1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_IMPLICIT_SMOOTHER
#define __VCG_IMPLICIT_SMOOTHER
#include <Eigen/Sparse>
#include <vcg/complex/algorithms/mesh_to_matrix.h>
#include <vcg/complex/algorithms/update/quality.h>
#include <vcg/complex/algorithms/smooth.h>
#define PENALTY 10000
namespace vcg{
template <class MeshType>
class ImplicitSmoother
{
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename Eigen::Matrix<ScalarType, Eigen::Dynamic, Eigen::Dynamic> MatrixXm;
public:
struct FaceConstraint
{
int numF;
std::vector<ScalarType > BarycentricW;
CoordType TargetPos;
FaceConstraint()
{
numF=-1;
}
FaceConstraint(int _numF,
const std::vector<ScalarType > &_BarycentricW,
const CoordType &_TargetPos)
{
numF=_numF;
BarycentricW= std::vector<ScalarType > (_BarycentricW.begin(),_BarycentricW.end());
TargetPos=_TargetPos;
}
};
struct Parameter
{
//the amount of smoothness, useful only if we set the mass matrix
ScalarType lambda;
//the use of mass matrix to keep the mesh close to its original position
//(weighted per area distributed on vertices)
bool useMassMatrix;
//this bool is used to fix the border vertices of the mesh or not
bool fixBorder;
//this bool is used to set if cotangent weight is used, this flag to false means uniform laplacian
bool useCotWeight;
//use this weight for the laplacian when the cotangent one is not used
ScalarType lapWeight;
//the set of fixed vertices
std::vector<int> FixedV;
//the set of faces for barycentric constraints
std::vector<FaceConstraint> ConstrainedF;
//the degree of laplacian
int degree;
//this is to say if we smooth the positions or the quality
bool SmoothQ;
Parameter()
{
degree=1;
lambda=0.2;
useMassMatrix=true;
fixBorder=false;
useCotWeight=false;
lapWeight=1;
SmoothQ=false;
}
};
private:
static void InitSparse(const std::vector<std::pair<int,int> > &Index,
const std::vector<ScalarType> &Values,
const int m,
const int n,
Eigen::SparseMatrix<ScalarType>& X)
{
assert(Index.size()==Values.size());
std::vector<Eigen::Triplet<ScalarType> > IJV;
IJV.reserve(Index.size());
for(size_t i= 0;i<Index.size();i++)
{
int row=Index[i].first;
int col=Index[i].second;
ScalarType val=Values[i];
assert(row<m);
assert(col<n);
IJV.push_back(Eigen::Triplet<ScalarType>(row,col,val));
}
X.resize(m,n);
X.setFromTriplets(IJV.begin(),IJV.end());
}
static void CollectHardConstraints(MeshType &mesh,const Parameter &SParam,
std::vector<std::pair<int,int> > &IndexC,
std::vector<ScalarType> &WeightC,
bool SmoothQ=false)
{
std::vector<int> To_Fix;
//collect fixed vert
if (SParam.fixBorder)
{
//add penalization constra
for (size_t i=0;i<mesh.vert.size();i++)
{
if (!mesh.vert[i].IsB())continue;
To_Fix.push_back(i);
}
}
//add additional fixed vertices constraint
To_Fix.insert(To_Fix.end(),SParam.FixedV.begin(),SParam.FixedV.end());
//sort and make them unique
std::sort(To_Fix.begin(),To_Fix.end());
typename std::vector<int>::iterator it= std::unique (To_Fix.begin(), To_Fix.end());
To_Fix.resize( std::distance(To_Fix.begin(),it) );
for (size_t i=0;i<To_Fix.size();i++)
{
if (!SmoothQ)
{
for (int j=0;j<3;j++)
{
int IndexV=(To_Fix[i]*3)+j;
IndexC.push_back(std::pair<int,int>(IndexV,IndexV));
WeightC.push_back((ScalarType)PENALTY);
}
}else
{
int IndexV=To_Fix[i];
IndexC.push_back(std::pair<int,int>(IndexV,IndexV));
WeightC.push_back((ScalarType)PENALTY);
}
}
}
static void CollectBarycentricConstraints(MeshType &mesh,
const Parameter &SParam,
std::vector<std::pair<int,int> > &IndexC,
std::vector<ScalarType> &WeightC,
std::vector<int> &IndexRhs,
std::vector<ScalarType> &ValueRhs)
{
ScalarType penalty;
int baseIndex=mesh.vert.size();
for (size_t i=0;i<SParam.ConstrainedF.size();i++)
{
//get the index of the current constraint
int IndexConstraint=baseIndex+i;
//add one hard constraint
int FaceN=SParam.ConstrainedF[i].numF;
assert(FaceN>=0);
assert(FaceN<(int)mesh.face.size());
assert(mesh.face[FaceN].VN()==(int)SParam.ConstrainedF[i].BarycentricW.size());
penalty=ScalarType(1) - SParam.lapWeight;
assert(penalty>ScalarType(0) && penalty<ScalarType(1));
//then add all the weights to impose the constraint
for (int j=0;j<mesh.face[FaceN].VN();j++)
{
//get the current weight
ScalarType currW=SParam.ConstrainedF[i].BarycentricW[j];
//get the index of the current vertex
int FaceVert=vcg::tri::Index(mesh,mesh.face[FaceN].V(j));
//then add the constraints componentwise
for (int k=0;k<3;k++)
{
//multiply times 3 per component
int IndexV=(FaceVert*3)+k;
//get the index of the current constraint
int ComponentConstraint=(IndexConstraint*3)+k;
IndexC.push_back(std::pair<int,int>(ComponentConstraint,IndexV));
WeightC.push_back(currW*penalty);
IndexC.push_back(std::pair<int,int>(IndexV,ComponentConstraint));
WeightC.push_back(currW*penalty);
//this to avoid the 1 on diagonal last entry of mass matrix
IndexC.push_back(std::pair<int,int>(ComponentConstraint,ComponentConstraint));
WeightC.push_back(-1);
}
}
for (int j=0;j<3;j++)
{
//get the index of the current constraint
int ComponentConstraint=(IndexConstraint*3)+j;
//get per component value
ScalarType ComponentV=SParam.ConstrainedF[i].TargetPos.V(j);
//add the diagonal value
IndexRhs.push_back(ComponentConstraint);
ValueRhs.push_back(ComponentV*penalty);
}
}
}
public:
static void Compute(MeshType &mesh, Parameter &SParam)
{
//calculate the size of the system
int matr_size=mesh.vert.size()+SParam.ConstrainedF.size();
//the laplacian and the mass matrix
Eigen::SparseMatrix<ScalarType> L,M,B;
//initialize the mass matrix
std::vector<std::pair<int,int> > IndexM;
std::vector<ScalarType> ValuesM;
//add the entries for mass matrix
if (SParam.useMassMatrix)
MeshToMatrix<MeshType>::MassMatrixEntry(mesh,IndexM,ValuesM,!SParam.SmoothQ);
//then add entries for lagrange mult due to barycentric constraints
for (size_t i=0;i<SParam.ConstrainedF.size();i++)
{
int baseIndex=(mesh.vert.size()+i)*3;
if (SParam.SmoothQ)
baseIndex=(mesh.vert.size()+i);
if (SParam.SmoothQ)
{
IndexM.push_back(std::pair<int,int>(baseIndex,baseIndex));
ValuesM.push_back(1);
}
else
{
for (int j=0;j<3;j++)
{
IndexM.push_back(std::pair<int,int>(baseIndex+j,baseIndex+j));
ValuesM.push_back(1);
}
}
}
//add the hard constraints
CollectHardConstraints(mesh,SParam,IndexM,ValuesM,SParam.SmoothQ);
//initialize sparse mass matrix
if (!SParam.SmoothQ)
InitSparse(IndexM,ValuesM,matr_size*3,matr_size*3,M);
else
InitSparse(IndexM,ValuesM,matr_size,matr_size,M);
//initialize the barycentric matrix
std::vector<std::pair<int,int> > IndexB;
std::vector<ScalarType> ValuesB;
std::vector<int> IndexRhs;
std::vector<ScalarType> ValuesRhs;
//then also collect hard constraints
if (!SParam.SmoothQ)
{
CollectBarycentricConstraints(mesh,SParam,IndexB,ValuesB,IndexRhs,ValuesRhs);
//initialize sparse constraint matrix
InitSparse(IndexB,ValuesB,matr_size*3,matr_size*3,B);
}
else
InitSparse(IndexB,ValuesB,matr_size,matr_size,B);
//get the entries for laplacian matrix
std::vector<std::pair<int,int> > IndexL;
std::vector<ScalarType> ValuesL;
MeshToMatrix<MeshType>::GetLaplacianMatrix(mesh,IndexL,ValuesL,SParam.useCotWeight,SParam.lapWeight,!SParam.SmoothQ);
//initialize sparse laplacian matrix
if (!SParam.SmoothQ)
InitSparse(IndexL,ValuesL,matr_size*3,matr_size*3,L);
else
InitSparse(IndexL,ValuesL,matr_size,matr_size,L);
for (int i=0;i<(SParam.degree-1);i++)L=L*L;
//then solve the system
Eigen::SparseMatrix<ScalarType> S = (M + B + SParam.lambda*L);
//SimplicialLDLT
Eigen::SimplicialCholesky<Eigen::SparseMatrix<ScalarType > > solver(S);
assert(solver.info() == Eigen::Success);
MatrixXm V;
if (!SParam.SmoothQ)
V=MatrixXm(matr_size*3,1);
else
V=MatrixXm(matr_size,1);
//set the first part of the matrix with vertex values
if (!SParam.SmoothQ)
{
for (size_t i=0;i<mesh.vert.size();i++)
{
int index=i*3;
V(index,0)=mesh.vert[i].P().X();
V(index+1,0)=mesh.vert[i].P().Y();
V(index+2,0)=mesh.vert[i].P().Z();
}
}
else
{
for (size_t i=0;i<mesh.vert.size();i++)
{
int index=i;
V(index,0)=mesh.vert[i].Q();
}
}
//then set the second part by considering RHS gien by barycentric constraint
for (size_t i=0;i<IndexRhs.size();i++)
{
int index=IndexRhs[i];
ScalarType val=ValuesRhs[i];
V(index,0)=val;
}
//solve the system
V = solver.solve(M*V).eval();
//then copy back values
if (!SParam.SmoothQ)
{
for (size_t i=0;i<mesh.vert.size();i++)
{
int index=i*3;
mesh.vert[i].P().X()=V(index,0);
mesh.vert[i].P().Y()=V(index+1,0);
mesh.vert[i].P().Z()=V(index+2,0);
}
}else
{
for (size_t i=0;i<mesh.vert.size();i++)
{
int index=i;
mesh.vert[i].Q()=V(index,0);
}
}
}
};
}//end namespace vcg
#endif
|