1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCGLIB_LOCALOPTIMIZATION
#define __VCGLIB_LOCALOPTIMIZATION
#include <vcg/complex/complex.h>
#include <time.h>
namespace vcg{
// Base class for Parameters
// all parameters must be derived from this.
class BaseParameterClass { };
template<class MeshType>
class LocalOptimization;
enum ModifierType{ TetraEdgeCollapseOp, TriEdgeSwapOp, TriVertexSplitOp,
TriEdgeCollapseOp,TetraEdgeSpliOpt,TetraEdgeSwapOp, TriEdgeFlipOp,
QuadDiagCollapseOp, QuadEdgeCollapseOp};
/** \addtogroup tetramesh */
/*@{*/
/// This abstract class define which functions a local modification class must have to be used in the LocalOptimization framework.
template <class MeshType>
class LocalModification
{
public:
typedef typename LocalOptimization<MeshType>::HeapType HeapType;
typedef typename MeshType::ScalarType ScalarType;
inline LocalModification(){}
virtual ~LocalModification(){}
/// return the type of operation
virtual ModifierType IsOfType() = 0 ;
/// return true if the data have not changed since it was created
virtual bool IsUpToDate() const = 0 ;
/// return true if no constraint disallow this operation to be performed (ex: change of topology in edge collapses)
virtual bool IsFeasible(BaseParameterClass *pp) = 0;
/// Compute the priority to be used in the heap
virtual ScalarType ComputePriority(BaseParameterClass *pp)=0;
/// Return the priority to be used in the heap (implement static priority)
virtual ScalarType Priority() const =0;
/// Perform the operation
virtual void Execute(MeshType &m, BaseParameterClass *pp)=0;
/// perform initialization
static void Init(MeshType &m, HeapType&, BaseParameterClass *pp);
/// An approximation of the size of the heap with respect of the number of simplex
/// of the mesh. When this number is exceeded a clear heap purging is performed.
/// so it is should be reasonably larger than the minimum expected size to avoid too frequent clear heap
/// For example for symmetric edge collapse a 5 is a good guess.
/// while for non symmetric edge collapse a larger number like 9 is a better choice
static float HeapSimplexRatio(BaseParameterClass *) {return 6.0f;}
virtual const char *Info(MeshType &) {return 0;}
/// Update the heap as a consequence of this operation
virtual void UpdateHeap(HeapType&, BaseParameterClass *pp)=0;
}; //end class local modification
/// LocalOptimization:
/// This class implements the algorihms running on 0-1-2-3-simplicial complex that are based on local modification
/// The local modification can be and edge_collpase, or an edge_swap, a vertex plit...as far as they implement
/// the interface defined in LocalModification.
/// Implementation note: in order to keep the local modification itself indepented by its use in this class, they are not
/// really derived by LocalModification. Instead, a wrapper is done to this purpose (see vcg/complex/tetramesh/decimation/collapse.h)
template<class MeshType>
class LocalOptimization
{
public:
LocalOptimization(MeshType &mm, BaseParameterClass *_pp): m(mm){ ClearTermination();HeapSimplexRatio=5; pp=_pp;}
struct HeapElem;
typedef typename MeshType::ScalarType ScalarType;
typedef typename std::vector<HeapElem> HeapType;
typedef LocalModification <MeshType> LocModType;
/// termination conditions
enum LOTermination {
LOnSimplices = 0x01, // test number of simplicies
LOnVertices = 0x02, // test number of verticies
LOnOps = 0x04, // test number of operations
LOMetric = 0x08, // test Metric (error, quality...instance dependent)
LOTime = 0x10 // test how much time is passed since the start
} ;
int tf; // Termination Flag
int nPerformedOps,
nTargetOps,
nTargetSimplices,
nTargetVertices;
float timeBudget;
clock_t start;
ScalarType currMetric;
ScalarType targetMetric;
BaseParameterClass *pp;
// The ratio between Heap size and the number of simplices in the current mesh
// When this value is exceeded a ClearHeap Start;
float HeapSimplexRatio;
void SetTerminationFlag (int v){tf |= v;}
void ClearTerminationFlag (int v){tf &= ~v;}
bool IsTerminationFlag (int v){return ((tf & v)!=0);}
void SetTargetSimplices (int ts ){nTargetSimplices = ts; SetTerminationFlag(LOnSimplices); }
void SetTargetVertices (int tv ){nTargetVertices = tv; SetTerminationFlag(LOnVertices); }
void SetTargetOperations(int to ){nTargetOps = to; SetTerminationFlag(LOnOps); }
void SetTargetMetric (ScalarType tm ){targetMetric = tm; SetTerminationFlag(LOMetric); }
void SetTimeBudget (float tb ){timeBudget = tb; SetTerminationFlag(LOTime); }
void ClearTermination()
{
tf=0;
nTargetSimplices=0;
nTargetOps=0;
targetMetric=0;
timeBudget=0;
nTargetVertices=0;
}
/// the mesh to optimize
MeshType & m;
///the heap of operations
HeapType h;
///the element of the heap
// it is just a wrapper of the pointer to the localMod.
// std heap does not work for
// pointers and we want pointers to have heterogenous heaps.
struct HeapElem
{
inline HeapElem(){locModPtr = NULL;}
~HeapElem(){}
///pointer to instance of local modifier
LocModType *locModPtr;
float pri;
inline HeapElem( LocModType *_locModPtr)
{
locModPtr = _locModPtr;
pri=float(locModPtr->Priority());
}
/// STL heap has the largest element as the first one.
/// usually we mean priority as an error so we should invert the comparison
inline bool operator <(const HeapElem & h) const
{
return (pri > h.pri);
//return (locModPtr->Priority() < h.locModPtr->Priority());
}
bool IsUpToDate() const
{
return locModPtr->IsUpToDate();
}
};
/// Default distructor
~LocalOptimization(){
typename HeapType::iterator i;
for(i = h.begin(); i != h.end(); i++)
delete (*i).locModPtr;
}
/// main cycle of optimization
bool DoOptimization()
{
assert ( ( ( tf & LOnSimplices )==0) || ( nTargetSimplices!= -1));
assert ( ( ( tf & LOnVertices )==0) || ( nTargetVertices != -1));
assert ( ( ( tf & LOnOps )==0) || ( nTargetOps != -1));
assert ( ( ( tf & LOMetric )==0) || ( targetMetric != -1));
assert ( ( ( tf & LOTime )==0) || ( timeBudget != -1));
start=clock();
nPerformedOps =0;
while( !GoalReached() && !h.empty())
{
if(h.size()> m.SimplexNumber()*HeapSimplexRatio ) ClearHeap();
std::pop_heap(h.begin(),h.end());
LocModType *locMod = h.back().locModPtr;
currMetric=h.back().pri;
h.pop_back();
if( locMod->IsUpToDate() )
{
//printf("popped out: %s\n",locMod->Info(m));
if (locMod->IsFeasible(this->pp))
{
nPerformedOps++;
locMod->Execute(m,this->pp);
locMod->UpdateHeap(h,this->pp);
}
}
delete locMod;
}
return !(h.empty());
}
// It removes from the heap all the operations that are no more 'uptodate'
// (e.g. collapses that have some recently modified vertices)
// This function is called from time to time by the doOptimization (e.g. when the heap is larger than fn*3)
void ClearHeap()
{
// int sz=h.size(); int t0=clock();
for(auto hi=h.begin();hi!=h.end();)
{
if(!(*hi).locModPtr->IsUpToDate())
{
delete (*hi).locModPtr;
*hi=h.back();
if(&*hi==&h.back())
{
hi=h.end();
h.pop_back();
break;
}
h.pop_back();
continue;
}
++hi;
}
// printf("\nReduced heap from %7i to %7i (fn %7i) in %7.2f \n",sz,h.size(),m.fn,float(clock()-t0)/CLOCKS_PER_SEC);
make_heap(h.begin(),h.end());
}
///initialize for all vertex the temporary mark must call only at the start of decimation
///by default it takes the first element in the heap and calls Init (static funcion) of that type
///of local modification.
template <class LocalModificationType> void Init()
{
vcg::tri::InitVertexIMark(m);
// The expected size of heap depends on the type of the local modification we are using..
HeapSimplexRatio = LocalModificationType::HeapSimplexRatio(pp);
LocalModificationType::Init(m,h,pp);
std::make_heap(h.begin(),h.end());
if(!h.empty()) currMetric=h.front().pri;
}
template <class LocalModificationType> void Finalize()
{
LocalModificationType::Finalize(m,h,pp);
}
/// say if the process is to end or not: the process ends when any of the termination conditions is verified
/// override this function to implemetn other tests
bool GoalReached(){
if ( IsTerminationFlag(LOnSimplices) && ( m.SimplexNumber()<= nTargetSimplices)) return true;
if ( IsTerminationFlag(LOnVertices) && ( m.VertexNumber() <= nTargetVertices)) return true;
if ( IsTerminationFlag(LOnOps) && (nPerformedOps == nTargetOps)) return true;
if ( IsTerminationFlag(LOMetric) && ( currMetric > targetMetric)) return true;
if ( IsTerminationFlag(LOTime) )
{
clock_t cur = clock();
if(cur<start) // overflow of tick counter;
return true; // panic
else
if ( (cur - start)/(double)CLOCKS_PER_SEC > timeBudget) return true;
}
return false;
}
};//end class decimation
}//end namespace
#endif
|