap we have to check that the edge do not share the same vertex of the vertex snap
if(snapI && snapP && snapN && vertexSnapI==0 && (vertexSnapP!=0 || vertexSnapN!=0) )
{
for(int j=0;j<3;++j) {
if(ipI[j]!=0 && (fpI->V(j)==vertexSnapP || fpI->V(j)==vertexSnapN)) {
collapseFlag=true;
vertexEdgeCollapseCnt++;
}
}
}
if(collapseFlag)
edge::VEEdgeCollapse(poly,&(poly.vert[i]));
}
}
} while(curVn>poly.vn);
printf("SimplifyMidFace %5i -> %5i %i mid %i ve \n",startVn,poly.vn,midFaceCollapseCnt,vertexEdgeCollapseCnt);
}
void Simplify(MeshType &poly)
{
int startEn = poly.en;
Distribution<ScalarType> hist;
for(int i =0; i<poly.en;++i)
hist.Add(edge::Length(poly.edge[i]));
UpdateTopology<MeshType>::VertexEdge(poly);
for(int i =0; i<poly.vn;++i)
{
std::vector<VertexPointer> starVecVp;
edge::VVStarVE(&(poly.vert[i]),starVecVp);
if ((starVecVp.size()==2) && (!poly.vert[i].IsS()))
{
ScalarType newSegLen = Distance(starVecVp[0]->P(), starVecVp[1]->P());
Segment3Type seg(starVecVp[0]->P(),starVecVp[1]->P());
ScalarType segDist;
CoordType closestPSeg;
SegmentPointDistance(seg,poly.vert[i].cP(),closestPSeg,segDist);
CoordType fp,fn;
ScalarType maxSurfDist = MaxSegDist(starVecVp[0], starVecVp[1],fp,fn);
if((maxSurfDist < par.surfDistThr) && (newSegLen < par.maxSimpEdgeLen) )
{
edge::VEEdgeCollapse(poly,&(poly.vert[i]));
}
}
}
tri::UpdateTopology<MeshType>::TestVertexEdge(poly);
tri::Allocator<MeshType>::CompactEveryVector(poly);
tri::UpdateTopology<MeshType>::TestVertexEdge(poly);
// printf("Simplify %5i -> %5i (total len %5.2f)\n",startEn,poly.en,hist.Sum());
}
void EvaluateHausdorffDistance(MeshType &poly, Distribution<ScalarType> &dist)
{
dist.Clear();
tri::UpdateTopology<MeshType>::VertexEdge(poly);
tri::UpdateQuality<MeshType>::VertexConstant(poly,0);
for(int i =0; i<poly.edge.size();++i)
{
CoordType farthestP, farthestN;
ScalarType maxDist = MaxSegDist(poly.edge[i].V(0),poly.edge[i].V(1), farthestP, farthestN, &dist);
poly.edge[i].V(0)->Q()+= maxDist;
poly.edge[i].V(1)->Q()+= maxDist;
}
for(int i=0;i<poly.vn;++i)
{
ScalarType deg = edge::VEDegree<EdgeType>(&poly.vert[i]);
poly.vert[i].Q()/=deg;
}
tri::UpdateColor<MeshType>::PerVertexQualityRamp(poly,0,dist.Max());
}
/**
* @brief BarycentricSnap
* @param ip the baricentric coords to be snapped
* @return true if they have been snapped.
*
* This is the VERY important function that is used everywhere.
* Given a barycentric coord of a point inside a triangle it decides if it should be "snapped" either onto an edge or on a vertex.
* It relies on the barycentricSnapThr parameter
*
*/
bool BarycentricSnap(CoordType &ip)
{
for(int i=0;i<3;++i)
{
if(ip[i] <= par.barycentricSnapThr) ip[i]=0;
if(ip[i] >= 1.0-par.barycentricSnapThr) ip[i]=1;
}
ScalarType sum = ip[0]+ip[1]+ip[2];
for(int i=0;i<3;++i)
if(ip[i]!=1) ip[i]/=sum;
if(ip[0]==0 || ip[1]==0 || ip[2]==0) return true;
return false;
}
/**
* @brief TestSplitSegWithMesh Given a poly segment decide if it should be split along elements of base mesh.
* @param v0
* @param v1
* @param splitPt
* @return true if it should be split
*
* We make a few samples onto the edge and if some of them snaps onto a an edge we use it.
* In case there are more than one candidate we choose the sample closeset to its snapping point.
* We explicitly avoid snapping twice on the same edge by checking the starting and ending edges.
*
* Two cases:
* - poly edge pass near a vertex of the mesh
* - poly edge cross one or more edges
*
* Note that we have to check the case where
*/
bool TestSplitSegWithMesh(VertexType *v0, VertexType *v1, CoordType &splitPt)
{
Segment3Type segPoly(v0->P(),v1->P());
const ScalarType sampleNum = 40;
CoordType ip0,ip1;
FaceType *f0=GetClosestFaceIP(v0->P(),ip0);
FaceType *f1=GetClosestFaceIP(v1->P(),ip1);
if(f0==f1) return false;
bool snap0=false,snap1=false; // true if the segment start/end on a edge/vert
Segment3Type seg0; // The two segments to be avoided
Segment3Type seg1; // from which the current poly segment can start
VertexPointer vertexSnap0 = 0;
VertexPointer vertexSnap1 = 0;
if(BarycentricSnap(ip0)) {
snap0=true;
for(int i=0;i<3;++i) {
if(ip0[i]==1.0) vertexSnap0=f0->V(i);
if(ip0[i]==0.0) seg0=Segment3Type(f0->P1(i),f0->P2(i));
}
}
if(BarycentricSnap(ip1)) {
snap1=true;
for(int i=0;i<3;++i){
if(ip1[i]==1.0) vertexSnap1=f1->V(i);
if(ip1[i]==0.0) seg1=Segment3Type(f1->P1(i),f1->P2(i));
}
}
CoordType bestSplitPt(0,0,0);
ScalarType bestDist = std::numeric_limits<ScalarType>::max();
for(ScalarType k = 1;k<sampleNum;++k)
{
CoordType samplePnt = segPoly.Lerp(k/sampleNum);
CoordType ip;
FaceType *f=GetClosestFaceIP(samplePnt,ip);
// BarycentricEdgeSnap(ip);
if(BarycentricSnap(ip))
{
VertexPointer vertexSnapI = 0;
for(int i=0;i<3;++i)
if(ip[i]==1.0) vertexSnapI=f->V(i);
CoordType closestPt = f->P(0)*ip[0]+f->P(1)*ip[1]+f->P(2)*ip[2];
if(Distance(samplePnt,closestPt) < bestDist )
{
ScalarType dist0=std::numeric_limits<ScalarType>::max();
ScalarType dist1=std::numeric_limits<ScalarType>::max();
CoordType closestSegPt;
if(snap0) SegmentPointDistance(seg0,closestPt,closestSegPt,dist0);
if(snap1) SegmentPointDistance(seg1,closestPt,closestSegPt,dist1);
if( (!vertexSnapI && (dist0 > par.surfDistThr/1000 && dist1>par.surfDistThr/1000) ) ||
( vertexSnapI!=vertexSnap0 && vertexSnapI!=vertexSnap1) )
{
bestDist = Distance(samplePnt,closestPt);
bestSplitPt = closestPt;
}
}
}
}
if(bestDist < par.surfDistThr*100)
{
splitPt = bestSplitPt;
return true;
}
return false;
}
/**
* @brief SnappedOnSameFace Return true if the two points are snapped to a common face;
* @param f0
* @param i0
* @param f1
* @param i0
* @return
*
* Require FFAdj. se assume that both SNAPPED. Three cases:
* - Edge Edge - true iff the two edges belongs to a common face.
* - Vert Edge - true iff there is one of the two snapped edge faces has the vert as non-edge face;
* - Vert Vert
*
*/
bool SnappedOnSameFace(FacePointer f0, CoordType i0, FacePointer f1, CoordType i1)
{
if(f0==f1) return true;
int e0,e1;
int v0,v1;
bool e0Snap = IsSnappedEdge(i0,e0);
bool e1Snap = IsSnappedEdge(i1,e1);
bool v0Snap = IsSnappedVertex(i0,v0);
bool v1Snap = IsSnappedVertex(i1,v1);
FacePointer f0p=0; int e0p=-1; // When Edge snap the other face and the index of the snapped edge on the other face
FacePointer f1p=0; int e1p=-1;
assert((e0Snap != v0Snap) && (e1Snap != v1Snap));
// For EdgeSnap compute the 'other' face stuff
if(e0Snap){
f0p = f0->FFp(e0); e0p=f0->FFi(e0); assert(f0p->FFp(e0p)==f0);
}
if(e1Snap){
f1p = f1->FFp(e1); e1p=f1->FFi(e1); assert(f1p->FFp(e1p)==f1);
}
if(e0Snap && e1Snap) {
if(f0==f1p || f0p==f1p || f0p==f1 || f0==f1) return true;
}
if(e0Snap && v1Snap) {
assert(v1>=0 && v1<3 && v0==-1 && e1==-1);
if(f0->V2(e0) ==f1->V(v1)) return true;
if(f0p->V2(e0p)==f1->V(v1)) return true;
}
if(e1Snap && v0Snap) {
assert(v0>=0 && v0<3 && v1==-1 && e0==-1);
if(f1->V2(e1) ==f0->V(v0)) return true;
if(f1p->V2(e1p)==f0->V(v0)) return true;
}
if(v1Snap && v0Snap) {
PosType startPos(f0,f0->V(v0));
PosType curPos=startPos;
do
{
assert(curPos.V()==f0->V(v0));
if(curPos.VFlip()==f1->V(v1)) return true;
curPos.FlipE();
curPos.FlipF();
}
while(curPos!=startPos);
}
return false;
}
/**
* @brief TestSplitSegWithMesh Given a poly segment decide if it should be split along elements of base mesh.
* @param v0
* @param v1
* @param splitPt
* @return true if it should be split
*
* We make a few samples onto the edge and if some of them snaps onto a an edge we use it.
* In case there are more than one candidate we choose the sample closeset to its snapping point.
* We explicitly avoid snapping twice on the same edge by checking the starting and ending edges.
*
* Two cases:
* - poly edge pass near a vertex of the mesh
* - poly edge cross one or more edges
*
* Note that we have to check the case where
*/
bool TestSplitSegWithMeshAdapt(VertexType *v0, VertexType *v1, CoordType &splitPt)
{
splitPt=(v0->P()+v1->P())/2.0;
CoordType ip0,ip1,ipm;
FaceType *f0=GetClosestFaceIP(v0->P(),ip0);
FaceType *f1=GetClosestFaceIP(v1->P(),ip1);
FaceType *fm=GetClosestFaceIP(splitPt,ipm);
if(f0==f1) return false;
bool snap0=BarycentricSnap(ip0);
bool snap1=BarycentricSnap(ip1);
bool snapm=BarycentricSnap(ipm);
splitPt = fm->P(0)*ipm[0]+fm->P(1)*ipm[1]+fm->P(2)*ipm[2];
if(!snap0 && !snap1) {
assert(f0!=f1);
return true;
}
if(snap0 && snap1)
{
if(SnappedOnSameFace(f0,ip0,f1,ip1))
return false;
}
if(snap0) {
int e0,v0;
if (IsSnappedEdge(ip0,e0)) {
if(f0->FFp(e0) == f1) return false;
}
if(IsSnappedVertex(ip0,v0)) {
for(int i=0;i<3;++i)
if(f1->V(i)==f0->V(v0)) return false;
}
}
if(snap1) {
int e1,v1;
if (IsSnappedEdge(ip1,e1)) {
if(f1->FFp(e1) == f0) return false;
}
if(IsSnappedVertex(ip1,v1)) {
for(int i=0;i<3;++i)
if(f0->V(i)==f1->V(v1)) return false;
}
}
return true;
}
bool TestSplitSegWithMeshAdaptOld(VertexType *v0, VertexType *v1, CoordType &splitPt)
{
Segment3Type segPoly(v0->P(),v1->P());
const ScalarType sampleNum = 40;
CoordType ip0,ip1;
FaceType *f0=GetClosestFaceIP(v0->P(),ip0);
FaceType *f1=GetClosestFaceIP(v1->P(),ip1);
if(f0==f1) return false;
bool snap0=BarycentricSnap(ip0);
bool snap1=BarycentricSnap(ip1);
if(!snap0 && !snap1) {
assert(f0!=f1);
splitPt=(v0->P()+v1->P())/2.0;
return true;
}
if(snap0 && snap1)
{
if(SnappedOnSameFace(f0,ip0,f1,ip1))
return false;
}
if(snap0) {
int e0,v0;
if (IsSnappedEdge(ip0,e0)) {
if(f0->FFp(e0) == f1) return false;
}
if(IsSnappedVertex(ip0,v0)) {
for(int i=0;i<3;++i)
if(f1->V(i)==f0->V(v0)) return false;
}
}
splitPt=(v0->P()+v1->P())/2.0;
return true;
}
// Given a segment find the maximum distance from it to the original surface.
// It is used to evaluate the Haustdorff distance of a Segment from the mesh.
ScalarType MaxSegDist(VertexType *v0, VertexType *v1, CoordType &farthestPointOnSurf, CoordType &farthestN, Distribution<ScalarType> *dist=0)
{
ScalarType maxSurfDist = 0;
const ScalarType sampleNum = 10;
const ScalarType maxDist = base.bbox.Diag()/10.0;
for(ScalarType k = 1;k<sampleNum;++k)
{
ScalarType surfDist;
CoordType closestPSurf;
CoordType samplePnt = (v0->P()*k +v1->P()*(sampleNum-k))/sampleNum;
FaceType *f = vcg::tri::GetClosestFaceBase(base,uniformGrid,samplePnt,maxDist, surfDist, closestPSurf);
if(dist)
dist->Add(surfDist);
assert(f);
if(surfDist > maxSurfDist)
{
maxSurfDist = surfDist;
farthestPointOnSurf = closestPSurf;
farthestN = f->N();
}
}
return maxSurfDist;
}
/**
* @brief RefineCurve
* @param poly the curve to be refined
* @param uniformFlag
*
* Make one pass of refinement for all the edges of the curve that are distant from the basemesh
* uses two parameters:
* - par.minRefEdgeLen
* - par.surfDistThr
*/
void RefineCurveByDistance(MeshType &poly)
{
tri::Allocator<MeshType>::CompactEveryVector(poly);
int startEdgeSize = poly.en;
for(int i =0; i<startEdgeSize;++i)
{
EdgeType &ei = poly.edge[i];
if(edge::Length(ei)>par.minRefEdgeLen)
{
CoordType farthestP, farthestN;
ScalarType maxDist = MaxSegDist(ei.V(0),ei.V(1),farthestP, farthestN);
if(maxDist > par.surfDistThr)
{
edge::VEEdgeSplit(poly, &ei, farthestP, farthestN);
}
}
}
// tri::Allocator<MeshType>::CompactEveryVector(poly);
// printf("Refine %i -> %i\n",startEdgeSize,poly.en);fflush(stdout);
}
/**
* @brief RefineCurveByBaseMesh
* @param poly
*/
void RefineCurveByBaseMesh(MeshType &poly)
{
tri::Allocator<MeshType>::CompactEveryVector(poly);
std::vector<int> edgeToRefineVec;
for(int i=0; i<poly.en;++i)
edgeToRefineVec.push_back(i);
int startEn=poly.en;
int iterCnt=0;
while (!edgeToRefineVec.empty() && iterCnt<100) {
iterCnt++;
std::vector<int> edgeToRefineVecNext;
for(int i=0; i<edgeToRefineVec.size();++i)
{
EdgeType &e = poly.edge[edgeToRefineVec[i]];
CoordType splitPt;
if(TestSplitSegWithMeshAdapt(e.V(0),e.V(1),splitPt))
{
edge::VEEdgeSplit(poly, &e, splitPt);
edgeToRefineVecNext.push_back(edgeToRefineVec[i]);
edgeToRefineVecNext.push_back(poly.en-1);
}
}
tri::Allocator<MeshType>::CompactEveryVector(poly);
swap(edgeToRefineVecNext,edgeToRefineVec);
printf("RefineCurveByBaseMesh %i en -> %i en\n",startEn,poly.en); fflush(stdout);
}
//
SimplifyMidFace(poly);
SimplifyMidEdge(poly);
SnapPolyline(poly);
printf("RefineCurveByBaseMesh %i en -> %i en\n",startEn,poly.en); fflush(stdout);
}
/**
* @brief SmoothProject
* @param poly
* @param iterNum
* @param smoothWeight [0..1] range;
* @param projectWeight [0..1] range;
*
* The very important function to adapt a polyline onto the base mesh
* The projection process must be done slowly to guarantee some empirical convergence...
* For each iteration it choose a new position of each vertex of the polyline.
* The new position is a blend between the smoothed position, the closest point on the surface and the original position.
* You need a good balance...
* after each iteration the polyline is refined and simplified.
*/
void SmoothProject(MeshType &poly, int iterNum, ScalarType smoothWeight, ScalarType projectWeight)
{
tri::RequireCompactness(poly);
tri::UpdateTopology<MeshType>::VertexEdge(poly);
// printf("SmoothProject: Selected vert num %i\n",tri::UpdateSelection<MeshType>::VertexCount(poly));
assert(poly.en>0 && base.fn>0);
for(int k=0;k<iterNum;++k)
{
if(k==iterNum-1) projectWeight=1;
std::vector<CoordType> posVec(poly.vn,CoordType(0,0,0));
std::vector<int> cntVec(poly.vn,0);
for(int i =0; i<poly.en;++i)
{
for(int j=0;j<2;++j)
{
int vertInd = tri::Index(poly,poly.edge[i].V0(j));
posVec[vertInd] += poly.edge[i].V1(j)->P();
cntVec[vertInd] += 1;
}
}
const ScalarType maxDist = base.bbox.Diag()/10.0;
for(int i=0; i<poly.vn; ++i)
if(!poly.vert[i].IsS())
{
CoordType smoothPos = (poly.vert[i].P() + posVec[i])/ScalarType(cntVec[i]+1);
CoordType newP = poly.vert[i].P()*(1.0-smoothWeight) + smoothPos *smoothWeight;
// CoordType delta = newP - poly.vert[i].P();
// if(delta.Norm() > par.maxSmoothDelta)
// {
// newP = poly.vert[i].P() + ( delta / delta.Norm()) * maxDist*0.5;
// }
ScalarType minDist;
CoordType closestP;
FaceType *f = vcg::tri::GetClosestFaceBase(base,uniformGrid,newP,maxDist, minDist, closestP);
assert(f);
poly.vert[i].P() = newP*(1.0-projectWeight) +closestP*projectWeight;
poly.vert[i].N() = f->N();
}
// Refine(poly);
tri::UpdateTopology<MeshType>::TestVertexEdge(poly);
RefineCurveByDistance(poly);
tri::UpdateTopology<MeshType>::TestVertexEdge(poly);
Simplify(poly);
tri::UpdateTopology<MeshType>::TestVertexEdge(poly);
int dupVertNum = Clean<MeshType>::RemoveDuplicateVertex(poly);
if(dupVertNum) {
// printf("****REMOVED %i Duplicated\n",dupVertNum);
tri::Allocator<MeshType>::CompactEveryVector(poly);
tri::UpdateTopology<MeshType>::VertexEdge(poly);
}
}
}
class EdgePointPred
{
public:
std::map<std::pair<CoordType,CoordType>, VertexPointer> &edgeToPolyVertMap;
EdgePointPred(std::map<std::pair<CoordType,CoordType>, VertexPointer> &_edgeToPolyVertMap):edgeToPolyVertMap(_edgeToPolyVertMap){};
bool operator()(face::Pos<FaceType> ep) const
{
CoordType p0 = ep.V()->P();
CoordType p1 = ep.VFlip()->P();
if (p0>p1) std::swap(p0,p1);
VertexPointer vp=edgeToPolyVertMap[make_pair(p0,p1)];
return vp!=0;
}
};
struct EdgePointSplit : public std::unary_function<face::Pos<FaceType> , CoordType>
{
public:
std::map<std::pair<CoordType,CoordType>, VertexPointer> &edgeToPolyVertMap;
EdgePointSplit(std::map<std::pair<CoordType,CoordType>, VertexPointer> &_edgeToPolyVertMap):edgeToPolyVertMap(_edgeToPolyVertMap){};
void operator()(VertexType &nv, face::Pos<FaceType> ep)
{
CoordType p0 = ep.V()->P();
CoordType p1 = ep.VFlip()->P();
if (p0>p1) std::swap(p0,p1);
VertexPointer vp=edgeToPolyVertMap[make_pair(p0,p1)];
assert(vp);
nv.P()=vp->P();
return;
}
Color4b WedgeInterp(Color4b &c0, Color4b &c1)
{
Color4b cc;
cc.lerp(c0,c1,0.5f);
return Color4b::Red;
}
TexCoord2f WedgeInterp(TexCoord2f &t0, TexCoord2f &t1)
{
TexCoord2f tmp;
assert(t0.n()== t1.n());
tmp.n()=t0.n();
tmp.t()=(t0.t()+t1.t())/2.0;
return tmp;
}
};
};
} // end namespace tri
} // end namespace vcg
#endif // __VCGLIB_CURVE_ON_SURF_H
|