File: quad_diag_collapse.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,132 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 30
file content (649 lines) | stat: -rwxr-xr-x 23,153 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
#ifndef QUAD_DIAGONAL_COLLAPSE_H
#define QUAD_DIAGONAL_COLLAPSE_H

#include<vcg/connectors/halfedge_pos.h>
#include<vcg/complex/algorithms/local_optimization.h>
#include<vcg/complex/algorithms/smooth.h>

#include<set>

#include<vcg/space/ray3.h>

#include<vcg/complex/algorithms/halfedge_quad_clean.h>

namespace vcg{
    namespace tri{


        /*!
          * \brief Generic class for checking feasibility of collapses
          *
          */
        template<class MeshType, class TriMeshType >
        class FeasibilityCheck
        {
        public:
            typedef typename MeshType::HEdgePointer HEdgePointer;
            typedef typename TriMeshType::FaceType TriFaceType;
            typedef typename vcg::GridStaticPtr<TriFaceType, typename TriFaceType::ScalarType> GRID;
            typedef typename TriMeshType::CoordType CoordType;

            static bool check_feasible(HEdgePointer hp, CoordType &V1, CoordType &V2, TriMeshType &tm, GRID &grid);
        };

        /*!
          * \brief Generic class for weighting collapses
          *
          */
        template<class MeshType, class TriMeshType >
        class OperationWeight
        {
        public:
            typedef typename MeshType::HEdgePointer HEdgePointer;
            typedef typename TriMeshType::FaceType TriFaceType;
            typedef typename vcg::GridStaticPtr<TriFaceType, typename TriFaceType::ScalarType> GRID;
            typedef typename TriMeshType::CoordType CoordType;

            static float compute_weight(HEdgePointer hp, CoordType &P, TriMeshType &tm, GRID &grid);
        };


        /*!
          * \brief Class that provides methods for checking and weighting collapses using fitmaps
          *
          */
        template<class MeshType, class TriMeshType >
        class FitmapsCollapse : public FeasibilityCheck<MeshType, TriMeshType>, public OperationWeight<MeshType, TriMeshType>
        {

        protected:

            typedef typename MeshType::VertexPointer VertexPointer;
            typedef typename MeshType::HEdgePointer HEdgePointer;

            typedef typename TriMeshType::FaceType TriFaceType;
            typedef typename vcg::GridStaticPtr<TriFaceType, typename TriFaceType::ScalarType> GRID;

            typedef typename TriMeshType::CoordType CoordType;
            typedef typename TriMeshType::ScalarType ScalarType;
            typedef typename TriMeshType::FacePointer FacePointer;

            typedef typename TriMeshType::template PerVertexAttributeHandle<float> Fitmap_attr;

        public:

            /// Coefficient that will be multiplied with the value of the M-Fitmap
            static float& Mfit_coeff()
            {
                static float coeff = 1.5;
                return coeff;
            }

            /*! Checks if an operation is feasible using M-Fitmap
              *
              * \param hp Pointer to an halfedge that identifies a diagonal
              * \param V1 Coordinates of the first point of the diagonal
              * \param V2 Coordinates of the second point of the diagonal
              * \param tm Reference mesh
              * \param grid Spatial index used for raycasting
              *
              * \return Value indicating whether diagnoal is collapsible
              */
            static bool check_feasible(HEdgePointer hp, CoordType &V1, CoordType &V2, TriMeshType &tm, GRID &grid)
            {
                float length = Distance( V1, V2 );

                Fitmap_attr M_Fit = tri::Allocator<TriMeshType>::template GetPerVertexAttribute<float>(tm,"M-Fitmap");

                CoordType P = (V1+V2)/2;
                float fitmap = compute_fitmap(hp, P, tm, grid, M_Fit);

                return length <= fitmap/Mfit_coeff();
            }

            /*! Computes the weight of a diagonal using S-Fitmap
              *
              * \param hp Pointer to an halfedge that identifies a diagonal
              * \param P Coordinates of the point on which fitmap will be computed
              * \param tm Reference mesh
              * \param grid Spatial index used for raycasting
              *
              * \return Computed weight
              */
            static float compute_weight(HEdgePointer hp, CoordType &P, TriMeshType &tm, GRID &grid)
            {
                Fitmap_attr S_Fit = tri::Allocator<TriMeshType>::template GetPerVertexAttribute<float>(tm,"S-Fitmap");

                return compute_fitmap(hp, P, tm, grid, S_Fit);
            }

        protected:

            /*!
              * Performs the computation of a fitmap on a given point
              *
              * \param hp Pointer to an halfedge that identifies a diagonal
              * \param P Coordinates of the point on which fitmap will be computed
              * \param tm Reference mesh
              * \param grid Spatial index used for raycasting
              * \param attr Fitmap type (S or M)
              *
              * \return Computed value of the fitmap
              */
            static float compute_fitmap(HEdgePointer hp, CoordType &P, TriMeshType &tm, GRID &grid, Fitmap_attr &attr)
            {
                CoordType N(0,0,0);

                vector<VertexPointer> vertices = HalfEdgeTopology<MeshType>::getVertices(hp->HFp());

                assert(vertices.size() == 4);

                N += vcg::Normal<typename MeshType::CoordType>(vertices[0]->cP(), vertices[1]->cP(), vertices[2]->cP());
                N += vcg::Normal<typename MeshType::CoordType>(vertices[2]->cP(), vertices[3]->cP(), vertices[0]->cP());

                N.Normalize();

                CoordType C(0,0,0);
                FacePointer T = getClosestFaceRay(tm, grid, P, N, &C, NULL);

                float result = 1.0;

                if(T)
                {
                    float w0;
                    float w1;
                    float w2;
                    vcg::InterpolationParameters(*T, N, C, w0, w1, w2);

                    float s0 = attr[T->V(0)];
                    float s1 = attr[T->V(1)];
                    float s2 = attr[T->V(2)];

                    result = (w0*s0 + w1*s1 + w2*s2)/(w0+w1+w2);
                }

                return result;
            }


            static FacePointer getClosestFaceRay(TriMeshType &m, GRID &grid, CoordType P, CoordType raydir, CoordType* closest, ScalarType* minDist)
            {

                ScalarType diag = m.bbox.Diag();

                raydir.Normalize();

                Ray3<typename GRID::ScalarType> ray;

                ray.SetOrigin(P);
                ScalarType t;

                FacePointer f = 0;
                FacePointer fr = 0;

                vector<CoordType> closests;
                vector<ScalarType> minDists;
                vector<FacePointer> faces;

                ray.SetDirection(-raydir);

                f = vcg::tri::DoRay<TriMeshType,GRID>(m, grid, ray, diag/4.0, t);

                if (f)
                {
                    closests.push_back(ray.Origin() + ray.Direction()*t);
                    minDists.push_back(fabs(t));
                    faces.push_back(f);
                }

                ray.SetDirection(raydir);

                fr = vcg::tri::DoRay<TriMeshType,GRID>(m, grid, ray, diag/4.0, t);

                if (fr)
                {
                    closests.push_back(ray.Origin() + ray.Direction()*t);
                    minDists.push_back(fabs(t));
                    faces.push_back(fr);
                }

                if (fr)
                    if (fr->N()*raydir<0)
                        fr=0; // discard: inverse normal;

                if (minDists.size() == 0)
                {
                    if (closest) *closest=P;
                    if (minDist) *minDist=0;
                    f = 0;
                }
                else
                {
                    int minI = std::min_element(minDists.begin(),minDists.end()) - minDists.begin();
                    if (closest) *closest= closests[minI];
                    if (minDist) *minDist= minDists[minI];
                    f = faces[minI];
                }

                return f;

            }

        };



        /*!
          * \brief Class implementing simplification of quad meshes by diagonal collapses
          *
          */
        template<class MeshType, class MYTYPE, class TriMeshType, class OptimizationType>
        class QuadDiagonalCollapseBase: public LocalOptimization<MeshType>::LocModType
        {

        protected:

            typedef Pos<MeshType> PosType;
            typedef typename MeshType::VertexPointer VertexPointer;
            typedef typename MeshType::FacePointer FacePointer;
            typedef typename MeshType::HEdgePointer HEdgePointer;
            typedef typename LocalOptimization<MeshType>::HeapElem HeapElem;
            typedef typename LocalOptimization<MeshType>::HeapType HeapType;
            typedef typename MeshType::ScalarType ScalarType;
            typedef typename MeshType::CoordType CoordType;
            typedef typename TriMeshType::FaceType TriFaceType;
            typedef typename vcg::GridStaticPtr<TriFaceType, typename TriFaceType::ScalarType> GRID;

            /// Vertex returned by the collapse
            VertexPointer ret;

            /// Global mark for updating
            static int& GlobalMark()
            {
                static int im=0;
                return im;
            }

            /// Local mark for updating
            int localMark;

            /// Priority in the heap
            ScalarType _priority;

            /// Set of modified faces
            set<FacePointer> faces;

            /// Halfedge that identifies the diagonal to collapse
            HEdgePointer hp;

        public:

            /// Reference mesh used for smoothing
            static TriMeshType* &refMesh()
            {
                static TriMeshType* m = NULL;
                return m;
            }

            /// Spatial index for smoothing
            static GRID* &grid()
            {
                static GRID* grid = NULL;
                return grid;
            }

            /// Number of smoothing iterations to be performed
            static unsigned int &smoothing_iterations()
            {
                static unsigned int iterations = 5;
                return iterations;
            }

            /// Default Constructor
            QuadDiagonalCollapseBase(){}

            /*!
              * Constructor
              *
              * \param he Pointer to an halfedge representing a diagonal
              * \param mark Temporal mark of the operation
              */
            QuadDiagonalCollapseBase(HEdgePointer he, int mark)
            {
                localMark = mark;
                hp = he;
                _priority = ComputePriority();
            }

            ~QuadDiagonalCollapseBase()
            {
                faces.clear();
            }

            /*!
              * Computes priority of the operation as the length of the diagonal
              *
              * \return Priority
              */
            ScalarType ComputePriority()
            {
                CoordType V1 = hp->HVp()->cP();
                CoordType V2 = hp->HNp()->HNp()->HVp()->cP();

                _priority = Distance( V1, V2 );
                return _priority;
            }

            virtual const char *Info(MeshType &m)
            {
                static char buf[60];
                sprintf(buf,"(%d - %d) %g\n", hp->HVp()-&m.vert[0], hp->HNp()->HNp()->HVp()-&m.vert[0], -_priority);
                return buf;
            }

            /*!
              * Performs the collapse and the optimizations
              *
              * \param m Mesh
              *
              */
            inline void Execute(MeshType &m)
            {

                // Collapse the diagonal
                ret = HalfEdgeTopology<MeshType>::diagonal_collapse_quad(m,hp->HFp(), hp->HVp());

                if(ret->VHp())
                {
                    set<FacePointer> tmp = HalfEdgeTopology<MeshType>::getFaces(ret);

                    vector<FacePointer> incident_faces = HalfEdgeTopology<MeshType>::get_incident_faces(ret,ret->VHp());

                    faces.insert(incident_faces.begin(), incident_faces.end());

                    HalfedgeQuadClean<MeshType>::remove_doublets(m, faces);

                    // Optimization by edge rotations
                    if(!ret->IsD())
                    {
                        vector<HEdgePointer> hedges = HalfEdgeTopology<MeshType>::get_incident_hedges(ret,ret->VHp());

                        HalfedgeQuadClean<MeshType>:: template flip_edges<OptimizationType>(m, hedges, faces);
                    }

                    faces.insert(tmp.begin(), tmp.end());

                    // Set of all vertices to smooth
                    set<VertexPointer> vertices;

                    for(typename set<FacePointer>::iterator fi = faces.begin(); fi != faces.end(); ++fi)
                    {
                        if(*fi)
                        {
                            if( !((*fi)->IsD()))
                            {
                                vector<VertexPointer> aux = HalfEdgeTopology<MeshType>::getVertices(*fi);

                                vertices.insert(aux.begin(),aux.end());
                            }
                        }
                    }


                    // Smoothing
                    for(unsigned int i = 0; i < smoothing_iterations(); i++)
                    {
                        for(typename set<VertexPointer>::iterator vi = vertices.begin(); vi!= vertices.end(); ++vi)
                            if(!HalfEdgeTopology<MeshType>::isBorderVertex(*vi))
                                Smooth<MeshType>::VertexCoordLaplacianReproject(m,*grid(), *refMesh(),*vi);
                    }


                    // Add all faces modified by smoothing into the set of modified faces
                    for(typename set<VertexPointer>::iterator vi = vertices.begin(); vi!= vertices.end(); ++vi)
                    {
                        vector<FacePointer> tmp_faces = HalfEdgeTopology<MeshType>::get_incident_faces(*vi);

                        faces.insert(tmp_faces.begin(), tmp_faces.end());
                    }

                }


            }

            /*!
              * Updates the heap of operations.
              * For each modified face inserts into the heap two consecutive halfedges representing the two diagonals
              *
              * \param h_ret Heap to be updated
              *
              */
            inline  void UpdateHeap(HeapType & h_ret)
            {

                GlobalMark()++;

                for(typename set<FacePointer>::iterator fi = faces.begin(); fi != faces.end(); ++fi)
                {
                    if(*fi)
                    {
                        if( !((*fi)->IsD()))
                        {
                            (*fi)->IMark() = GlobalMark();

                            HEdgePointer start_he = (*fi)->FHp();

                            h_ret.push_back( HeapElem( new MYTYPE( start_he, GlobalMark() ) ) );
                            std::push_heap( h_ret.begin(),h_ret.end() );

                            h_ret.push_back( HeapElem( new MYTYPE( start_he->HNp(), GlobalMark() ) ) );
                            std::push_heap( h_ret.begin(),h_ret.end() );
                        }
                    }
                }
            }


            ModifierType IsOfType()
            {
                return QuadDiagCollapseOp;
            }

            /*!
              * Checks if the operation can be done without generation of degenerate configurations
              *
              * \return Value indicating whether the operation can be performed
              */
            inline bool IsFeasible()
            {
                FacePointer fp = hp->HFp();

                if(!fp)
                    return false;

                if(fp->IsD() || fp->VN() !=4)
                    return false;

                return ( HalfEdgeTopology<MeshType>::check_diagonal_collapse_quad(hp));

            }

            /*!
              * Checks if the operation is up to date
              *
              * \return Value indicating whether operation is up to date
              */
            inline bool IsUpToDate()
            {
                FacePointer fp = hp->HFp();

                if(fp)
                    return (!hp->IsD() && localMark >= fp->IMark() );

                return false;

            }

            /*!
              * Gets the priority of the operation
              *
              * \return Value indicating the priority
              */
            virtual ScalarType Priority() const
            {
                return _priority;
            }

            /*!
              * Initializes a heap with all the possible diagonal collapses of the mesh
              * For each face inserts two consecutive halfedges representing the two diagonals
              *
              * \param m Mesh
              * \param h_ret heap to be initialized
              *
              */
            static void Init(MeshType &m,HeapType &h_ret)
            {
                // Grid and reference mesh must be initialized
                assert(grid());
                assert(refMesh());

                assert(!HalfedgeQuadClean<MeshType>::has_doublets(m));
                assert(!HalfedgeQuadClean<MeshType>::has_singlets(m));

                vcg::tri::InitFaceIMark(m);

                h_ret.clear();

                typename MeshType::FaceIterator fi;
                for(fi = m.face.begin(); fi != m.face.end();++fi)
                {
                    if(!(*fi).IsD())
                    {

                        h_ret.push_back( HeapElem(new MYTYPE( (*fi).FHp(), IMark(m))));

                        h_ret.push_back( HeapElem(new MYTYPE( (*fi).FHp()->HNp(), IMark(m))));

                    }
                }

            }


        };

        /*!
          * \brief Class implementing simplification of quad meshes by diagonal collapses
          * priority of the operations is weighted with a value computed by class WeightType
          * Feasibility is checked with class CheckType
          *
          */
        template<class MeshType, class MYTYPE, class TriMeshType, class OptimizationType, class WeightType, class CheckType >
        class QuadDiagonalCollapse: public QuadDiagonalCollapseBase<MeshType, MYTYPE, TriMeshType, OptimizationType>
        {

        protected:

            typedef Pos<MeshType> PosType;
            typedef typename MeshType::VertexPointer VertexPointer;
            typedef typename MeshType::FacePointer FacePointer;
            typedef typename MeshType::HEdgePointer HEdgePointer;
            typedef typename LocalOptimization<MeshType>::HeapElem HeapElem;
            typedef typename LocalOptimization<MeshType>::HeapType HeapType;
            typedef typename MeshType::ScalarType ScalarType;
            typedef typename MeshType::CoordType CoordType;

            typedef typename TriMeshType::FaceType TriFaceType;
            typedef typename vcg::GridStaticPtr<TriFaceType, typename TriFaceType::ScalarType> GRID;

        public:

            /// Default constructor
            QuadDiagonalCollapse(){}

            /*!
              * Constructor
              *
              * \param he Pointer to an halfedge representing a diagonal
              * \param mark Temporal mark of the operation
              */
            QuadDiagonalCollapse(HEdgePointer he, int mark)
            {
                this->localMark = mark;
                this->hp = he;
                this->_priority = this->ComputePriority();
            }

            /*!
              * Computes priority of the operation as length * weight
              *
              * \return Priority
              */
            ScalarType ComputePriority()
            {
                CoordType V1 = this->hp->HVp()->cP();
                CoordType V2 = this->hp->HNp()->HNp()->HVp()->cP();

                CoordType P = (V1+V2)/2;
                float weight = WeightType::compute_weight(this->hp, P, *(this->refMesh()), *(this->grid()));

                this->_priority = Distance( V1, V2 ) * weight;
                return this->_priority;
            }

            /*!
              * Checks if the operation can be done without generation of degenerate configurations
              *
              * \return Value indicating whether the operation can be performed
              */
            bool IsFeasible()
            {
                FacePointer fp = this->hp->HFp();

                if(!fp)
                    return false;

                if(fp->IsD() || fp->VN() !=4)
                    return false;

                if(!HalfEdgeTopology<MeshType>::check_diagonal_collapse_quad(this->hp))
                    return false;

                CoordType V1 = this->hp->HVp()->cP();
                CoordType V2 = this->hp->HNp()->HNp()->HVp()->cP();

                return CheckType::check_feasible(this->hp, V1, V2, *(this->refMesh()), *(this->grid()));

            }

        };


    }//end namespace tri
}//end namespace vcg

#endif // QUAD_DIAGONAL_COLLAPSE_H