File: cylinder_clipping.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,132 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 30
file content (333 lines) | stat: -rw-r--r-- 12,779 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
#ifndef CYLINDER_CLIP_H
#define CYLINDER_CLIP_H
#include <vcg/space/segment3.h>
#include <vcg/complex/algorithms/refine.h>
namespace vcg
{

// Taken a cylinder and a line calculates whether there is an intersection between these.
// In output are provided, if they exist, any two points of intersection (p0, p1)
// and the parameters t (t0, t1) on the line.
// Returns false if the distance of the line from the axis of the cylinder is greater than
// the radius of the cylinder or, if the calculation of t parameters - obtained by solving the
// quadratic equation - gives a delta less than zero.
// To find the intersection of a line p1+td1 with the axis p+td of the cylinder:
// (p1-p+td1-<v,p1-p+td1>d)^2 -r^2=0, becomes At^2+Bt+C=0.
//
// tmpA = d1 - (<d1,d>/<d,d>)*d.
// tmpB = (p1-p) - (<p1-p,d>/<d,d>)*d.
// A = <tmpA,tmpA>.
// B = 2*<tmpA,tmpB>.
// C = <tmpB,tmpB> - r^2.
// Input:  Cylinder<T> & cyl, Line3<T> & line.
// Output: CoordType & p0,CoordType & p1, T & t0, T &t1.

template<class T>
static bool IntersectionLineCylinder(const Segment3<T> & cylSeg, T radius, const Line3<T> & line, Point3<T> & p0, Point3<T> & p1, T & t0, T &t1)
{
      T dist;
      Point3<T> mClosestPoint0,mClosestPoint1;
      bool parallel=false;

      Line3<T> tmp;
      tmp.Set(cylSeg.P0(), (cylSeg.P1()-cylSeg.P0()).Normalize());
      LineLineDistance(tmp,line,parallel,dist,mClosestPoint0,mClosestPoint1);
      if(dist>radius)
          return false;
      if(parallel) return false;
      Point3<T> cyl_origin=tmp.Origin();
      Point3<T> line_origin=line.Origin();
      Point3<T> cyl_direction=tmp.Direction();
      Point3<T> line_direction=line.Direction();

      Point3<T> deltaP=line_origin-cyl_origin;

      T dotDirCyl=cyl_direction.SquaredNorm();    //<d,d>

      T scalar=line_direction.dot(cyl_direction);
      Point3<T> tmpA=line_direction-(cyl_direction/dotDirCyl)*scalar;
      T A=tmpA.SquaredNorm();

      T scalar2=deltaP.dot(cyl_direction);
      Point3<T> tmpB=(deltaP-(cyl_direction/dotDirCyl)*scalar2);

      T B=2.0*tmpA.dot(tmpB);

      T C=tmpB.SquaredNorm()-pow(radius,2);

      T delta=pow(B,2)-4*A*C;

      if(delta<0)
          return false;

      t0=(-B-sqrt(delta))/(2*A);
      t1=(-B+sqrt(delta))/(2*A);

      p0=line.P(t0);
      p1=line.P(t1);

      return true;
}

// Taken a cylinder and a segment calculates the intersection possible using the
// IntersectionLineCylinder() and checking the output of this.
// Whether the t0 and t1 scalars are between 0 and the length of the segment, then the point
// belongs to it and returns true.
// In output are given two points of intersection (p0, p1) and the parameters t (t0, t1) on the line.
// If p1 belongs to the segment and p0 no, it swaps the points (p0, p1) because operator() in the
// MidPointCylinder always takes the first.
// Otherwise, it means that there is no point between the extremes of the segment that intersects
// the cylinder, in this case it returns false.
//
// Input:  Cylinder<MESH_TYPE, Type, T> & cyl, Segment3<T> & seg.
// Output: CoordType & p0,CoordType & p1, T & t0, T &t1.

template<class T>
static bool IntersectionSegmentCylinder(const Segment3<T> & cylSeg , T radius,  const Segment3<T> & seg, Point3<T> & p0, Point3<T> & p1)
{
  const float eps = 10e-5;

  Line3<T> line;
  line.SetOrigin(seg.P0());
  line.SetDirection((seg.P1()-seg.P0()).Normalize());

  T t0,t1;
  if(IntersectionLineCylinder(cylSeg,radius,line,p0,p1,t0,t1)){
      bool inters0 = (t0>=0) && (t0<=seg.Length());
      bool inters1 = (t1>=0) && (t1<=seg.Length());
      if( inters0 && !inters1) p1=p0;  // if only one of the line intersections belong to the segment
      if(!inters0 &&  inters1) p0=p1;  // make both of them the same value.
      return inters0 || inters1;
  }
  return false;
}

template<class T>
static bool PointIsInSegment(const Point3<T> &point, const Segment3<T> &seg){
    const float eps = 10e-5;
    Line3<T> line;
    line.SetOrigin(seg.P0());
    line.SetDirection((seg.P1()-seg.P0()));
    T t=line.Projection(point);
    // Remembers, two points are different if their distance is >=eps
    if(t>-eps && t<1+eps)
        return true;
    return false;
}

namespace tri
{

template <class MeshType>
class CylinderClipping
{
public:
  typedef typename MeshType::ScalarType          ScalarType;
  typedef typename MeshType::VertexType          VertexType;
  typedef typename MeshType::VertexPointer       VertexPointer;
  typedef typename MeshType::VertexIterator      VertexIterator;
  typedef typename MeshType::CoordType           CoordType;
  typedef typename MeshType::FaceType            FaceType;
  typedef typename MeshType::FacePointer         FacePointer;
  typedef typename MeshType::FaceIterator        FaceIterator;
  typedef typename face::Pos<FaceType>        PosType;
  typedef Segment3<ScalarType> Segment3x;
  typedef Plane3<ScalarType> Plane3x;

  // This predicate
  class CylPred
  {
    public:
    CylPred(CoordType &_origin, CoordType &_end, ScalarType _radius, ScalarType _maxDist, ScalarType _minEdgeLen):
      origin(_origin),end(_end),radius(_radius),maxDist(_maxDist),minEdgeLen(_minEdgeLen){
      seg.Set(origin,end);
      pl0.Init(origin,(end-origin).Normalize());
      pl1.Init(end,(end-origin).Normalize());
    }
    void Init() { newPtMap.clear(); }
    ScalarType radius;
    CoordType origin,end;
    ScalarType minEdgeLen;
    ScalarType maxDist;
  private:
    Segment3x seg;
    Plane3x pl0,pl1;
  public:
    // This map store for each edge the new position.
    // it is intializaed by the predicate itself.
    // and it is shared with the midpoint functor.
    std::map< std::pair<CoordType,CoordType>,CoordType > newPtMap;

    // Return true if the given edge intersect the cylinder.

    // Verify if exist a point in an edge that intersects the cylinder. Then calculate
    // this point and store it for later use.
    // The cases possible are:
    // 1. Both extremes have distance greater than or equal to the radius, in this case it
    //    calculates the point of this segment closest to the axis of the cylinder. If this
    //    has distance less than or equal to the radius and is different from the extremes
    //    returns true and this point, otherwise false;
    // 2. If there is an extreme inside and one outside it returns true because exist the point
    //    of intersection that is calculated using the IntersectionSegmentCylinder();
    // 3. Otherwise false.
    // So a point is inside of the cylinder if its distance from his axis is <radius-eps??,
    // is external if the distance is > radius+eps and it is on the circumference if the
    // distance is in the range [radius-eps??, radius+eps].
    //
    // Input:  face::Pos<typename MESH_TYPE::FaceType>  ep, Cylinder<typename MESH_TYPE::ScalarType> cyl,

    bool operator()(PosType ep)
    {
      VertexType *v0 = ep.V();
      VertexType *v1 = ep.VFlip();
      ScalarType eps = minEdgeLen/100.0f;

      if(v0>v1) std::swap(v0,v1);
      CoordType p0=v0->P();
      CoordType p1=v1->P();

      // CASE 0 - For very short edges --- DO NOTHING
      if(Distance(p0,p1)< minEdgeLen) return false;

      Segment3x edgeSeg(p0,p1);
      CoordType closest0,closest1; // points on the cyl axis
      ScalarType dist0,dist1,dist2;

      SegmentPointDistance(this->seg,p0,closest0,dist0);
      SegmentPointDistance(this->seg,p1,closest1,dist1);

      // Case 0.5
      if(fabs(dist0-radius)<maxDist && fabs(dist1-radius)<maxDist)
      {
        newPtMap[std::make_pair(p0,p1)] = (p0+p1)*0.5;
        return true;
      }

      // ************ Case 1;
      if((dist0>radius) && (dist1>radius))
      {
        bool parallel;
        SegmentSegmentDistance(edgeSeg,this->seg, dist2, parallel, closest0,closest1);
        if((dist2<radius) &&
           (Distance(closest0,p0)>minEdgeLen) &&
           (Distance(closest0,p1)>minEdgeLen))
        {
          newPtMap[std::make_pair(p0,p1)] = closest0;
          return true;
        }
      }
      else if(((dist0<radius) && (dist1>radius))||((dist0>radius) && (dist1<radius))){
          CoordType int0,int1;
          // If there is an intersection point between segment and cylinder,
          // this must be different from the extremes of the segment and
          // his projection must be in the segment.
          if(IntersectionSegmentCylinder(this->seg, this->radius,edgeSeg,int0,int1)){
              if(PointIsInSegment(int0,this->seg) && (Distance(p0,int0)>eps) && (Distance(p1,int0)>eps))
              {
                if(Distance(int0,p0)<maxDist) return false;
                if(Distance(int0,p1)<maxDist) return false;
                newPtMap[std::make_pair(p0,p1)] = int0;
                  return true;
              }
          }
      }
      // Now check also against the caps
      CoordType pt;
      if(IntersectionPlaneSegment(pl0,edgeSeg,pt)){
        if((Distance(pt,origin)<radius+2.0*minEdgeLen) &&
           (Distance(pt,p0)>eps) && (Distance(pt,p1)>eps) )
        {
              newPtMap[std::make_pair(p0,p1)] = pt;
              return true;
        }
      }
      if(IntersectionPlaneSegment(pl1,edgeSeg,pt)){
        if( (Distance(pt,end)<radius+2.0*minEdgeLen) &&
            (Distance(pt,p0)>eps) && (Distance(pt,p1)>eps) )
        {
              newPtMap[std::make_pair(p0,p1)] = pt;
              return true;
        }
      }
      return false;
      //
    }
  };

  class CylMidPoint : public   std::unary_function<PosType, CoordType>
  {
  private:
    CylMidPoint() {assert(0);}
  public:
    CylMidPoint(CylPred &ep) : newPtMap(&(ep.newPtMap)) {
      assert(newPtMap);
    }
    std::map< std::pair<CoordType,CoordType>, CoordType > *newPtMap;
    void operator()(VertexType &nv, PosType ep)
    {
      typename std::map< std::pair<CoordType,CoordType>,CoordType >::iterator mi;
      VertexType *v0 = ep.V();
      VertexType *v1 = ep.VFlip();
      assert(newPtMap);
      if(v0>v1) std::swap(v0,v1);

      CoordType p0=v0->P();
      CoordType p1=v1->P();
      mi=newPtMap->find(std::make_pair(v0->P(),v1->P()));
      assert(mi!=newPtMap->end());
      nv.P()=(*mi).second;
    }

    Color4<ScalarType> WedgeInterp(Color4<ScalarType> &c0, Color4<ScalarType> &c1)
    {
        Color4<ScalarType> cc;
        return cc.lerp(c0,c1,0.5f);
    }

    TexCoord2<ScalarType,1> WedgeInterp(TexCoord2<ScalarType,1> &t0, TexCoord2<ScalarType,1> &t1)
    {
        TexCoord2<ScalarType,1> tmp;
        assert(t0.n()== t1.n());
        tmp.n()=t0.n();
        tmp.t()=(t0.t()+t1.t())/2.0;
        return tmp;
    }
  };

  static void Apply(MeshType &m, CoordType &origin, CoordType &end, ScalarType radius)
  {
    CylPred cylep(origin,end,radius,radius/100.0,m.bbox.Diag()/50.0f);
    CylMidPoint cylmp(cylep);
    int i=0;
    while((tri::RefineE<MeshType, CylMidPoint >(m, cylmp,cylep))&&(i<50)){
      cylep.Init();
      printf("Refine %d Vertici: %d, Facce: %d\n",i,m.VN(),m.FN());
      i++;
    }
  }
};
} // end namespace tri
} // end namespace vcg
#endif // CYLINDER_CLIP_H