1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef _VCG_INERTIA_
#define _VCG_INERTIA_
#include <Eigen/Core>
#include <Eigen/Eigenvalues>
#include <vcg/complex/algorithms/update/normal.h>
namespace vcg
{
namespace tri
{
/*! \brief Methods for computing Polyhedral Mass properties (like inertia tensor, volume, etc)
The algorithm is based on a three step reduction of the volume integrals
to successively simpler integrals. The algorithm is designed to minimize
the numerical errors that can result from poorly conditioned alignment of
polyhedral faces. It is also designed for efficiency. All required volume
integrals of a polyhedron are computed together during a single walk over
the boundary of the polyhedron; exploiting common subexpressions reduces
floating point operations.
For more information, check out:
<b>Brian Mirtich,</b>
``Fast and Accurate Computation of Polyhedral Mass Properties,''
journal of graphics tools, volume 1, number 2, 1996
*/
template <class MeshType>
class Inertia
{
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::ConstFaceIterator ConstFaceIterator;
typedef typename MeshType::FaceContainer FaceContainer;
typedef typename MeshType::CoordType CoordType;
private :
enum {X=0,Y=1,Z=2};
inline ScalarType SQR(ScalarType &x) const { return x*x;}
inline ScalarType CUBE(ScalarType &x) const { return x*x*x;}
int A; /* alpha */
int B; /* beta */
int C; /* gamma */
/* projection integrals */
double P1, Pa, Pb, Paa, Pab, Pbb, Paaa, Paab, Pabb, Pbbb;
/* face integrals */
double Fa, Fb, Fc, Faa, Fbb, Fcc, Faaa, Fbbb, Fccc, Faab, Fbbc, Fcca;
/* volume integrals */
double T0, T1[3], T2[3], TP[3];
public:
/*! \brief Basic constructor
When you create a Inertia object, you have to specify the mesh that it refers to.
The properties are computed at that moment. Subsequent modification of the mesh does not affect these values.
*/
Inertia(MeshType &m) {Compute(m);}
/* compute various integrations over projection of face */
void compProjectionIntegrals(FaceType &f)
{
double a0, a1, da;
double b0, b1, db;
double a0_2, a0_3, a0_4, b0_2, b0_3, b0_4;
double a1_2, a1_3, b1_2, b1_3;
double C1, Ca, Caa, Caaa, Cb, Cbb, Cbbb;
double Cab, Kab, Caab, Kaab, Cabb, Kabb;
int i;
P1 = Pa = Pb = Paa = Pab = Pbb = Paaa = Paab = Pabb = Pbbb = 0.0;
for (i = 0; i < 3; i++) {
a0 = f.V(i)->P()[A];
b0 = f.V(i)->P()[B];
a1 = f.V1(i)->P()[A];
b1 = f.V1(i)->P()[B];
da = a1 - a0;
db = b1 - b0;
a0_2 = a0 * a0; a0_3 = a0_2 * a0; a0_4 = a0_3 * a0;
b0_2 = b0 * b0; b0_3 = b0_2 * b0; b0_4 = b0_3 * b0;
a1_2 = a1 * a1; a1_3 = a1_2 * a1;
b1_2 = b1 * b1; b1_3 = b1_2 * b1;
C1 = a1 + a0;
Ca = a1*C1 + a0_2; Caa = a1*Ca + a0_3; Caaa = a1*Caa + a0_4;
Cb = b1*(b1 + b0) + b0_2; Cbb = b1*Cb + b0_3; Cbbb = b1*Cbb + b0_4;
Cab = 3*a1_2 + 2*a1*a0 + a0_2; Kab = a1_2 + 2*a1*a0 + 3*a0_2;
Caab = a0*Cab + 4*a1_3; Kaab = a1*Kab + 4*a0_3;
Cabb = 4*b1_3 + 3*b1_2*b0 + 2*b1*b0_2 + b0_3;
Kabb = b1_3 + 2*b1_2*b0 + 3*b1*b0_2 + 4*b0_3;
P1 += db*C1;
Pa += db*Ca;
Paa += db*Caa;
Paaa += db*Caaa;
Pb += da*Cb;
Pbb += da*Cbb;
Pbbb += da*Cbbb;
Pab += db*(b1*Cab + b0*Kab);
Paab += db*(b1*Caab + b0*Kaab);
Pabb += da*(a1*Cabb + a0*Kabb);
}
P1 /= 2.0;
Pa /= 6.0;
Paa /= 12.0;
Paaa /= 20.0;
Pb /= -6.0;
Pbb /= -12.0;
Pbbb /= -20.0;
Pab /= 24.0;
Paab /= 60.0;
Pabb /= -60.0;
}
void CompFaceIntegrals(FaceType &f)
{
Point3<ScalarType> n;
ScalarType w;
double k1, k2, k3, k4;
compProjectionIntegrals(f);
n = f.N();
w = -f.V(0)->P()*n;
k1 = 1 / n[C]; k2 = k1 * k1; k3 = k2 * k1; k4 = k3 * k1;
Fa = k1 * Pa;
Fb = k1 * Pb;
Fc = -k2 * (n[A]*Pa + n[B]*Pb + w*P1);
Faa = k1 * Paa;
Fbb = k1 * Pbb;
Fcc = k3 * (SQR(n[A])*Paa + 2*n[A]*n[B]*Pab + SQR(n[B])*Pbb
+ w*(2*(n[A]*Pa + n[B]*Pb) + w*P1));
Faaa = k1 * Paaa;
Fbbb = k1 * Pbbb;
Fccc = -k4 * (CUBE(n[A])*Paaa + 3*SQR(n[A])*n[B]*Paab
+ 3*n[A]*SQR(n[B])*Pabb + CUBE(n[B])*Pbbb
+ 3*w*(SQR(n[A])*Paa + 2*n[A]*n[B]*Pab + SQR(n[B])*Pbb)
+ w*w*(3*(n[A]*Pa + n[B]*Pb) + w*P1));
Faab = k1 * Paab;
Fbbc = -k2 * (n[A]*Pabb + n[B]*Pbbb + w*Pbb);
Fcca = k3 * (SQR(n[A])*Paaa + 2*n[A]*n[B]*Paab + SQR(n[B])*Pabb
+ w*(2*(n[A]*Paa + n[B]*Pab) + w*Pa));
}
/*! main function to be called.
It requires a watertight mesh with per face normals.
*/
void Compute(MeshType &m)
{
tri::UpdateNormal<MeshType>::PerFaceNormalized(m);
double nx, ny, nz;
T0 = T1[X] = T1[Y] = T1[Z]
= T2[X] = T2[Y] = T2[Z]
= TP[X] = TP[Y] = TP[Z] = 0;
FaceIterator fi;
for (fi=m.face.begin(); fi!=m.face.end();++fi) if(!(*fi).IsD() && vcg::DoubleArea(*fi)>std::numeric_limits<float>::min()) {
FaceType &f=(*fi);
nx = fabs(f.N()[0]);
ny = fabs(f.N()[1]);
nz = fabs(f.N()[2]);
if (nx > ny && nx > nz) C = X;
else C = (ny > nz) ? Y : Z;
A = (C + 1) % 3;
B = (A + 1) % 3;
CompFaceIntegrals(f);
T0 += f.N()[X] * ((A == X) ? Fa : ((B == X) ? Fb : Fc));
T1[A] += f.N()[A] * Faa;
T1[B] += f.N()[B] * Fbb;
T1[C] += f.N()[C] * Fcc;
T2[A] += f.N()[A] * Faaa;
T2[B] += f.N()[B] * Fbbb;
T2[C] += f.N()[C] * Fccc;
TP[A] += f.N()[A] * Faab;
TP[B] += f.N()[B] * Fbbc;
TP[C] += f.N()[C] * Fcca;
}
T1[X] /= 2; T1[Y] /= 2; T1[Z] /= 2;
T2[X] /= 3; T2[Y] /= 3; T2[Z] /= 3;
TP[X] /= 2; TP[Y] /= 2; TP[Z] /= 2;
}
/*! \brief Return the Volume (or mass) of the mesh.
Meaningful only if the mesh is watertight.
*/
ScalarType Mass()
{
return static_cast<ScalarType>(T0);
}
/*! \brief Return the Center of Mass (or barycenter) of the mesh.
Meaningful only if the mesh is watertight.
*/
Point3<ScalarType> CenterOfMass()
{
Point3<ScalarType> r;
r[X] = T1[X] / T0;
r[Y] = T1[Y] / T0;
r[Z] = T1[Z] / T0;
return r;
}
void InertiaTensor(Matrix33<ScalarType> &J ){
Point3<ScalarType> r;
r[X] = T1[X] / T0;
r[Y] = T1[Y] / T0;
r[Z] = T1[Z] / T0;
/* compute inertia tensor */
J[X][X] = (T2[Y] + T2[Z]);
J[Y][Y] = (T2[Z] + T2[X]);
J[Z][Z] = (T2[X] + T2[Y]);
J[X][Y] = J[Y][X] = - TP[X];
J[Y][Z] = J[Z][Y] = - TP[Y];
J[Z][X] = J[X][Z] = - TP[Z];
J[X][X] -= T0 * (r[Y]*r[Y] + r[Z]*r[Z]);
J[Y][Y] -= T0 * (r[Z]*r[Z] + r[X]*r[X]);
J[Z][Z] -= T0 * (r[X]*r[X] + r[Y]*r[Y]);
J[X][Y] = J[Y][X] += T0 * r[X] * r[Y];
J[Y][Z] = J[Z][Y] += T0 * r[Y] * r[Z];
J[Z][X] = J[X][Z] += T0 * r[Z] * r[X];
}
//void InertiaTensor(Matrix44<ScalarType> &J )
void InertiaTensor(Eigen::Matrix3d &J )
{
J=Eigen::Matrix3d::Identity();
Point3d r;
r[X] = T1[X] / T0;
r[Y] = T1[Y] / T0;
r[Z] = T1[Z] / T0;
/* compute inertia tensor */
J(X,X) = (T2[Y] + T2[Z]);
J(Y,Y) = (T2[Z] + T2[X]);
J(Z,Z) = (T2[X] + T2[Y]);
J(X,Y) = J(Y,X) = - TP[X];
J(Y,Z) = J(Z,Y) = - TP[Y];
J(Z,X) = J(X,Z) = - TP[Z];
J(X,X) -= T0 * (r[Y]*r[Y] + r[Z]*r[Z]);
J(Y,Y) -= T0 * (r[Z]*r[Z] + r[X]*r[X]);
J(Z,Z) -= T0 * (r[X]*r[X] + r[Y]*r[Y]);
J(X,Y) = J(Y,X) += T0 * r[X] * r[Y];
J(Y,Z) = J(Z,Y) += T0 * r[Y] * r[Z];
J(Z,X) = J(X,Z) += T0 * r[Z] * r[X];
}
/*! \brief Return the Inertia tensor the mesh.
The result is factored as eigenvalues and eigenvectors (as ROWS).
*/
void InertiaTensorEigen(Matrix33<ScalarType> &EV, Point3<ScalarType> &ev )
{
Eigen::Matrix3d it;
InertiaTensor(it);
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eig(it);
Eigen::Vector3d c_val = eig.eigenvalues();
Eigen::Matrix3d c_vec = eig.eigenvectors(); // eigenvector are stored as columns.
EV.FromEigenMatrix(c_vec);
EV.transposeInPlace();
ev.FromEigenVector(c_val);
}
/** Compute covariance matrix of a mesh, i.e. the integral
int_{M} { (x-b)(x-b)^T }dx where b is the barycenter and x spans over the mesh M
*/
static void Covariance(const MeshType & m, vcg::Point3<ScalarType> & bary, vcg::Matrix33<ScalarType> &C)
{
// find the barycenter
ConstFaceIterator fi;
ScalarType area = 0.0;
bary.SetZero();
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
{
bary += vcg::Barycenter( *fi )* vcg::DoubleArea(*fi);
area+=vcg::DoubleArea(*fi);
}
bary/=area;
C.SetZero();
// C as covariance of triangle (0,0,0)(1,0,0)(0,1,0)
vcg::Matrix33<ScalarType> C0;
C0.SetZero();
C0[0][0] = C0[1][1] = 2.0;
C0[0][1] = C0[1][0] = 1.0;
C0*=1/24.0;
// integral of (x,y,0) in the same triangle
CoordType X(1/6.0,1/6.0,0);
vcg::Matrix33<ScalarType> A, // matrix that bring the vertices to (v1-v0,v2-v0,n)
DC;
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
{
const CoordType &P0 = (*fi).cP(0);
const CoordType &P1 = (*fi).cP(1);
const CoordType &P2 = (*fi).cP(2);
CoordType n = ((P1-P0)^(P2-P0));
const float da = n.Norm();
n/=da*da;
A.SetColumn(0, P1-P0);
A.SetColumn(1, P2-P0);
A.SetColumn(2, n);
CoordType delta = P0 - bary;
/* DC is calculated as integral of (A*x+delta) * (A*x+delta)^T over the triangle,
where delta = v0-bary
*/
DC.SetZero();
DC+= A*C0*A.transpose();
vcg::Matrix33<ScalarType> tmp;
tmp.OuterProduct(A*X,delta);
DC += tmp + tmp.transpose();
DC+= tmp;
tmp.OuterProduct(delta,delta);
DC+=tmp*0.5;
// DC*=fabs(A.Determinant()); // the determinant of A is the jacobian of the change of variables A*x+delta
DC*=da; // the determinant of A is also the double area of *fi
C+=DC;
}
}
}; // end class Inertia
} // end namespace tri
} // end namespace vcg
#endif
|