1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_TRIMESHCOLLAPSE_QUADRIC__
#define __VCG_TRIMESHCOLLAPSE_QUADRIC__
#include<vcg/math/quadric.h>
#include<vcg/complex/algorithms/update/bounding.h>
#include<vcg/complex/algorithms/local_optimization/tri_edge_collapse.h>
#include<vcg/complex/algorithms/local_optimization.h>
#include<vcg/complex/algorithms/stat.h>
namespace vcg{
namespace tri{
/**
This class describe Quadric based collapse operation.
Requirements:
Vertex
must have:
incremental mark
VF topology
must have:
members
QuadricType Qd();
ScalarType W() const;
A per-vertex Weight that can be used in simplification
lower weight means that error is lowered,
standard: return W==1.0
void Merge(MESH_TYPE::vertex_type const & v);
Merges the attributes of the current vertex with the ones of v
(e.g. its weight with the one of the given vertex, the color ect).
Standard: void function;
OtherWise the class should be templated with a static helper class that helps to retrieve these functions.
If the vertex class exposes these functions a default static helper class is provided.
*/
//**Helper CLASSES**//
template <class VERTEX_TYPE>
class QInfoStandard
{
public:
QInfoStandard(){}
static void Init(){}
static math::Quadric<double> &Qd(VERTEX_TYPE &v) {return v.Qd();}
static math::Quadric<double> &Qd(VERTEX_TYPE *v) {return v->Qd();}
static typename VERTEX_TYPE::ScalarType W(VERTEX_TYPE * /*v*/) {return 1.0;}
static typename VERTEX_TYPE::ScalarType W(VERTEX_TYPE &/*v*/) {return 1.0;}
static void Merge(VERTEX_TYPE & /*v_dest*/, VERTEX_TYPE const & /*v_del*/){}
};
class TriEdgeCollapseQuadricParameter : public BaseParameterClass
{
public:
double BoundaryQuadricWeight = 0.5;
bool FastPreserveBoundary = false;
bool AreaCheck = false;
bool HardQualityCheck = false;
double HardQualityThr = 0.1;
bool HardNormalCheck = false;
bool NormalCheck = false;
double NormalThrRad = M_PI/2.0;
double CosineThr = 0 ; // ~ cos(pi/2)
bool OptimalPlacement =true;
bool SVDPlacement = false;
bool PreserveTopology =false;
bool PreserveBoundary = false;
double QuadricEpsilon = 1e-15;
bool QualityCheck =true;
double QualityThr =.3; // Collapsed that generate faces with quality LOWER than this value are penalized. So higher the value -> better the quality of the accepted triangles
bool QualityQuadric =false; // During the initialization manage all the edges as border edges adding a set of additional quadrics that are useful mostly for keeping face aspect ratio good.
double QualityQuadricWeight = 0.001f; // During the initialization manage all the edges as border edges adding a set of additional quadrics that are useful mostly for keeping face aspect ratio good.
bool QualityWeight=false;
double QualityWeightFactor=100.0;
double ScaleFactor=1.0;
bool ScaleIndependent=true;
bool UseArea =true;
bool UseVertexWeight=false;
TriEdgeCollapseQuadricParameter() {}
};
template<class TriMeshType, class VertexPair, class MYTYPE, class HelperType = QInfoStandard<typename TriMeshType::VertexType> >
class TriEdgeCollapseQuadric: public TriEdgeCollapse< TriMeshType, VertexPair, MYTYPE>
{
public:
typedef typename vcg::tri::TriEdgeCollapse< TriMeshType, VertexPair, MYTYPE > TEC;
typedef typename TriEdgeCollapse<TriMeshType, VertexPair, MYTYPE>::HeapType HeapType;
typedef typename TriEdgeCollapse<TriMeshType, VertexPair, MYTYPE>::HeapElem HeapElem;
typedef typename TriMeshType::CoordType CoordType;
typedef typename TriMeshType::ScalarType ScalarType;
typedef typename TriMeshType::FaceType FaceType;
typedef typename TriMeshType::VertexType VertexType;
typedef typename TriMeshType::VertexIterator VertexIterator;
typedef typename TriMeshType::FaceIterator FaceIterator;
typedef typename vcg::face::VFIterator<FaceType> VFIterator;
typedef math::Quadric< double > QuadricType;
typedef TriEdgeCollapseQuadricParameter QParameter;
typedef HelperType QH;
CoordType optimalPos; // Local storage of the once computed optimal position of the collapse.
// Pointer to the vector that store the Write flags. Used to preserve them if you ask to preserve for the boundaries.
static std::vector<typename TriMeshType::VertexPointer> & WV(){
static std::vector<typename TriMeshType::VertexPointer> _WV; return _WV;
}
inline TriEdgeCollapseQuadric(){}
inline TriEdgeCollapseQuadric(const VertexPair &p, int i, BaseParameterClass *pp)
{
this->localMark = i;
this->pos=p;
this->_priority = ComputePriority(pp);
}
inline bool IsFeasible(BaseParameterClass *_pp){
QParameter *pp=(QParameter *)_pp;
if(!pp->PreserveTopology) return true;
bool res = ( EdgeCollapser<TriMeshType, VertexPair>::LinkConditions(this->pos) );
if(!res) ++( TEC::FailStat::LinkConditionEdge() );
return res;
}
void ComputePosition(BaseParameterClass *_pp)
{
QParameter *pp=(QParameter *)_pp;
CoordType newPos = (this->pos.V(0)->P()+this->pos.V(1)->P())/2.0;
if(pp->OptimalPlacement==false)
newPos=this->pos.V(1)->P();
else
{
if((QH::Qd(this->pos.V(0)).Apply(newPos) + QH::Qd(this->pos.V(1)).Apply(newPos)) > 2.0*pp->QuadricEpsilon)
{
QuadricType q=QH::Qd(this->pos.V(0));
q+=QH::Qd(this->pos.V(1));
Point3<QuadricType::ScalarType> x;
if(pp->SVDPlacement)
q.MinimumClosestToPoint(x,Point3d::Construct(newPos));
else
q.Minimum(x);
newPos = CoordType::Construct(x);
}
}
this->optimalPos = newPos;
}
void Execute(TriMeshType &m, BaseParameterClass * /*_pp*/)
{
CoordType newPos = this->optimalPos;
QH::Qd(this->pos.V(1))+=QH::Qd(this->pos.V(0)); // v0 is deleted and v1 take the new position
EdgeCollapser<TriMeshType,VertexPair>::Do(m, this->pos, newPos);
}
// Final Clean up after the end of the simplification process
static void Finalize(TriMeshType &m, HeapType& /*h_ret*/, BaseParameterClass *_pp)
{
QParameter *pp=(QParameter *)_pp;
// If we had the boundary preservation we should clean up the writable flags
if(pp->FastPreserveBoundary)
{
typename TriMeshType::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD()) (*vi).SetW();
}
if(pp->PreserveBoundary)
{
typename std::vector<typename TriMeshType::VertexPointer>::iterator wvi;
for(wvi=WV().begin();wvi!=WV().end();++wvi)
if(!(*wvi)->IsD()) (*wvi)->SetW();
}
}
static void Init(TriMeshType &m, HeapType &h_ret, BaseParameterClass *_pp)
{
QParameter *pp=(QParameter *)_pp;
pp->CosineThr=cos(pp->NormalThrRad);
h_ret.clear();
vcg::tri::UpdateTopology<TriMeshType>::VertexFace(m);
vcg::tri::UpdateFlags<TriMeshType>::FaceBorderFromVF(m);
if(pp->FastPreserveBoundary)
{
for(auto pf=m.face.begin();pf!=m.face.end();++pf)
if( !(*pf).IsD() && (*pf).IsW() )
for(int j=0;j<3;++j)
if((*pf).IsB(j))
{
(*pf).V(j)->ClearW();
(*pf).V1(j)->ClearW();
}
}
if(pp->PreserveBoundary)
{
WV().clear();
for(auto pf=m.face.begin();pf!=m.face.end();++pf)
if( !(*pf).IsD() && (*pf).IsW() )
for(int j=0;j<3;++j)
if((*pf).IsB(j))
{
if((*pf).V(j)->IsW()) {(*pf).V(j)->ClearW(); WV().push_back((*pf).V(j));}
if((*pf).V1(j)->IsW()) {(*pf).V1(j)->ClearW();WV().push_back((*pf).V1(j));}
}
}
InitQuadric(m,pp);
// Initialize the heap with all the possible collapses
if(IsSymmetric(pp))
{ // if the collapse is symmetric (e.g. u->v == v->u)
for(auto vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && (*vi).IsRW())
{
vcg::face::VFIterator<FaceType> x;
for( x.F() = (*vi).VFp(), x.I() = (*vi).VFi(); x.F()!=0; ++ x){
x.V1()->ClearV();
x.V2()->ClearV();
}
for( x.F() = (*vi).VFp(), x.I() = (*vi).VFi(); x.F()!=0; ++x )
{
if((x.V0()<x.V1()) && x.V1()->IsRW() && !x.V1()->IsV()){
x.V1()->SetV();
h_ret.push_back(HeapElem(new MYTYPE(VertexPair(x.V0(),x.V1()),TriEdgeCollapse< TriMeshType,VertexPair,MYTYPE>::GlobalMark(),_pp )));
}
if((x.V0()<x.V2()) && x.V2()->IsRW()&& !x.V2()->IsV()){
x.V2()->SetV();
h_ret.push_back(HeapElem(new MYTYPE(VertexPair(x.V0(),x.V2()),TriEdgeCollapse< TriMeshType,VertexPair,MYTYPE>::GlobalMark(),_pp )));
}
}
}
}
else
{ // if the collapse is A-symmetric (e.g. u->v != v->u)
for(auto vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && (*vi).IsRW())
{
vcg::face::VFIterator<FaceType> x;
UnMarkAll(m);
for( x.F() = (*vi).VFp(), x.I() = (*vi).VFi(); x.F()!=0; ++ x)
{
if(x.V()->IsRW() && x.V1()->IsRW() && !IsMarked(m,x.F()->V1(x.I()))){
h_ret.push_back( HeapElem( new MYTYPE( VertexPair (x.V(),x.V1()),TriEdgeCollapse< TriMeshType,VertexPair,MYTYPE>::GlobalMark(),_pp)));
}
if(x.V()->IsRW() && x.V2()->IsRW() && !IsMarked(m,x.F()->V2(x.I()))){
h_ret.push_back( HeapElem( new MYTYPE( VertexPair (x.V(),x.V2()),TriEdgeCollapse< TriMeshType,VertexPair,MYTYPE>::GlobalMark(),_pp)));
}
}
}
}
}
// static float HeapSimplexRatio(BaseParameterClass *_pp) {return IsSymmetric(_pp)?5.0f:9.0f;}
static float HeapSimplexRatio(BaseParameterClass *_pp) {return IsSymmetric(_pp)?4.0f:8.0f;}
static bool IsSymmetric(BaseParameterClass *_pp) {return ((QParameter *)_pp)->OptimalPlacement;}
static bool IsVertexStable(BaseParameterClass *_pp) {return !((QParameter *)_pp)->OptimalPlacement;}
/** Evaluate the priority (error) for an edge collapse
*
* It simulate the collapse and compute the quadric error
* generated by this collapse. This error is weighted with
* - aspect ratio of involved triangles
* - normal variation
*/
ScalarType ComputePriority(BaseParameterClass *_pp)
{
QParameter *pp=(QParameter *)_pp;
VertexType * v[2];
v[0] = this->pos.V(0);
v[1] = this->pos.V(1);
std::vector<CoordType> origNormalVec; // vector with incident faces original normals
if(pp->NormalCheck){ // Collect Original Normals
for(VFIterator x(v[0]); !x.End(); ++x ) // for all faces in v0
if( x.V1()!=v[1] && x.V2()!=v[1] ) // skip faces with v1
origNormalVec.push_back(NormalizedTriangleNormal(*x.F()));
for(VFIterator x(v[1]); !x.End(); ++x ) // for all faces in v1
if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
origNormalVec.push_back(NormalizedTriangleNormal(*x.F()));
}
ScalarType origArea=0;
if(pp->AreaCheck){ // Collect Original Area
for(VFIterator x(v[0]); !x.End(); ++x ) // for all faces in v0
origArea += DoubleArea(*x.F());
for(VFIterator x(v[1]); !x.End(); ++x ) // for all faces in v1
if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
origArea += DoubleArea(*x.F());
}
ScalarType origQual= std::numeric_limits<double>::max();
if(pp->HardQualityCheck){ // Collect original quality
for(VFIterator x(v[0]); !x.End(); ++x ) // for all faces in v0
origQual=std::min(origQual, QualityFace(*x.F()));
for(VFIterator x(v[1]); !x.End(); ++x ) // for all faces in v1
if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
origQual=std::min(origQual, QualityFace(*x.F()));
}
//// Move the two vertexes into new position (storing the old ones)
CoordType OldPos0=v[0]->P();
CoordType OldPos1=v[1]->P();
ComputePosition(_pp);
// Now Simulate the collapse
v[0]->P() = v[1]->P() = this->optimalPos;
//// Rescan faces and compute the worst quality and normals that happens after collapse
ScalarType MinCos = std::numeric_limits<double>::max(); // Cosine of the angle variation: -1 ~ very bad to 1~perfect
if(pp->NormalCheck){
int i=0;
for(VFIterator x(v[0]); !x.End(); ++x ) // for all faces in v0
if( x.V1()!=v[1] && x.V2()!=v[1] ) // skipping faces with v1
{
CoordType nn=NormalizedTriangleNormal(*x.F());
MinCos=std::min(MinCos,nn.dot(origNormalVec[i++]));
}
for(VFIterator x(v[1]); !x.End(); ++x ) // for all faces in v1
if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
{
CoordType nn=NormalizedTriangleNormal(*x.F());
MinCos=std::min(MinCos,nn.dot(origNormalVec[i++]));
}
}
ScalarType newQual = std::numeric_limits<ScalarType>::max(); //
if(pp->QualityCheck){
for(VFIterator x(v[0]); !x.End(); ++x ) // for all faces in v0
if( x.V1()!=v[1] && x.V2()!=v[1] )
newQual=std::min(newQual,QualityFace(*x.F()));
for(VFIterator x(v[1]); !x.End(); ++x ) // for all faces in v1
if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
newQual=std::min(newQual,QualityFace(*x.F()));
}
ScalarType newArea=0;
if(pp->AreaCheck){ // Collect Area
for(VFIterator x(v[0]); !x.End(); ++x ) // for all faces in v0
newArea += DoubleArea(*x.F());
for(VFIterator x(v[1]); !x.End(); ++x ) // for all faces in v1
if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
newArea += DoubleArea(*x.F());
}
QuadricType qq=QH::Qd(v[0]);
qq+=QH::Qd(v[1]);
double QuadErr = pp->ScaleFactor*qq.Apply(Point3d::Construct(v[1]->P()));
assert(!math::IsNAN(QuadErr));
// All collapses involving triangles with quality larger than <QualityThr> have no penalty;
if(newQual>pp->QualityThr) newQual=pp->QualityThr;
if(pp->NormalCheck){
// All collapses where the normal vary less than <NormalThr> (e.g. more than CosineThr)
// have no particular penalty
if(MinCos>pp->CosineThr) MinCos=pp->CosineThr;
MinCos=fabs((MinCos+1.0)/2.0); // Now it is in the range 0..1 with 0 very bad!
assert(MinCos >=0 && MinCos<1.1 );
}
QuadErr= std::max(QuadErr,pp->QuadricEpsilon);
if(QuadErr <= pp->QuadricEpsilon)
{
QuadErr *= Distance(OldPos0,OldPos1);
}
if( pp->UseVertexWeight ) QuadErr *= (QH::W(v[1])+QH::W(v[0]))/2;
ScalarType error;
if(!pp->QualityCheck && !pp->NormalCheck) error = (ScalarType)(QuadErr);
if( pp->QualityCheck && !pp->NormalCheck) error = (ScalarType)(QuadErr / newQual);
if(!pp->QualityCheck && pp->NormalCheck) error = (ScalarType)(QuadErr / MinCos);
if( pp->QualityCheck && pp->NormalCheck) error = (ScalarType)(QuadErr / (newQual*MinCos));
if(pp->AreaCheck && ((fabs(origArea-newArea)/(origArea+newArea))>0.01) )
error = std::numeric_limits<ScalarType>::max();
if(pp->HardQualityCheck &&
(newQual < pp->HardQualityThr && newQual < origQual*0.9) )
error = std::numeric_limits<ScalarType>::max();
if(pp->HardNormalCheck)
if(CheckForFlip()) error = std::numeric_limits<ScalarType>::max();
// Restore old position of v0 and v1
v[0]->P()=OldPos0;
v[1]->P()=OldPos1;
this->_priority = error;
return this->_priority;
}
bool CheckForFlippedFaceOverVertex(VertexType *vp, ScalarType angleThrRad = math::ToRad(150.))
{
std::map<VertexType *, CoordType> edgeNormMap;
ScalarType maxAngle=0;
for(VFIterator x(vp); !x.End(); ++x ) // for all faces in v1
{
if(QualityFace(*x.F()) <0.01 ) return true;
for(int i=0;i<2;++i)
{
VertexType *vv= i==0?x.V1():x.V2();
assert(vv!=vp);
auto ni = edgeNormMap.find(vv);
if(ni==edgeNormMap.end()) edgeNormMap[vv] = NormalizedTriangleNormal(*x.F());
else maxAngle = std::max(maxAngle,AngleN(NormalizedTriangleNormal(*x.F()),ni->second));
}
}
return (maxAngle > angleThrRad);
}
// This function return true if, after an edge collapse,
// among the surviving faces, there are two adjacent faces forming a
// diedral angle larger than the given threshold
// It assumes that the two vertexes of the collapsing edge
// have been already moved to the new position but the topolgy has not yet been changed (e.g. there are two zero-area faces)
bool CheckForFlip(ScalarType angleThrRad = math::ToRad(150.))
{
std::map<VertexType *, CoordType> edgeNormMap;
VertexType * v[2];
v[0] = this->pos.V(0);
v[1] = this->pos.V(1);
ScalarType maxAngle=0;
assert (v[0]->P()==v[1]->P());
for(VFIterator x(v[0]); !x.End(); ++x ) // for all faces in v0
if( x.V1()!=v[1] && x.V2()!=v[1] ) // skip faces with v1
{
if(QualityFace(*x.F()) <0.01 ) return true;
for(int i=0;i<2;++i)
{
VertexType *vv= (i==0)?x.V1():x.V2();
assert(vv!=v[0]);
auto ni = edgeNormMap.find(vv);
if(ni==edgeNormMap.end()) edgeNormMap[vv] = NormalizedTriangleNormal(*x.F());
else maxAngle = std::max(maxAngle,AngleN(NormalizedTriangleNormal(*x.F()),ni->second));
}
}
for(VFIterator x(v[1]); !x.End(); ++x ) // for all faces in v1
if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
{
if(QualityFace(*x.F()) <0.01 ) return true;
for(int i=0;i<2;++i)
{
VertexType *vv= i==0?x.V1():x.V2();
assert(vv!=v[1]);
auto ni = edgeNormMap.find(vv);
if(ni==edgeNormMap.end()) edgeNormMap[vv] = NormalizedTriangleNormal(*x.F());
else maxAngle = std::max(maxAngle,AngleN(NormalizedTriangleNormal(*x.F()),ni->second));
}
}
return (maxAngle > angleThrRad);
}
inline void AddCollapseToHeap(HeapType & h_ret, VertexType *v0, VertexType *v1, BaseParameterClass *_pp)
{
QParameter *pp=(QParameter *)_pp;
ScalarType maxAdmitErr = std::numeric_limits<ScalarType>::max();
h_ret.push_back(HeapElem(new MYTYPE(VertexPair(v0,v1), this->GlobalMark(),_pp)));
if(h_ret.back().pri > maxAdmitErr) {
delete h_ret.back().locModPtr;
h_ret.pop_back();
}
else
std::push_heap(h_ret.begin(),h_ret.end());
if(!IsSymmetric(pp)){
h_ret.push_back(HeapElem(new MYTYPE(VertexPair(v1,v0), this->GlobalMark(),_pp)));
if(h_ret.back().pri > maxAdmitErr) {
delete h_ret.back().locModPtr;
h_ret.pop_back();
}
else
std::push_heap(h_ret.begin(),h_ret.end());
}
}
inline void UpdateHeap(HeapType & h_ret, BaseParameterClass *_pp)
{
this->GlobalMark()++;
VertexType *v[2];
v[0]= this->pos.V(0);
v[1]= this->pos.V(1);
v[1]->IMark() = this->GlobalMark();
// First loop around the surviving vertex to unmark the Visit flags
for(VFIterator vfi(v[1]); !vfi.End(); ++vfi ) {
vfi.V1()->ClearV();
vfi.V2()->ClearV();
vfi.V1()->IMark() = this->GlobalMark();
vfi.V2()->IMark() = this->GlobalMark();
}
// Second Loop
for(VFIterator vfi(v[1]); !vfi.End(); ++vfi ) {
if( !(vfi.V1()->IsV()) && vfi.V1()->IsRW())
{
vfi.V1()->SetV();
AddCollapseToHeap(h_ret,vfi.V0(),vfi.V1(),_pp);
}
if( !(vfi.V2()->IsV()) && vfi.V2()->IsRW())
{
vfi.V2()->SetV();
AddCollapseToHeap(h_ret,vfi.V2(),vfi.V0(),_pp);
}
if(vfi.V1()->IsRW() && vfi.V2()->IsRW() )
AddCollapseToHeap(h_ret,vfi.V1(),vfi.V2(),_pp);
} // end second loop around surviving vertex.
}
static void InitQuadric(TriMeshType &m,BaseParameterClass *_pp)
{
QParameter *pp=(QParameter *)_pp;
QH::Init();
for(VertexIterator pv=m.vert.begin();pv!=m.vert.end();++pv)
if( ! (*pv).IsD() && (*pv).IsW())
QH::Qd(*pv).SetZero();
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if( !(*fi).IsD() && (*fi).IsR() )
if((*fi).V(0)->IsR() &&(*fi).V(1)->IsR() &&(*fi).V(2)->IsR())
{
Plane3<ScalarType,false> facePlane;
facePlane.SetDirection( ( (*fi).V(1)->cP() - (*fi).V(0)->cP() ) ^ ( (*fi).V(2)->cP() - (*fi).V(0)->cP() ));
if(!pp->UseArea)
facePlane.Normalize();
facePlane.SetOffset( facePlane.Direction().dot((*fi).V(0)->cP()));
QuadricType q;
q.ByPlane(facePlane);
// The basic < add face quadric to each vertex > loop
for(int j=0;j<3;++j)
if( (*fi).V(j)->IsW() )
QH::Qd((*fi).V(j)) += q;
for(int j=0;j<3;++j)
if( (*fi).IsB(j) || pp->QualityQuadric )
{
Plane3<ScalarType,false> borderPlane;
QuadricType bq;
// Border quadric record the squared distance from the plane orthogonal to the face and passing
// through the edge.
borderPlane.SetDirection(facePlane.Direction() ^ (( (*fi).V1(j)->cP() - (*fi).V(j)->cP() ).normalized()));
if( (*fi).IsB(j) ) borderPlane.SetDirection(borderPlane.Direction()* (ScalarType)(pp->BoundaryQuadricWeight )); // amplify border planes
else borderPlane.SetDirection(borderPlane.Direction()* (ScalarType)(pp->QualityQuadricWeight )); // and consider much less quadric for quality
borderPlane.SetOffset(borderPlane.Direction().dot((*fi).V(j)->cP()));
bq.ByPlane(borderPlane);
if( (*fi).V (j)->IsW() ) QH::Qd((*fi).V (j)) += bq;
if( (*fi).V1(j)->IsW() ) QH::Qd((*fi).V1(j)) += bq;
}
}
if(pp->ScaleIndependent)
{
vcg::tri::UpdateBounding<TriMeshType>::Box(m);
//Make all quadric independent from mesh size
pp->ScaleFactor = 1e8*pow(1.0/m.bbox.Diag(),6); // scaling factor
}
if(pp->QualityWeight) // we map quality range into a squared 01 and than this into the 1..QualityWeightFactor range
{
ScalarType minQ, maxQ;
tri::Stat<TriMeshType>::ComputePerVertexQualityMinMax(m,minQ,maxQ);
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
if( ! (*vi).IsD() && (*vi).IsW())
{
const double quality01squared = pow((double)((vi->Q()-minQ)/(maxQ-minQ)),2.0);
QH::Qd(*vi) *= 1.0 + quality01squared * (pp->QualityWeightFactor-1.0);
}
}
}
CoordType ComputeMinimal()
{
}
CoordType ComputeMinimalOld()
{
VertexType* &v0 = this->pos.V(0);
VertexType* &v1 = this->pos.V(1);
QuadricType q=QH::Qd(v0);
q+=QH::Qd(v1);
Point3<QuadricType::ScalarType> x;
bool rt=q.Minimum(x);
if(!rt) { // if the computation of the minimum fails we choose between the two edge points and the middle one.
Point3<QuadricType::ScalarType> x0=Point3d::Construct(v0->P());
Point3<QuadricType::ScalarType> x1=Point3d::Construct(v1->P());
x.Import((v1->P()+v1->P())/2);
double qvx=q.Apply(x);
double qv0=q.Apply(x0);
double qv1=q.Apply(x1);
if(qv0<qvx) x=x0;
if(qv1<qvx && qv1<qv0) x=x1;
}
return CoordType::Construct(x);
}
};
} // namespace tri
} // namespace vcg
#endif
|