File: tri_edge_collapse_quadric.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,132 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 30
file content (651 lines) | stat: -rw-r--r-- 25,710 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/

#ifndef __VCG_TRIMESHCOLLAPSE_QUADRIC__
#define __VCG_TRIMESHCOLLAPSE_QUADRIC__

#include<vcg/math/quadric.h>
#include<vcg/complex/algorithms/update/bounding.h>
#include<vcg/complex/algorithms/local_optimization/tri_edge_collapse.h>
#include<vcg/complex/algorithms/local_optimization.h>
#include<vcg/complex/algorithms/stat.h>


namespace vcg{
namespace tri{


/**
  This class describe Quadric based collapse operation.

    Requirements:

    Vertex
    must have:
   incremental mark
   VF topology

    must have:
        members

      QuadricType Qd();

            ScalarType W() const;
                A per-vertex Weight that can be used in simplification
                lower weight means that error is lowered,
                standard: return W==1.0

            void Merge(MESH_TYPE::vertex_type const & v);
                Merges the attributes of the current vertex with the ones of v
                (e.g. its weight with the one of the given vertex, the color ect).
                Standard: void function;

      OtherWise the class should be templated with a static helper class that helps to retrieve these functions.
      If the vertex class exposes these functions a default static helper class is provided.

*/
        //**Helper CLASSES**//
        template <class VERTEX_TYPE>
        class QInfoStandard
        {
        public:
      QInfoStandard(){}
      static void Init(){}
      static math::Quadric<double> &Qd(VERTEX_TYPE &v) {return v.Qd();}
      static math::Quadric<double> &Qd(VERTEX_TYPE *v) {return v->Qd();}
      static typename VERTEX_TYPE::ScalarType W(VERTEX_TYPE * /*v*/) {return 1.0;}
      static typename VERTEX_TYPE::ScalarType W(VERTEX_TYPE &/*v*/) {return 1.0;}
      static void Merge(VERTEX_TYPE & /*v_dest*/, VERTEX_TYPE const & /*v_del*/){}
        };


class TriEdgeCollapseQuadricParameter : public BaseParameterClass
{
public:
  double    BoundaryQuadricWeight = 0.5;
  bool      FastPreserveBoundary  = false;
  bool      AreaCheck           = false;
  bool      HardQualityCheck = false;
  double    HardQualityThr = 0.1;
  bool      HardNormalCheck =  false;
  bool      NormalCheck           = false;
  double    NormalThrRad          = M_PI/2.0;
  double    CosineThr             = 0 ; // ~ cos(pi/2) 
  bool      OptimalPlacement =true;
  bool      SVDPlacement = false;
  bool      PreserveTopology =false;
  bool      PreserveBoundary = false;
  double    QuadricEpsilon = 1e-15;
  bool      QualityCheck =true;
  double    QualityThr =.3;     // Collapsed that generate faces with quality LOWER than this value are penalized. So higher the value -> better the quality of the accepted triangles
  bool      QualityQuadric =false; // During the initialization manage all the edges as border edges adding a set of additional quadrics that are useful mostly for keeping face aspect ratio good.
  double    QualityQuadricWeight = 0.001f; // During the initialization manage all the edges as border edges adding a set of additional quadrics that are useful mostly for keeping face aspect ratio good.
  bool      QualityWeight=false;
  double    QualityWeightFactor=100.0;
  double    ScaleFactor=1.0;
  bool      ScaleIndependent=true;
  bool      UseArea =true;
  bool      UseVertexWeight=false;  

  TriEdgeCollapseQuadricParameter() {}
};


template<class TriMeshType, class VertexPair, class MYTYPE, class HelperType = QInfoStandard<typename TriMeshType::VertexType> >
class TriEdgeCollapseQuadric: public TriEdgeCollapse< TriMeshType, VertexPair, MYTYPE>
{
public:
  typedef typename vcg::tri::TriEdgeCollapse< TriMeshType, VertexPair, MYTYPE > TEC;
  typedef typename TriEdgeCollapse<TriMeshType, VertexPair, MYTYPE>::HeapType HeapType;
  typedef typename TriEdgeCollapse<TriMeshType, VertexPair, MYTYPE>::HeapElem HeapElem;
  typedef typename TriMeshType::CoordType CoordType;
  typedef typename TriMeshType::ScalarType ScalarType;
  typedef typename TriMeshType::FaceType FaceType;
  typedef typename TriMeshType::VertexType VertexType;
  typedef typename TriMeshType::VertexIterator VertexIterator;
  typedef typename TriMeshType::FaceIterator FaceIterator;
  typedef typename vcg::face::VFIterator<FaceType> VFIterator;
  typedef  math::Quadric< double > QuadricType;
  typedef TriEdgeCollapseQuadricParameter QParameter;
  typedef HelperType QH;
  
  CoordType optimalPos;  // Local storage of the once computed optimal position of the collapse.
  
  // Pointer to the vector that store the Write flags. Used to preserve them if you ask to preserve for the boundaries.
  static std::vector<typename TriMeshType::VertexPointer>  & WV(){
    static std::vector<typename TriMeshType::VertexPointer> _WV; return _WV;
  }
  
  inline TriEdgeCollapseQuadric(){}
  
  inline TriEdgeCollapseQuadric(const VertexPair &p, int i, BaseParameterClass *pp)
  {
    this->localMark = i;
    this->pos=p;
    this->_priority = ComputePriority(pp);
  }
  

  inline bool IsFeasible(BaseParameterClass *_pp){
    QParameter *pp=(QParameter *)_pp;
    if(!pp->PreserveTopology) return true;
    
    bool res = ( EdgeCollapser<TriMeshType, VertexPair>::LinkConditions(this->pos) );
    if(!res) ++( TEC::FailStat::LinkConditionEdge() );
    return res;
  }
  
  void ComputePosition(BaseParameterClass *_pp)
  {
    QParameter *pp=(QParameter *)_pp;
    CoordType newPos = (this->pos.V(0)->P()+this->pos.V(1)->P())/2.0;
    if(pp->OptimalPlacement==false)
      newPos=this->pos.V(1)->P();      
    else 
    {
      if((QH::Qd(this->pos.V(0)).Apply(newPos) + QH::Qd(this->pos.V(1)).Apply(newPos)) > 2.0*pp->QuadricEpsilon)              
      {
        QuadricType q=QH::Qd(this->pos.V(0));
        q+=QH::Qd(this->pos.V(1));
        
        Point3<QuadricType::ScalarType> x;
        if(pp->SVDPlacement)
          q.MinimumClosestToPoint(x,Point3d::Construct(newPos));
        else 
          q.Minimum(x);
        newPos = CoordType::Construct(x);  
      }      
    }
    this->optimalPos = newPos;
  }
  
  void Execute(TriMeshType &m, BaseParameterClass * /*_pp*/)
  {
    CoordType newPos = this->optimalPos;
    QH::Qd(this->pos.V(1))+=QH::Qd(this->pos.V(0)); // v0 is deleted and v1 take the new position
    EdgeCollapser<TriMeshType,VertexPair>::Do(m, this->pos, newPos); 
  }
  
  // Final Clean up after the end of the simplification process
  static void Finalize(TriMeshType &m, HeapType& /*h_ret*/, BaseParameterClass *_pp)
  {
    QParameter *pp=(QParameter *)_pp;
    
    // If we had the boundary preservation we should clean up the writable flags
    if(pp->FastPreserveBoundary)
    {
      typename 	TriMeshType::VertexIterator  vi;
      for(vi=m.vert.begin();vi!=m.vert.end();++vi)
        if(!(*vi).IsD()) (*vi).SetW();
    }
    if(pp->PreserveBoundary)
    {
      typename 	std::vector<typename TriMeshType::VertexPointer>::iterator wvi;
      for(wvi=WV().begin();wvi!=WV().end();++wvi)
        if(!(*wvi)->IsD()) (*wvi)->SetW();
    }
  }
  
  static void Init(TriMeshType &m, HeapType &h_ret, BaseParameterClass *_pp)
  {
    QParameter *pp=(QParameter *)_pp;    
    pp->CosineThr=cos(pp->NormalThrRad);
    h_ret.clear();
    vcg::tri::UpdateTopology<TriMeshType>::VertexFace(m);
    vcg::tri::UpdateFlags<TriMeshType>::FaceBorderFromVF(m);
    
    if(pp->FastPreserveBoundary)
    {
      for(auto pf=m.face.begin();pf!=m.face.end();++pf)
        if( !(*pf).IsD() && (*pf).IsW() )
          for(int j=0;j<3;++j)
            if((*pf).IsB(j))
            {
              (*pf).V(j)->ClearW();
              (*pf).V1(j)->ClearW();
            }
    }
    
    if(pp->PreserveBoundary)
    {
      WV().clear();
      for(auto pf=m.face.begin();pf!=m.face.end();++pf)
        if( !(*pf).IsD() && (*pf).IsW() )
          for(int j=0;j<3;++j)
            if((*pf).IsB(j))
            {
              if((*pf).V(j)->IsW())  {(*pf).V(j)->ClearW(); WV().push_back((*pf).V(j));}
              if((*pf).V1(j)->IsW()) {(*pf).V1(j)->ClearW();WV().push_back((*pf).V1(j));}
            }
    }
    
    InitQuadric(m,pp);
    
    // Initialize the heap with all the possible collapses
    if(IsSymmetric(pp))
    { // if the collapse is symmetric (e.g. u->v == v->u)
      for(auto vi=m.vert.begin();vi!=m.vert.end();++vi)
        if(!(*vi).IsD() && (*vi).IsRW())
        {
          vcg::face::VFIterator<FaceType> x;
          for( x.F() = (*vi).VFp(), x.I() = (*vi).VFi(); x.F()!=0; ++ x){
            x.V1()->ClearV();
            x.V2()->ClearV();
          }
          for( x.F() = (*vi).VFp(), x.I() = (*vi).VFi(); x.F()!=0; ++x )
          {
            if((x.V0()<x.V1()) && x.V1()->IsRW() && !x.V1()->IsV()){
              x.V1()->SetV();
              h_ret.push_back(HeapElem(new MYTYPE(VertexPair(x.V0(),x.V1()),TriEdgeCollapse< TriMeshType,VertexPair,MYTYPE>::GlobalMark(),_pp )));
            }
            if((x.V0()<x.V2()) && x.V2()->IsRW()&& !x.V2()->IsV()){
              x.V2()->SetV();
              h_ret.push_back(HeapElem(new MYTYPE(VertexPair(x.V0(),x.V2()),TriEdgeCollapse< TriMeshType,VertexPair,MYTYPE>::GlobalMark(),_pp )));
            }
          }
        }
    }
    else
    { // if the collapse is A-symmetric (e.g. u->v != v->u)
      for(auto vi=m.vert.begin();vi!=m.vert.end();++vi)
        if(!(*vi).IsD() && (*vi).IsRW())
        {
          vcg::face::VFIterator<FaceType> x;
          UnMarkAll(m);
          for( x.F() = (*vi).VFp(), x.I() = (*vi).VFi(); x.F()!=0; ++ x)
          {
            if(x.V()->IsRW() && x.V1()->IsRW() && !IsMarked(m,x.F()->V1(x.I()))){
              h_ret.push_back( HeapElem( new MYTYPE( VertexPair (x.V(),x.V1()),TriEdgeCollapse< TriMeshType,VertexPair,MYTYPE>::GlobalMark(),_pp)));
            }
            if(x.V()->IsRW() && x.V2()->IsRW() && !IsMarked(m,x.F()->V2(x.I()))){
              h_ret.push_back( HeapElem( new MYTYPE( VertexPair (x.V(),x.V2()),TriEdgeCollapse< TriMeshType,VertexPair,MYTYPE>::GlobalMark(),_pp)));
            }
          }
        }
    }
  }
//  static float HeapSimplexRatio(BaseParameterClass *_pp) {return IsSymmetric(_pp)?5.0f:9.0f;}
  static float HeapSimplexRatio(BaseParameterClass *_pp) {return IsSymmetric(_pp)?4.0f:8.0f;}
  static bool IsSymmetric(BaseParameterClass *_pp) {return ((QParameter *)_pp)->OptimalPlacement;}
  static bool IsVertexStable(BaseParameterClass *_pp) {return !((QParameter *)_pp)->OptimalPlacement;}


/** Evaluate the priority (error) for an edge collapse
  *
  * It simulate the collapse and compute the quadric error 
  * generated by this collapse. This error is weighted with 
  * - aspect ratio of involved triangles
  * - normal variation
  */
  ScalarType ComputePriority(BaseParameterClass *_pp)
  {
    QParameter *pp=(QParameter *)_pp;
    
    VertexType * v[2];
    v[0] = this->pos.V(0);
    v[1] = this->pos.V(1);
    
    std::vector<CoordType> origNormalVec; // vector with incident faces original normals 
    if(pp->NormalCheck){ // Collect Original Normals
      for(VFIterator x(v[0]); !x.End(); ++x )	 // for all faces in v0
        if( x.V1()!=v[1] && x.V2()!=v[1] )     // skip faces with v1
          origNormalVec.push_back(NormalizedTriangleNormal(*x.F()));
      for(VFIterator x(v[1]); !x.End(); ++x )	 // for all faces in v1
        if( x.V1()!=v[0] && x.V2()!=v[0] )     // skip faces with v0
          origNormalVec.push_back(NormalizedTriangleNormal(*x.F()));
    }
    
    ScalarType origArea=0;
    if(pp->AreaCheck){ // Collect Original Area
      for(VFIterator x(v[0]); !x.End(); ++x )	 // for all faces in v0
        origArea += DoubleArea(*x.F());
      for(VFIterator x(v[1]); !x.End(); ++x )	 // for all faces in v1
        if( x.V1()!=v[0] && x.V2()!=v[0] )     // skip faces with v0
          origArea += DoubleArea(*x.F());
    }
    
    ScalarType origQual= std::numeric_limits<double>::max(); 
    if(pp->HardQualityCheck){ // Collect original quality
      for(VFIterator x(v[0]); !x.End(); ++x )	 // for all faces in v0
          origQual=std::min(origQual, QualityFace(*x.F()));
      for(VFIterator x(v[1]); !x.End(); ++x )	 // for all faces in v1
        if( x.V1()!=v[0] && x.V2()!=v[0] )     // skip faces with v0
          origQual=std::min(origQual, QualityFace(*x.F()));
    }
 
    
    //// Move the two vertexes into new position (storing the old ones)
    CoordType OldPos0=v[0]->P();
    CoordType OldPos1=v[1]->P();
    ComputePosition(_pp);      
    // Now Simulate the collapse 
    v[0]->P() = v[1]->P() =  this->optimalPos;    
     
    //// Rescan faces and compute the worst quality and normals that happens after collapse
    ScalarType MinCos  = std::numeric_limits<double>::max();  // Cosine of the angle variation: -1 ~ very bad to 1~perfect
    if(pp->NormalCheck){    
      int i=0;
      for(VFIterator x(v[0]); !x.End(); ++x )  // for all faces in v0
        if( x.V1()!=v[1] && x.V2()!=v[1] )     // skipping faces with v1
        {
          CoordType nn=NormalizedTriangleNormal(*x.F());
          MinCos=std::min(MinCos,nn.dot(origNormalVec[i++]));
        }
      for(VFIterator x(v[1]); !x.End(); ++x )	 // for all faces in v1
        if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
        {
          CoordType nn=NormalizedTriangleNormal(*x.F());
          MinCos=std::min(MinCos,nn.dot(origNormalVec[i++]));
        }
    }      
    
    ScalarType newQual = std::numeric_limits<ScalarType>::max();  // 
    if(pp->QualityCheck){ 
      for(VFIterator x(v[0]); !x.End(); ++x )  // for all faces in v0
        if( x.V1()!=v[1] && x.V2()!=v[1] )   
          newQual=std::min(newQual,QualityFace(*x.F()));
      for(VFIterator x(v[1]); !x.End(); ++x )	 // for all faces in v1
        if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
          newQual=std::min(newQual,QualityFace(*x.F()));
    }
            
    ScalarType newArea=0;
    if(pp->AreaCheck){ // Collect Area
      for(VFIterator x(v[0]); !x.End(); ++x )	 // for all faces in v0
          newArea += DoubleArea(*x.F());
      for(VFIterator x(v[1]); !x.End(); ++x )	 // for all faces in v1
        if( x.V1()!=v[0] && x.V2()!=v[0] )     // skip faces with v0
          newArea += DoubleArea(*x.F());
    }         
    
    QuadricType qq=QH::Qd(v[0]);
    qq+=QH::Qd(v[1]);

    double QuadErr = pp->ScaleFactor*qq.Apply(Point3d::Construct(v[1]->P()));
    
    assert(!math::IsNAN(QuadErr));
    // All collapses involving triangles with quality larger than <QualityThr> have no penalty;
    if(newQual>pp->QualityThr) newQual=pp->QualityThr;
    
    if(pp->NormalCheck){     
      // All collapses where the normal vary less than <NormalThr> (e.g. more than CosineThr)
      // have no particular penalty
      if(MinCos>pp->CosineThr) MinCos=pp->CosineThr;
      MinCos=fabs((MinCos+1.0)/2.0); // Now it is in the range 0..1 with 0 very bad!
      assert(MinCos >=0 && MinCos<1.1 );
    }

    
    QuadErr= std::max(QuadErr,pp->QuadricEpsilon);
    if(QuadErr <= pp->QuadricEpsilon) 
    {
      QuadErr *= Distance(OldPos0,OldPos1);  
    }

    if( pp->UseVertexWeight ) QuadErr *= (QH::W(v[1])+QH::W(v[0]))/2;
    
    ScalarType error;
    if(!pp->QualityCheck && !pp->NormalCheck) error = (ScalarType)(QuadErr);
    if( pp->QualityCheck && !pp->NormalCheck) error = (ScalarType)(QuadErr / newQual);
    if(!pp->QualityCheck &&  pp->NormalCheck) error = (ScalarType)(QuadErr / MinCos);
    if( pp->QualityCheck &&  pp->NormalCheck) error = (ScalarType)(QuadErr / (newQual*MinCos));

    if(pp->AreaCheck && ((fabs(origArea-newArea)/(origArea+newArea))>0.01) )
        error = std::numeric_limits<ScalarType>::max();
    
    if(pp->HardQualityCheck && 
       (newQual < pp->HardQualityThr && newQual < origQual*0.9) )
      error = std::numeric_limits<ScalarType>::max();
    
    if(pp->HardNormalCheck)
      if(CheckForFlip())  error = std::numeric_limits<ScalarType>::max();
    
    // Restore old position of v0 and v1
    v[0]->P()=OldPos0;
    v[1]->P()=OldPos1;
    
    this->_priority = error;
    return this->_priority;
  }
  
  
  bool CheckForFlippedFaceOverVertex(VertexType *vp, ScalarType angleThrRad =  math::ToRad(150.))
  {
    std::map<VertexType *, CoordType>  edgeNormMap; 
    ScalarType maxAngle=0;
    
    for(VFIterator x(vp); !x.End(); ++x )	 // for all faces in v1
    {
      if(QualityFace(*x.F()) <0.01 ) return true; 
        for(int i=0;i<2;++i)
        { 
          VertexType *vv= i==0?x.V1():x.V2();
          assert(vv!=vp);
          auto ni = edgeNormMap.find(vv);
          if(ni==edgeNormMap.end()) edgeNormMap[vv] = NormalizedTriangleNormal(*x.F());
          else maxAngle = std::max(maxAngle,AngleN(NormalizedTriangleNormal(*x.F()),ni->second));
        }
    }
    
    return (maxAngle > angleThrRad);          
  }  
  
  // This function return true if, after an edge collapse, 
  // among the surviving faces, there are two adjacent faces forming a 
  // diedral angle larger than the given threshold
  // It assumes that the two vertexes of the collapsing edge 
  // have been already moved to the new position but the topolgy has not yet been changed (e.g. there are two zero-area faces)
  
  bool CheckForFlip(ScalarType angleThrRad =  math::ToRad(150.))
  {
    std::map<VertexType *, CoordType>  edgeNormMap; 
    VertexType * v[2];
    v[0] = this->pos.V(0);
    v[1] = this->pos.V(1);
    ScalarType maxAngle=0;
    assert (v[0]->P()==v[1]->P());
    
    for(VFIterator x(v[0]); !x.End(); ++x )	 // for all faces in v0
      if( x.V1()!=v[1] && x.V2()!=v[1] )     // skip faces with v1
      {
        if(QualityFace(*x.F()) <0.01 ) return true;         
        for(int i=0;i<2;++i)
        { 
          VertexType *vv= (i==0)?x.V1():x.V2();
          assert(vv!=v[0]);
          auto ni = edgeNormMap.find(vv);
          if(ni==edgeNormMap.end()) edgeNormMap[vv] = NormalizedTriangleNormal(*x.F());
          else maxAngle = std::max(maxAngle,AngleN(NormalizedTriangleNormal(*x.F()),ni->second));
        }
      }
    for(VFIterator x(v[1]); !x.End(); ++x )	 // for all faces in v1
      if( x.V1()!=v[0] && x.V2()!=v[0] )     // skip faces with v0
      {
        if(QualityFace(*x.F()) <0.01 ) return true;         
        for(int i=0;i<2;++i)
        { 
          VertexType *vv= i==0?x.V1():x.V2();
          assert(vv!=v[1]);
          auto ni = edgeNormMap.find(vv);
          if(ni==edgeNormMap.end()) edgeNormMap[vv] = NormalizedTriangleNormal(*x.F());
          else maxAngle = std::max(maxAngle,AngleN(NormalizedTriangleNormal(*x.F()),ni->second));
        }
    }
    return (maxAngle > angleThrRad);      
  }
  

  
  
  inline void AddCollapseToHeap(HeapType & h_ret, VertexType *v0, VertexType *v1, BaseParameterClass *_pp)
  {
    QParameter *pp=(QParameter *)_pp;    
    ScalarType maxAdmitErr = std::numeric_limits<ScalarType>::max();
    h_ret.push_back(HeapElem(new MYTYPE(VertexPair(v0,v1), this->GlobalMark(),_pp)));
    if(h_ret.back().pri > maxAdmitErr) {
      delete h_ret.back().locModPtr;
      h_ret.pop_back(); 
    }
    else
      std::push_heap(h_ret.begin(),h_ret.end());
    
    if(!IsSymmetric(pp)){
      h_ret.push_back(HeapElem(new MYTYPE(VertexPair(v1,v0), this->GlobalMark(),_pp)));
      if(h_ret.back().pri > maxAdmitErr) {
        delete h_ret.back().locModPtr;
        h_ret.pop_back(); 
      }
      else      
        std::push_heap(h_ret.begin(),h_ret.end());
    }
  }
  
  inline  void UpdateHeap(HeapType & h_ret, BaseParameterClass *_pp)
  {
    this->GlobalMark()++;
    VertexType *v[2];
    v[0]= this->pos.V(0);
    v[1]= this->pos.V(1);
    v[1]->IMark() = this->GlobalMark();

    // First loop around the surviving vertex to unmark the Visit flags
    for(VFIterator vfi(v[1]); !vfi.End(); ++vfi ) {
      vfi.V1()->ClearV();
      vfi.V2()->ClearV();
      vfi.V1()->IMark() = this->GlobalMark();
      vfi.V2()->IMark() = this->GlobalMark();      
    }

    // Second Loop
    for(VFIterator vfi(v[1]); !vfi.End(); ++vfi ) {
      if( !(vfi.V1()->IsV()) && vfi.V1()->IsRW())
      {
        vfi.V1()->SetV();
        AddCollapseToHeap(h_ret,vfi.V0(),vfi.V1(),_pp);
      }
      if(  !(vfi.V2()->IsV()) && vfi.V2()->IsRW())
      {
        vfi.V2()->SetV();
        AddCollapseToHeap(h_ret,vfi.V2(),vfi.V0(),_pp);
      }
      if(vfi.V1()->IsRW() && vfi.V2()->IsRW() )
        AddCollapseToHeap(h_ret,vfi.V1(),vfi.V2(),_pp);
    } // end second loop around surviving vertex.
  }

  static void InitQuadric(TriMeshType &m,BaseParameterClass *_pp)
  {
    QParameter *pp=(QParameter *)_pp;
    QH::Init();
    for(VertexIterator pv=m.vert.begin();pv!=m.vert.end();++pv)
      if( ! (*pv).IsD() && (*pv).IsW())
        QH::Qd(*pv).SetZero();    
    
    for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
      if( !(*fi).IsD() && (*fi).IsR() )
        if((*fi).V(0)->IsR() &&(*fi).V(1)->IsR() &&(*fi).V(2)->IsR())
        {
          Plane3<ScalarType,false> facePlane;
          facePlane.SetDirection( ( (*fi).V(1)->cP() - (*fi).V(0)->cP() ) ^  ( (*fi).V(2)->cP() - (*fi).V(0)->cP() ));
          if(!pp->UseArea)
            facePlane.Normalize();
          facePlane.SetOffset( facePlane.Direction().dot((*fi).V(0)->cP()));                   

          QuadricType q;
          q.ByPlane(facePlane);          
          
          // The basic < add face quadric to each vertex > loop
          for(int j=0;j<3;++j)
            if( (*fi).V(j)->IsW() )
              QH::Qd((*fi).V(j)) += q;
          
          for(int j=0;j<3;++j)
            if( (*fi).IsB(j) || pp->QualityQuadric )
            {
              Plane3<ScalarType,false> borderPlane; 
              QuadricType bq;
              // Border quadric record the squared distance from the plane orthogonal to the face and passing 
              // through the edge. 
              borderPlane.SetDirection(facePlane.Direction() ^ (( (*fi).V1(j)->cP() - (*fi).V(j)->cP() ).normalized()));
              if(  (*fi).IsB(j) ) borderPlane.SetDirection(borderPlane.Direction()* (ScalarType)(pp->BoundaryQuadricWeight ));        // amplify border planes
              else                borderPlane.SetDirection(borderPlane.Direction()* (ScalarType)(pp->QualityQuadricWeight ));   // and consider much less quadric for quality
              borderPlane.SetOffset(borderPlane.Direction().dot((*fi).V(j)->cP()));
              bq.ByPlane(borderPlane);
              
              if( (*fi).V (j)->IsW() )	QH::Qd((*fi).V (j)) += bq;
              if( (*fi).V1(j)->IsW() )	QH::Qd((*fi).V1(j)) += bq;
            }
        }
    
    if(pp->ScaleIndependent)
    {
      vcg::tri::UpdateBounding<TriMeshType>::Box(m);
      //Make all quadric independent from mesh size
      pp->ScaleFactor = 1e8*pow(1.0/m.bbox.Diag(),6); // scaling factor
    }

    if(pp->QualityWeight) // we map quality range into a squared 01 and than this into the 1..QualityWeightFactor range
    {
      ScalarType minQ, maxQ;
      tri::Stat<TriMeshType>::ComputePerVertexQualityMinMax(m,minQ,maxQ);      
      for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
        if( ! (*vi).IsD() && (*vi).IsW())
        {
          const double quality01squared = pow((double)((vi->Q()-minQ)/(maxQ-minQ)),2.0);
          QH::Qd(*vi) *= 1.0 + quality01squared * (pp->QualityWeightFactor-1.0); 
        }
    }
  }
  
  CoordType ComputeMinimal()
  {
  }
  
CoordType ComputeMinimalOld()
{
   VertexType* &v0 = this->pos.V(0);
   VertexType* &v1 = this->pos.V(1);
   QuadricType q=QH::Qd(v0);
   q+=QH::Qd(v1);
   
   Point3<QuadricType::ScalarType> x;
   
   bool rt=q.Minimum(x);
   if(!rt) { // if the computation of the minimum fails we choose between the two edge points and the middle one.
     Point3<QuadricType::ScalarType> x0=Point3d::Construct(v0->P());
     Point3<QuadricType::ScalarType> x1=Point3d::Construct(v1->P());
     x.Import((v1->P()+v1->P())/2);
     double qvx=q.Apply(x);
     double qv0=q.Apply(x0);
     double qv1=q.Apply(x1);
     if(qv0<qvx) x=x0;
     if(qv1<qvx && qv1<qv0) x=x1;
   }
   
   return CoordType::Construct(x);
 }
};

} // namespace tri
} // namespace vcg
#endif