1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCGLIB_HARMONIC_FIELD
#define __VCGLIB_HARMONIC_FIELD
#include <vcg/complex/complex.h>
#include <Eigen/Sparse>
namespace vcg {
namespace tri {
template <class MeshType, typename Scalar = double>
class Harmonic
{
public:
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
typedef double CoeffScalar;
typedef typename std::pair<VertexType *, Scalar> Constraint;
typedef typename std::vector<Constraint> ConstraintVec;
typedef typename ConstraintVec::const_iterator ConstraintIt;
/**
* @brief ComputeScalarField
* Generates a scalar harmonic field over the mesh.
* For more details see:\n Kai Xua, Hao Zhang, Daniel Cohen-Or, Yueshan Xionga,'Dynamic Harmonic Fields for Surface Processing'.\nin Computers & Graphics, 2009
* @param m the mesh
* @param constraints the Dirichlet boundary conditions in the form of vector of pairs <vertex pointer, value>.
* @param field the accessor to use to write the computed per-vertex values (must have the [ ] operator).
* @return true if the algorithm succeeds, false otherwise.
* @note the algorithm has unexpected behavior if the mesh contains unreferenced vertices.
*/
template <typename ACCESSOR>
static bool ComputeScalarField(MeshType & m, const ConstraintVec & constraints, ACCESSOR field, bool biharmonic = false)
{
typedef Eigen::SparseMatrix<CoeffScalar> SpMat; // sparse matrix type
typedef Eigen::Triplet<CoeffScalar> Triple; // triplet type to fill the matrix
RequirePerVertexFlags(m);
RequireCompactness(m);
RequireFFAdjacency(m);
MeshAssert<MeshType>::FFAdjacencyIsInitialized(m);
MeshAssert<MeshType>::NoUnreferencedVertex(m);
if (constraints.empty())
return false;
int n = m.VN();
// Generate coefficients
std::vector<Triple> coeffs; // coefficients of the system
std::map<size_t,CoeffScalar> sums; // row sum of the coefficient matrix
vcg::tri::UpdateFlags<MeshType>::FaceClearV(m);
for (size_t i = 0; i < m.face.size(); ++i)
{
FaceType & f = m.face[i];
assert(!f.IsV());
f.SetV();
// Generate coefficients for each edge
for (int edge = 0; edge < 3; ++edge)
{
CoeffScalar weight;
WeightInfo res = CotangentWeightIfNotVisited(f, edge, weight);
if (res == EdgeAlreadyVisited) continue;
assert(res == Success);
// Add the weight to the coefficients vector for both the vertices of the considered edge
size_t v0_idx = vcg::tri::Index(m, f.V0(edge));
size_t v1_idx = vcg::tri::Index(m, f.V1(edge));
coeffs.push_back(Triple(v0_idx, v1_idx, -weight));
coeffs.push_back(Triple(v1_idx, v0_idx, -weight));
// Add the weight to the row sum
sums[v0_idx] += weight;
sums[v1_idx] += weight;
}
}
// Setup the system matrix
SpMat laplaceMat; // the system to be solved
laplaceMat.resize(n, n); // eigen initializes it to zero
laplaceMat.reserve(coeffs.size());
for (std::map<size_t,CoeffScalar>::const_iterator it = sums.begin(); it != sums.end(); ++it)
{
coeffs.push_back(Triple(it->first, it->first, it->second));
}
laplaceMat.setFromTriplets(coeffs.begin(), coeffs.end());
if (biharmonic)
{
SpMat lap_t = laplaceMat;
lap_t.transpose();
laplaceMat = lap_t * laplaceMat;
}
// Setting the constraints
const CoeffScalar alpha = pow(10.0, 8.0); // penalty factor alpha
// const CoeffScalar alpha = CoeffScalar(1e5); // penalty factor alpha
Eigen::Matrix<CoeffScalar, Eigen::Dynamic, 1> b, x; // Unknown and known terms vectors
b.setZero(n);
for (ConstraintIt it=constraints.begin(); it!=constraints.end(); it++)
{
size_t v_idx = vcg::tri::Index(m, it->first);
b(v_idx) = alpha * it->second;
laplaceMat.coeffRef(v_idx, v_idx) += alpha;
}
// Perform matrix decomposition
Eigen::SimplicialLDLT<SpMat> solver;
solver.compute(laplaceMat);
// TODO eventually use another solver (e.g. CHOLMOD for dynamic setups)
if(solver.info() != Eigen::Success)
{
// decomposition failed
switch (solver.info())
{
// possible errors
case Eigen::NumericalIssue :
case Eigen::NoConvergence :
case Eigen::InvalidInput :
default : return false;
}
}
// Solve the system: laplacianMat x = b
x = solver.solve(b);
if(solver.info() != Eigen::Success)
{
return false;
}
// Set field value using the provided handle
for (size_t i = 0; int(i) < n; ++i)
{
field[i] = Scalar(x[i]);
}
return true;
}
enum WeightInfo
{
Success = 0,
EdgeAlreadyVisited
};
/**
* @brief CotangentWeightIfNotVisited computes the cotangent weighting for an edge
* (if it has not be done yet).
* This must be ensured setting the visited flag on the face once all edge weights have been computed.
* @param f the face
* @param edge the edge of the provided face for which we compute the weight
* @param weight the computed weight (output)
* @return Success if everything is fine, EdgeAlreadyVisited if the weight
* for the considered edge has been already computed.
* @note the mesh must have the face-face topology updated
*/
template <typename ScalarT>
static WeightInfo CotangentWeightIfNotVisited(const FaceType &f, int edge, ScalarT & weight)
{
const FaceType * fp = f.cFFp(edge);
if (fp != NULL && fp != &f)
{
// not a border edge
if (fp->IsV()) return EdgeAlreadyVisited;
}
weight = CotangentWeight<ScalarT>(f, edge);
return Success;
}
/**
* @brief ComputeWeight computes the cotangent weighting for an edge
* @param f the face
* @param edge the edge of the provided face for which we compute the weight
* @return the computed weight
* @note the mesh must have the face-face topology updated
*/
template <typename ScalarT>
static ScalarT CotangentWeight(const FaceType &f, int edge)
{
assert(edge >= 0 && edge < 3);
// get the adjacent face
const FaceType * fp = f.cFFp(edge);
/*
* v0
* /|\
* / | \
* / | \
* / | \
* va\ | /vb
* \ | /
* \ | /
* \|/
* v1
*/
ScalarT cotA = 0;
ScalarT cotB = 0;
// Get the edge (a pair of vertices)
VertexType * v0 = f.cV(edge);
VertexType * v1 = f.cV((edge+1)%f.VN());
if (fp != NULL &&
fp != &f)
{
// not a border edge
VertexType * vb = fp->cV((f.cFFi(edge)+2)%fp->VN());
ScalarT angleB = ComputeAngle<ScalarT>(v0, vb, v1);
cotB = vcg::math::Cos(angleB) / vcg::math::Sin(angleB);
}
VertexType * va = f.cV((edge+2)%f.VN());
ScalarT angleA = ComputeAngle<ScalarT>(v0, va, v1);
cotA = vcg::math::Cos(angleA) / vcg::math::Sin(angleA);
return (cotA + cotB) / 2;
}
template <typename ScalarT>
static ScalarT ComputeAngle(const VertexType * a, const VertexType * b, const VertexType * c)
{
/* a
* /
* /
* /
* / ___ compute the angle in b
* b \
* \
* \
* \
* c
*/
assert(a != NULL && b != NULL && c != NULL);
Point3<ScalarT> A,B,C;
A.Import(a->P());
B.Import(b->P());
C.Import(c->P());
ScalarT angle = vcg::Angle(A - B, C - B);
return angle;
}
};
}
}
#endif // __VCGLIB_HARMONIC_FIELD
|