1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef CUT_TREE_H
#define CUT_TREE_H
#include<vcg/complex/complex.h>
#include <vcg/space/index/kdtree/kdtree.h>
#include<vcg/complex/algorithms/update/quality.h>
#include<vcg/complex/algorithms/update/color.h>
namespace vcg {
namespace tri {
template <class MeshType>
class CutTree
{
public:
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef Box3<ScalarType> Box3Type;
typedef typename face::Pos<FaceType> PosType;
typedef typename tri::UpdateTopology<MeshType>::PEdge PEdge;
MeshType &base;
CutTree(MeshType &_m) :base(_m){}
// Perform a simple optimization of the three applying simple shortcuts:
// if the endpoints of two consecutive edges are connected by an edge existing on base mesh just use that edges
void OptimizeTree(KdTree<ScalarType> &kdtree, MeshType &t)
{
tri::Allocator<MeshType>::CompactEveryVector(t);
int lastEn=t.en;
do
{
lastEn=t.en;
tri::UpdateTopology<MeshType>::VertexEdge(t);
// First simple loop that search for 2->1 moves.
for(VertexIterator vi=t.vert.begin();vi!=t.vert.end();++vi)
{
std::vector<VertexType *> starVec;
edge::VVStarVE(&*vi,starVec);
if(starVec.size()==2) // middle vertex has to be 1-manifold
{
PosType pos;
if(ExistEdge(kdtree,starVec[0]->P(),starVec[1]->P(),pos))
edge::VEEdgeCollapse(t,&*vi);
}
}
tri::Allocator<MeshType>::CompactEveryVector(t);
}
while(t.en<lastEn);
}
// Given two points return true if on the base mesh there exist an edge with that two coords
// if return true the pos indicate the found edge.
bool ExistEdge(KdTree<ScalarType> &kdtree, CoordType &p0, CoordType &p1, PosType &fpos)
{
ScalarType locEps = SquaredDistance(p0,p1)/100000.0;
VertexType *v0=0,*v1=0;
unsigned int veInd;
ScalarType sqdist;
kdtree.doQueryClosest(p0,veInd,sqdist);
if(sqdist<locEps)
v0 = &base.vert[veInd];
kdtree.doQueryClosest(p1,veInd,sqdist);
if(sqdist<locEps)
v1 = &base.vert[veInd];
if(v0 && v1)
{
fpos =PosType(v0->VFp(),v0);
assert(fpos.V()==v0);
PosType startPos=fpos;
do
{
fpos.FlipE(); fpos.FlipF();
if(fpos.VFlip()== v1) return true;
} while(startPos!=fpos);
}
return false;
}
int findNonVisitedEdgesDuringRetract(VertexType * vp, EdgeType * &ep)
{
std::vector<EdgeType *> starVec;
edge::VEStarVE(&*vp,starVec);
int cnt =0;
for(size_t i=0;i<starVec.size();++i) {
if(!starVec[i]->IsV()) {
cnt++;
ep = starVec[i];
}
}
return cnt;
}
bool IsBoundaryVertexOnBase(KdTree<ScalarType> &kdtree, const CoordType &p)
{
VertexType *v0=0;
unsigned int veInd;
ScalarType sqdist;
kdtree.doQueryClosest(p,veInd,sqdist);
if(sqdist>0) { assert(0); }
v0 = &base.vert[veInd];
return v0->IsB();
}
/**
* @brief Retract
* @param t the edgemesh containing the visit tree.
*
*/
void Retract(KdTree<ScalarType> &kdtree, MeshType &t)
{
printf("Retracting a tree of %i edges and %i vertices\n",t.en,t.vn);
tri::UpdateTopology<MeshType>::VertexEdge(t);
tri::Allocator<MeshType>::CompactEveryVector(t);
std::stack<VertexType *> vertStack;
// Put on the stack all the vertex with just a single incident edge.
ForEachVertex(t, [&](VertexType &v){
if(edge::VEDegree<EdgeType>(&v) ==1)
vertStack.push(&v);
});
tri::UpdateFlags<MeshType>::EdgeClearV(t);
tri::UpdateFlags<MeshType>::VertexClearV(t);
int unvisitedEdgeNum = t.en;
while((!vertStack.empty()) && (unvisitedEdgeNum > 2) )
{
VertexType *vp = vertStack.top();
vertStack.pop();
vp->C()=Color4b::Blue;
EdgeType *ep=0;
int eCnt = findNonVisitedEdgesDuringRetract(vp,ep);
if(eCnt==1) // We have only one non visited edge over vp
{
assert(!ep->IsV());
ep->SetV();
--unvisitedEdgeNum;
VertexType *otherVertP;
if(ep->V(0)==vp) otherVertP = ep->V(1);
else otherVertP = ep->V(0);
vertStack.push(otherVertP);
}
}
assert(unvisitedEdgeNum >0);
for(size_t i =0; i<t.edge.size();++i){
PosType fpos;
if( ExistEdge(kdtree, t.edge[i].P(0), t.edge[i].P(1), fpos)){
if(fpos.IsBorder()) {
t.edge[i].SetV();
}
}
else assert(0);
}
// All the boundary edges are in the initial tree so the clean boundary loops chains remains as irreducible loops
// We delete them (leaving dangling edges with a vertex on the boundary)
for(size_t i =0; i<t.edge.size();++i){
if (t.edge[i].IsV())
tri::Allocator<MeshType>::DeleteEdge(t,t.edge[i]) ;
}
assert(t.en >0);
tri::Clean<MeshType>::RemoveUnreferencedVertex(t);
tri::Allocator<MeshType>::CompactEveryVector(t);
}
/** \brief Main function
*
* It builds a cut tree that open the mesh into a topological disk
*
*
*/
void Build(MeshType &dualMesh, int startingFaceInd=0)
{
tri::UpdateTopology<MeshType>::FaceFace(base);
tri::UpdateTopology<MeshType>::VertexFace(base);
BuildVisitTree(dualMesh,startingFaceInd);
// BuildDijkstraVisitTree(dualMesh,startingFaceInd);
VertexConstDataWrapper<MeshType > vdw(base);
KdTree<ScalarType> kdtree(vdw);
Retract(kdtree,dualMesh);
OptimizeTree(kdtree, dualMesh);
tri::UpdateBounding<MeshType>::Box(dualMesh);
}
/* Auxiliary class for keeping the heap of vertices to visit and their estimated distance */
struct FaceDist{
FaceDist(FacePointer _f):f(_f),dist(_f->Q()){}
FacePointer f;
ScalarType dist;
bool operator < (const FaceDist &o) const
{
if( dist != o.dist)
return dist > o.dist;
return f<o.f;
}
};
void BuildDijkstraVisitTree(MeshType &dualMesh, int startingFaceInd=0, ScalarType maxDistanceThr=std::numeric_limits<ScalarType>::max())
{
tri::RequireFFAdjacency(base);
tri::RequirePerFaceMark(base);
tri::RequirePerFaceQuality(base);
typename MeshType::template PerFaceAttributeHandle<FacePointer> parentHandle
= tri::Allocator<MeshType>::template GetPerFaceAttribute<FacePointer>(base, "parent");
std::vector<FacePointer> seedVec;
seedVec.push_back(&base.face[startingFaceInd]);
std::vector<FaceDist> Heap;
tri::UnMarkAll(base);
tri::UpdateQuality<MeshType>::FaceConstant(base,0);
ForEachVertex(base, [&](VertexType &v){
tri::Allocator<MeshType>::AddVertex(dualMesh,v.cP());
});
// Initialize the face heap;
// All faces in the heap are already marked; Q() store the distance from the source faces;
for(size_t i=0;i<seedVec.size();++i)
{
seedVec[i]->Q()=0;
Heap.push_back(FaceDist(seedVec[i]));
}
// Main Loop
int boundary=0;
std::make_heap(Heap.begin(),Heap.end());
int vCnt=0;
int eCnt=0;
int fCnt=0;
// The main idea is that in the heap we maintain all the faces to be visited.
int nonDiskCnt=0;
while(!Heap.empty() && nonDiskCnt<10)
{
int eulerChi= vCnt-eCnt+fCnt;
if(eulerChi==1) nonDiskCnt=0;
else ++nonDiskCnt;
// printf("HeapSize %i: %i - %i + %i = %i\n",Heap.size(), vCnt,eCnt,fCnt,eulerChi);
pop_heap(Heap.begin(),Heap.end());
FacePointer currFp = (Heap.back()).f;
if(tri::IsMarked(base,currFp))
{
// printf("Found an already visited face %f %f \n",Heap.back().dist, Heap.back().f->Q());
//assert(Heap.back().dist != currFp->Q());
Heap.pop_back();
continue;
}
Heap.pop_back();
++fCnt;
eCnt+=3;
tri::Mark(base,currFp);
// printf("pop face %i \n", tri::Index(base,currFp));
for(int i=0;i<3;++i)
{
if(!currFp->V(i)->IsV()) {++vCnt; currFp->V(i)->SetV();}
FacePointer nextFp = currFp->FFp(i);
if( tri::IsMarked(base,nextFp) )
{
eCnt-=1;
printf("is marked\n");
if(nextFp != parentHandle[currFp] )
{
if(currFp>nextFp){
tri::Allocator<MeshType>::AddEdge(dualMesh,tri::Index(base,currFp->V0(i)), tri::Index(base,currFp->V1(i)));
}
}
}
else // add it to the heap;
{
// printf("is NOT marked\n");
parentHandle[nextFp] = currFp;
ScalarType nextDist = currFp->Q() + Distance(Barycenter(*currFp),Barycenter(*nextFp));
int adjMarkedNum=0;
for(int k=0;k<3;++k) if(tri::IsMarked(base,nextFp->FFp(k))) ++adjMarkedNum;
if(nextDist < maxDistanceThr || adjMarkedNum>1)
{
nextFp->Q() = nextDist;
Heap.push_back(FaceDist(nextFp));
push_heap(Heap.begin(),Heap.end());
}
else {
// printf("boundary %i\n",++boundary);
tri::Allocator<MeshType>::AddEdge(dualMesh,tri::Index(base,currFp->V0(i)), tri::Index(base,currFp->V1(i)));
}
}
}
} // End while
printf("fulltree %i vn %i en \n",dualMesh.vn, dualMesh.en);
int dupVert=tri::Clean<MeshType>::RemoveDuplicateVertex(dualMesh,false); printf("Removed %i dup vert\n",dupVert);
int dupEdge=tri::Clean<MeshType>::RemoveDuplicateEdge(dualMesh); printf("Removed %i dup edges %i\n",dupEdge,dualMesh.EN());
tri::Clean<MeshType>::RemoveUnreferencedVertex(dualMesh);
tri::io::ExporterPLY<MeshType>::Save(dualMesh,"fulltree.ply",tri::io::Mask::IOM_EDGEINDEX);
tri::UpdateColor<MeshType>::PerFaceQualityRamp(base);
tri::io::ExporterPLY<MeshType>::Save(base,"colored_Bydistance.ply",tri::io::Mask::IOM_FACECOLOR);
}
// \brief This function build a cut tree.
//
// First we make a bread first FF face visit.
// Each time that we encounter a visited face we add to the tree the edge
// that brings to the already visited face.
// this structure build a dense graph and we retract this graph retracting each
// leaf until we remains with just the loops that cuts the object.
void BuildVisitTree(MeshType &dualMesh, int startingFaceInd=0)
{
tri::UpdateFlags<MeshType>::FaceClearV(base);
tri::UpdateFlags<MeshType>::VertexBorderFromFaceAdj(base);
std::vector<face::Pos<FaceType> > visitStack; // the stack contain the pos on the 'starting' face.
base.face[startingFaceInd].SetV();
for(int i=0;i<3;++i)
visitStack.push_back(PosType(&(base.face[startingFaceInd]),i,base.face[startingFaceInd].V(i)));
int cnt=1;
while(!visitStack.empty())
{
std::swap(visitStack.back(),visitStack[rand()%visitStack.size()]);
PosType c = visitStack.back();
visitStack.pop_back();
assert(c.F()->IsV());
c.F()->C() = Color4b::ColorRamp(0,base.fn,cnt);
c.FlipF();
if(!c.F()->IsV())
{
++cnt;
c.F()->SetV();
c.FlipE();c.FlipV();
visitStack.push_back(c);
c.FlipE();c.FlipV();
visitStack.push_back(c);
}
else
{
tri::Allocator<MeshType>::AddEdge(dualMesh,c.V()->P(),c.VFlip()->P());
}
}
assert(cnt==base.fn);
tri::Clean<MeshType>::RemoveDuplicateVertex(dualMesh);
tri::io::ExporterPLY<MeshType>::Save(dualMesh,"fulltree.ply",tri::io::Mask::IOM_EDGEINDEX);
}
};
} // end namespace tri
} // end namespace vcg
#endif // CUT_TREE_H
|